llvm-project/llvm/lib/Target/NVPTX/NVPTXLowerAggrCopies.cpp

233 lines
8.1 KiB
C++

//===- NVPTXLowerAggrCopies.cpp - ------------------------------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Lower aggregate copies, memset, memcpy, memmov intrinsics into loops when
// the size is large or is not a compile-time constant.
//
//===----------------------------------------------------------------------===//
#include "NVPTXLowerAggrCopies.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "nvptx"
using namespace llvm;
namespace {
// actual analysis class, which is a functionpass
struct NVPTXLowerAggrCopies : public FunctionPass {
static char ID;
NVPTXLowerAggrCopies() : FunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addPreserved<MachineFunctionAnalysis>();
AU.addPreserved<StackProtector>();
}
bool runOnFunction(Function &F) override;
static const unsigned MaxAggrCopySize = 128;
const char *getPassName() const override {
return "Lower aggregate copies/intrinsics into loops";
}
};
} // namespace
char NVPTXLowerAggrCopies::ID = 0;
// Lower MemTransferInst or load-store pair to loop
static void convertTransferToLoop(
Instruction *splitAt, Value *srcAddr, Value *dstAddr, Value *len,
//unsigned numLoads,
bool srcVolatile, bool dstVolatile, LLVMContext &Context, Function &F) {
Type *indType = len->getType();
BasicBlock *origBB = splitAt->getParent();
BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split");
BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB);
origBB->getTerminator()->setSuccessor(0, loopBB);
IRBuilder<> builder(origBB, origBB->getTerminator());
// srcAddr and dstAddr are expected to be pointer types,
// so no check is made here.
unsigned srcAS = dyn_cast<PointerType>(srcAddr->getType())->getAddressSpace();
unsigned dstAS = dyn_cast<PointerType>(dstAddr->getType())->getAddressSpace();
// Cast pointers to (char *)
srcAddr = builder.CreateBitCast(srcAddr, Type::getInt8PtrTy(Context, srcAS));
dstAddr = builder.CreateBitCast(dstAddr, Type::getInt8PtrTy(Context, dstAS));
IRBuilder<> loop(loopBB);
// The loop index (ind) is a phi node.
PHINode *ind = loop.CreatePHI(indType, 0);
// Incoming value for ind is 0
ind->addIncoming(ConstantInt::get(indType, 0), origBB);
// load from srcAddr+ind
Value *val = loop.CreateLoad(loop.CreateGEP(loop.getInt8Ty(), srcAddr, ind),
srcVolatile);
// store at dstAddr+ind
loop.CreateStore(val, loop.CreateGEP(loop.getInt8Ty(), dstAddr, ind),
dstVolatile);
// The value for ind coming from backedge is (ind + 1)
Value *newind = loop.CreateAdd(ind, ConstantInt::get(indType, 1));
ind->addIncoming(newind, loopBB);
loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB);
}
// Lower MemSetInst to loop
static void convertMemSetToLoop(Instruction *splitAt, Value *dstAddr,
Value *len, Value *val, LLVMContext &Context,
Function &F) {
BasicBlock *origBB = splitAt->getParent();
BasicBlock *newBB = splitAt->getParent()->splitBasicBlock(splitAt, "split");
BasicBlock *loopBB = BasicBlock::Create(Context, "loadstoreloop", &F, newBB);
origBB->getTerminator()->setSuccessor(0, loopBB);
IRBuilder<> builder(origBB, origBB->getTerminator());
unsigned dstAS = dyn_cast<PointerType>(dstAddr->getType())->getAddressSpace();
// Cast pointer to the type of value getting stored
dstAddr =
builder.CreateBitCast(dstAddr, PointerType::get(val->getType(), dstAS));
IRBuilder<> loop(loopBB);
PHINode *ind = loop.CreatePHI(len->getType(), 0);
ind->addIncoming(ConstantInt::get(len->getType(), 0), origBB);
loop.CreateStore(val, loop.CreateGEP(val->getType(), dstAddr, ind), false);
Value *newind = loop.CreateAdd(ind, ConstantInt::get(len->getType(), 1));
ind->addIncoming(newind, loopBB);
loop.CreateCondBr(loop.CreateICmpULT(newind, len), loopBB, newBB);
}
bool NVPTXLowerAggrCopies::runOnFunction(Function &F) {
SmallVector<LoadInst *, 4> aggrLoads;
SmallVector<MemTransferInst *, 4> aggrMemcpys;
SmallVector<MemSetInst *, 4> aggrMemsets;
const DataLayout &DL = F.getParent()->getDataLayout();
LLVMContext &Context = F.getParent()->getContext();
//
// Collect all the aggrLoads, aggrMemcpys and addrMemsets.
//
//const BasicBlock *firstBB = &F.front(); // first BB in F
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
//BasicBlock *bb = BI;
for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
++II) {
if (LoadInst *load = dyn_cast<LoadInst>(II)) {
if (!load->hasOneUse())
continue;
if (DL.getTypeStoreSize(load->getType()) < MaxAggrCopySize)
continue;
User *use = load->user_back();
if (StoreInst *store = dyn_cast<StoreInst>(use)) {
if (store->getOperand(0) != load) //getValueOperand
continue;
aggrLoads.push_back(load);
}
} else if (MemTransferInst *intr = dyn_cast<MemTransferInst>(II)) {
Value *len = intr->getLength();
// If the number of elements being copied is greater
// than MaxAggrCopySize, lower it to a loop
if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) {
if (len_int->getZExtValue() >= MaxAggrCopySize) {
aggrMemcpys.push_back(intr);
}
} else {
// turn variable length memcpy/memmov into loop
aggrMemcpys.push_back(intr);
}
} else if (MemSetInst *memsetintr = dyn_cast<MemSetInst>(II)) {
Value *len = memsetintr->getLength();
if (ConstantInt *len_int = dyn_cast<ConstantInt>(len)) {
if (len_int->getZExtValue() >= MaxAggrCopySize) {
aggrMemsets.push_back(memsetintr);
}
} else {
// turn variable length memset into loop
aggrMemsets.push_back(memsetintr);
}
}
}
}
if ((aggrLoads.size() == 0) && (aggrMemcpys.size() == 0) &&
(aggrMemsets.size() == 0))
return false;
//
// Do the transformation of an aggr load/copy/set to a loop
//
for (unsigned i = 0, e = aggrLoads.size(); i != e; ++i) {
LoadInst *load = aggrLoads[i];
StoreInst *store = dyn_cast<StoreInst>(*load->user_begin());
Value *srcAddr = load->getOperand(0);
Value *dstAddr = store->getOperand(1);
unsigned numLoads = DL.getTypeStoreSize(load->getType());
Value *len = ConstantInt::get(Type::getInt32Ty(Context), numLoads);
convertTransferToLoop(store, srcAddr, dstAddr, len, load->isVolatile(),
store->isVolatile(), Context, F);
store->eraseFromParent();
load->eraseFromParent();
}
for (unsigned i = 0, e = aggrMemcpys.size(); i != e; ++i) {
MemTransferInst *cpy = aggrMemcpys[i];
Value *len = cpy->getLength();
// llvm 2.7 version of memcpy does not have volatile
// operand yet. So always making it non-volatile
// optimistically, so that we don't see unnecessary
// st.volatile in ptx
convertTransferToLoop(cpy, cpy->getSource(), cpy->getDest(), len, false,
false, Context, F);
cpy->eraseFromParent();
}
for (unsigned i = 0, e = aggrMemsets.size(); i != e; ++i) {
MemSetInst *memsetinst = aggrMemsets[i];
Value *len = memsetinst->getLength();
Value *val = memsetinst->getValue();
convertMemSetToLoop(memsetinst, memsetinst->getDest(), len, val, Context,
F);
memsetinst->eraseFromParent();
}
return true;
}
FunctionPass *llvm::createLowerAggrCopies() {
return new NVPTXLowerAggrCopies();
}