forked from OSchip/llvm-project
1615 lines
54 KiB
C++
1615 lines
54 KiB
C++
//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the operating system Host concept.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/Host.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/X86TargetParser.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
// Include the platform-specific parts of this class.
|
|
#ifdef LLVM_ON_UNIX
|
|
#include "Unix/Host.inc"
|
|
#include <sched.h>
|
|
#endif
|
|
#ifdef _WIN32
|
|
#include "Windows/Host.inc"
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
#include <intrin.h>
|
|
#endif
|
|
#if defined(__APPLE__) && (!defined(__x86_64__))
|
|
#include <mach/host_info.h>
|
|
#include <mach/mach.h>
|
|
#include <mach/mach_host.h>
|
|
#include <mach/machine.h>
|
|
#endif
|
|
|
|
#define DEBUG_TYPE "host-detection"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementations of the CPU detection routines
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
using namespace llvm;
|
|
|
|
static std::unique_ptr<llvm::MemoryBuffer>
|
|
LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
|
|
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
|
|
llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
|
|
if (std::error_code EC = Text.getError()) {
|
|
llvm::errs() << "Can't read "
|
|
<< "/proc/cpuinfo: " << EC.message() << "\n";
|
|
return nullptr;
|
|
}
|
|
return std::move(*Text);
|
|
}
|
|
|
|
StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
|
|
// Access to the Processor Version Register (PVR) on PowerPC is privileged,
|
|
// and so we must use an operating-system interface to determine the current
|
|
// processor type. On Linux, this is exposed through the /proc/cpuinfo file.
|
|
const char *generic = "generic";
|
|
|
|
// The cpu line is second (after the 'processor: 0' line), so if this
|
|
// buffer is too small then something has changed (or is wrong).
|
|
StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
|
|
StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
|
|
|
|
StringRef::const_iterator CIP = CPUInfoStart;
|
|
|
|
StringRef::const_iterator CPUStart = 0;
|
|
size_t CPULen = 0;
|
|
|
|
// We need to find the first line which starts with cpu, spaces, and a colon.
|
|
// After the colon, there may be some additional spaces and then the cpu type.
|
|
while (CIP < CPUInfoEnd && CPUStart == 0) {
|
|
if (CIP < CPUInfoEnd && *CIP == '\n')
|
|
++CIP;
|
|
|
|
if (CIP < CPUInfoEnd && *CIP == 'c') {
|
|
++CIP;
|
|
if (CIP < CPUInfoEnd && *CIP == 'p') {
|
|
++CIP;
|
|
if (CIP < CPUInfoEnd && *CIP == 'u') {
|
|
++CIP;
|
|
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
|
|
++CIP;
|
|
|
|
if (CIP < CPUInfoEnd && *CIP == ':') {
|
|
++CIP;
|
|
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
|
|
++CIP;
|
|
|
|
if (CIP < CPUInfoEnd) {
|
|
CPUStart = CIP;
|
|
while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
|
|
*CIP != ',' && *CIP != '\n'))
|
|
++CIP;
|
|
CPULen = CIP - CPUStart;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CPUStart == 0)
|
|
while (CIP < CPUInfoEnd && *CIP != '\n')
|
|
++CIP;
|
|
}
|
|
|
|
if (CPUStart == 0)
|
|
return generic;
|
|
|
|
return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
|
|
.Case("604e", "604e")
|
|
.Case("604", "604")
|
|
.Case("7400", "7400")
|
|
.Case("7410", "7400")
|
|
.Case("7447", "7400")
|
|
.Case("7455", "7450")
|
|
.Case("G4", "g4")
|
|
.Case("POWER4", "970")
|
|
.Case("PPC970FX", "970")
|
|
.Case("PPC970MP", "970")
|
|
.Case("G5", "g5")
|
|
.Case("POWER5", "g5")
|
|
.Case("A2", "a2")
|
|
.Case("POWER6", "pwr6")
|
|
.Case("POWER7", "pwr7")
|
|
.Case("POWER8", "pwr8")
|
|
.Case("POWER8E", "pwr8")
|
|
.Case("POWER8NVL", "pwr8")
|
|
.Case("POWER9", "pwr9")
|
|
.Case("POWER10", "pwr10")
|
|
// FIXME: If we get a simulator or machine with the capabilities of
|
|
// mcpu=future, we should revisit this and add the name reported by the
|
|
// simulator/machine.
|
|
.Default(generic);
|
|
}
|
|
|
|
StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
|
|
// The cpuid register on arm is not accessible from user space. On Linux,
|
|
// it is exposed through the /proc/cpuinfo file.
|
|
|
|
// Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
|
|
// in all cases.
|
|
SmallVector<StringRef, 32> Lines;
|
|
ProcCpuinfoContent.split(Lines, "\n");
|
|
|
|
// Look for the CPU implementer line.
|
|
StringRef Implementer;
|
|
StringRef Hardware;
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
|
|
if (Lines[I].startswith("CPU implementer"))
|
|
Implementer = Lines[I].substr(15).ltrim("\t :");
|
|
if (Lines[I].startswith("Hardware"))
|
|
Hardware = Lines[I].substr(8).ltrim("\t :");
|
|
}
|
|
|
|
if (Implementer == "0x41") { // ARM Ltd.
|
|
// MSM8992/8994 may give cpu part for the core that the kernel is running on,
|
|
// which is undeterministic and wrong. Always return cortex-a53 for these SoC.
|
|
if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
|
|
return "cortex-a53";
|
|
|
|
|
|
// Look for the CPU part line.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("CPU part"))
|
|
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
|
|
// values correspond to the "Part number" in the CP15/c0 register. The
|
|
// contents are specified in the various processor manuals.
|
|
// This corresponds to the Main ID Register in Technical Reference Manuals.
|
|
// and is used in programs like sys-utils
|
|
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
|
|
.Case("0x926", "arm926ej-s")
|
|
.Case("0xb02", "mpcore")
|
|
.Case("0xb36", "arm1136j-s")
|
|
.Case("0xb56", "arm1156t2-s")
|
|
.Case("0xb76", "arm1176jz-s")
|
|
.Case("0xc08", "cortex-a8")
|
|
.Case("0xc09", "cortex-a9")
|
|
.Case("0xc0f", "cortex-a15")
|
|
.Case("0xc20", "cortex-m0")
|
|
.Case("0xc23", "cortex-m3")
|
|
.Case("0xc24", "cortex-m4")
|
|
.Case("0xd22", "cortex-m55")
|
|
.Case("0xd02", "cortex-a34")
|
|
.Case("0xd04", "cortex-a35")
|
|
.Case("0xd03", "cortex-a53")
|
|
.Case("0xd07", "cortex-a57")
|
|
.Case("0xd08", "cortex-a72")
|
|
.Case("0xd09", "cortex-a73")
|
|
.Case("0xd0a", "cortex-a75")
|
|
.Case("0xd0b", "cortex-a76")
|
|
.Case("0xd0d", "cortex-a77")
|
|
.Case("0xd41", "cortex-a78")
|
|
.Case("0xd44", "cortex-x1")
|
|
.Case("0xd0c", "neoverse-n1")
|
|
.Default("generic");
|
|
}
|
|
|
|
if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
|
|
if (Lines[I].startswith("CPU part")) {
|
|
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
|
|
.Case("0x516", "thunderx2t99")
|
|
.Case("0x0516", "thunderx2t99")
|
|
.Case("0xaf", "thunderx2t99")
|
|
.Case("0x0af", "thunderx2t99")
|
|
.Case("0xa1", "thunderxt88")
|
|
.Case("0x0a1", "thunderxt88")
|
|
.Default("generic");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Implementer == "0x46") { // Fujitsu Ltd.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
|
|
if (Lines[I].startswith("CPU part")) {
|
|
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
|
|
.Case("0x001", "a64fx")
|
|
.Default("generic");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Implementer == "0x4e") { // NVIDIA Corporation
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
|
|
if (Lines[I].startswith("CPU part")) {
|
|
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
|
|
.Case("0x004", "carmel")
|
|
.Default("generic");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Implementer == "0x48") // HiSilicon Technologies, Inc.
|
|
// Look for the CPU part line.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("CPU part"))
|
|
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
|
|
// values correspond to the "Part number" in the CP15/c0 register. The
|
|
// contents are specified in the various processor manuals.
|
|
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
|
|
.Case("0xd01", "tsv110")
|
|
.Default("generic");
|
|
|
|
if (Implementer == "0x51") // Qualcomm Technologies, Inc.
|
|
// Look for the CPU part line.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("CPU part"))
|
|
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
|
|
// values correspond to the "Part number" in the CP15/c0 register. The
|
|
// contents are specified in the various processor manuals.
|
|
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
|
|
.Case("0x06f", "krait") // APQ8064
|
|
.Case("0x201", "kryo")
|
|
.Case("0x205", "kryo")
|
|
.Case("0x211", "kryo")
|
|
.Case("0x800", "cortex-a73")
|
|
.Case("0x801", "cortex-a73")
|
|
.Case("0x802", "cortex-a73")
|
|
.Case("0x803", "cortex-a73")
|
|
.Case("0x804", "cortex-a73")
|
|
.Case("0x805", "cortex-a73")
|
|
.Case("0xc00", "falkor")
|
|
.Case("0xc01", "saphira")
|
|
.Default("generic");
|
|
|
|
if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
|
|
// The Exynos chips have a convoluted ID scheme that doesn't seem to follow
|
|
// any predictive pattern across variants and parts.
|
|
unsigned Variant = 0, Part = 0;
|
|
|
|
// Look for the CPU variant line, whose value is a 1 digit hexadecimal
|
|
// number, corresponding to the Variant bits in the CP15/C0 register.
|
|
for (auto I : Lines)
|
|
if (I.consume_front("CPU variant"))
|
|
I.ltrim("\t :").getAsInteger(0, Variant);
|
|
|
|
// Look for the CPU part line, whose value is a 3 digit hexadecimal
|
|
// number, corresponding to the PartNum bits in the CP15/C0 register.
|
|
for (auto I : Lines)
|
|
if (I.consume_front("CPU part"))
|
|
I.ltrim("\t :").getAsInteger(0, Part);
|
|
|
|
unsigned Exynos = (Variant << 12) | Part;
|
|
switch (Exynos) {
|
|
default:
|
|
// Default by falling through to Exynos M3.
|
|
LLVM_FALLTHROUGH;
|
|
case 0x1002:
|
|
return "exynos-m3";
|
|
case 0x1003:
|
|
return "exynos-m4";
|
|
}
|
|
}
|
|
|
|
return "generic";
|
|
}
|
|
|
|
StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
|
|
// STIDP is a privileged operation, so use /proc/cpuinfo instead.
|
|
|
|
// The "processor 0:" line comes after a fair amount of other information,
|
|
// including a cache breakdown, but this should be plenty.
|
|
SmallVector<StringRef, 32> Lines;
|
|
ProcCpuinfoContent.split(Lines, "\n");
|
|
|
|
// Look for the CPU features.
|
|
SmallVector<StringRef, 32> CPUFeatures;
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("features")) {
|
|
size_t Pos = Lines[I].find(":");
|
|
if (Pos != StringRef::npos) {
|
|
Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We need to check for the presence of vector support independently of
|
|
// the machine type, since we may only use the vector register set when
|
|
// supported by the kernel (and hypervisor).
|
|
bool HaveVectorSupport = false;
|
|
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
|
|
if (CPUFeatures[I] == "vx")
|
|
HaveVectorSupport = true;
|
|
}
|
|
|
|
// Now check the processor machine type.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
|
|
if (Lines[I].startswith("processor ")) {
|
|
size_t Pos = Lines[I].find("machine = ");
|
|
if (Pos != StringRef::npos) {
|
|
Pos += sizeof("machine = ") - 1;
|
|
unsigned int Id;
|
|
if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
|
|
if (Id >= 8561 && HaveVectorSupport)
|
|
return "z15";
|
|
if (Id >= 3906 && HaveVectorSupport)
|
|
return "z14";
|
|
if (Id >= 2964 && HaveVectorSupport)
|
|
return "z13";
|
|
if (Id >= 2827)
|
|
return "zEC12";
|
|
if (Id >= 2817)
|
|
return "z196";
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return "generic";
|
|
}
|
|
|
|
StringRef sys::detail::getHostCPUNameForBPF() {
|
|
#if !defined(__linux__) || !defined(__x86_64__)
|
|
return "generic";
|
|
#else
|
|
uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
|
|
/* BPF_MOV64_IMM(BPF_REG_0, 0) */
|
|
{ 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
|
|
/* BPF_MOV64_IMM(BPF_REG_2, 1) */
|
|
0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
|
|
/* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
|
|
0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
|
|
/* BPF_MOV64_IMM(BPF_REG_0, 1) */
|
|
0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
|
|
/* BPF_EXIT_INSN() */
|
|
0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
|
|
|
|
uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
|
|
/* BPF_MOV64_IMM(BPF_REG_0, 0) */
|
|
{ 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
|
|
/* BPF_MOV64_IMM(BPF_REG_2, 1) */
|
|
0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
|
|
/* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
|
|
0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
|
|
/* BPF_MOV64_IMM(BPF_REG_0, 1) */
|
|
0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
|
|
/* BPF_EXIT_INSN() */
|
|
0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
|
|
|
|
struct bpf_prog_load_attr {
|
|
uint32_t prog_type;
|
|
uint32_t insn_cnt;
|
|
uint64_t insns;
|
|
uint64_t license;
|
|
uint32_t log_level;
|
|
uint32_t log_size;
|
|
uint64_t log_buf;
|
|
uint32_t kern_version;
|
|
uint32_t prog_flags;
|
|
} attr = {};
|
|
attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
|
|
attr.insn_cnt = 5;
|
|
attr.insns = (uint64_t)v3_insns;
|
|
attr.license = (uint64_t)"DUMMY";
|
|
|
|
int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
|
|
sizeof(attr));
|
|
if (fd >= 0) {
|
|
close(fd);
|
|
return "v3";
|
|
}
|
|
|
|
/* Clear the whole attr in case its content changed by syscall. */
|
|
memset(&attr, 0, sizeof(attr));
|
|
attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
|
|
attr.insn_cnt = 5;
|
|
attr.insns = (uint64_t)v2_insns;
|
|
attr.license = (uint64_t)"DUMMY";
|
|
fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
|
|
if (fd >= 0) {
|
|
close(fd);
|
|
return "v2";
|
|
}
|
|
return "v1";
|
|
#endif
|
|
}
|
|
|
|
#if defined(__i386__) || defined(_M_IX86) || \
|
|
defined(__x86_64__) || defined(_M_X64)
|
|
|
|
enum VendorSignatures {
|
|
SIG_INTEL = 0x756e6547 /* Genu */,
|
|
SIG_AMD = 0x68747541 /* Auth */
|
|
};
|
|
|
|
// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
|
|
// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
|
|
// support. Consequently, for i386, the presence of CPUID is checked first
|
|
// via the corresponding eflags bit.
|
|
// Removal of cpuid.h header motivated by PR30384
|
|
// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
|
|
// or test-suite, but are used in external projects e.g. libstdcxx
|
|
static bool isCpuIdSupported() {
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#if defined(__i386__)
|
|
int __cpuid_supported;
|
|
__asm__(" pushfl\n"
|
|
" popl %%eax\n"
|
|
" movl %%eax,%%ecx\n"
|
|
" xorl $0x00200000,%%eax\n"
|
|
" pushl %%eax\n"
|
|
" popfl\n"
|
|
" pushfl\n"
|
|
" popl %%eax\n"
|
|
" movl $0,%0\n"
|
|
" cmpl %%eax,%%ecx\n"
|
|
" je 1f\n"
|
|
" movl $1,%0\n"
|
|
"1:"
|
|
: "=r"(__cpuid_supported)
|
|
:
|
|
: "eax", "ecx");
|
|
if (!__cpuid_supported)
|
|
return false;
|
|
#endif
|
|
return true;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
|
|
/// the specified arguments. If we can't run cpuid on the host, return true.
|
|
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
|
|
unsigned *rECX, unsigned *rEDX) {
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#if defined(__x86_64__)
|
|
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
|
|
// FIXME: should we save this for Clang?
|
|
__asm__("movq\t%%rbx, %%rsi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgq\t%%rbx, %%rsi\n\t"
|
|
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
|
|
: "a"(value));
|
|
return false;
|
|
#elif defined(__i386__)
|
|
__asm__("movl\t%%ebx, %%esi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgl\t%%ebx, %%esi\n\t"
|
|
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
|
|
: "a"(value));
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
#elif defined(_MSC_VER)
|
|
// The MSVC intrinsic is portable across x86 and x64.
|
|
int registers[4];
|
|
__cpuid(registers, value);
|
|
*rEAX = registers[0];
|
|
*rEBX = registers[1];
|
|
*rECX = registers[2];
|
|
*rEDX = registers[3];
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
|
|
/// the 4 values in the specified arguments. If we can't run cpuid on the host,
|
|
/// return true.
|
|
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
|
|
unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
|
|
unsigned *rEDX) {
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#if defined(__x86_64__)
|
|
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
|
|
// FIXME: should we save this for Clang?
|
|
__asm__("movq\t%%rbx, %%rsi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgq\t%%rbx, %%rsi\n\t"
|
|
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
|
|
: "a"(value), "c"(subleaf));
|
|
return false;
|
|
#elif defined(__i386__)
|
|
__asm__("movl\t%%ebx, %%esi\n\t"
|
|
"cpuid\n\t"
|
|
"xchgl\t%%ebx, %%esi\n\t"
|
|
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
|
|
: "a"(value), "c"(subleaf));
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
#elif defined(_MSC_VER)
|
|
int registers[4];
|
|
__cpuidex(registers, value, subleaf);
|
|
*rEAX = registers[0];
|
|
*rEBX = registers[1];
|
|
*rECX = registers[2];
|
|
*rEDX = registers[3];
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
// Read control register 0 (XCR0). Used to detect features such as AVX.
|
|
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
// Check xgetbv; this uses a .byte sequence instead of the instruction
|
|
// directly because older assemblers do not include support for xgetbv and
|
|
// there is no easy way to conditionally compile based on the assembler used.
|
|
__asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
|
|
return false;
|
|
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
|
|
unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
|
|
*rEAX = Result;
|
|
*rEDX = Result >> 32;
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
|
|
unsigned *Model) {
|
|
*Family = (EAX >> 8) & 0xf; // Bits 8 - 11
|
|
*Model = (EAX >> 4) & 0xf; // Bits 4 - 7
|
|
if (*Family == 6 || *Family == 0xf) {
|
|
if (*Family == 0xf)
|
|
// Examine extended family ID if family ID is F.
|
|
*Family += (EAX >> 20) & 0xff; // Bits 20 - 27
|
|
// Examine extended model ID if family ID is 6 or F.
|
|
*Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
|
|
}
|
|
}
|
|
|
|
static StringRef
|
|
getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
|
|
const unsigned *Features,
|
|
unsigned *Type, unsigned *Subtype) {
|
|
auto testFeature = [&](unsigned F) {
|
|
return (Features[F / 32] & (1U << (F % 32))) != 0;
|
|
};
|
|
|
|
StringRef CPU;
|
|
|
|
switch (Family) {
|
|
case 3:
|
|
CPU = "i386";
|
|
break;
|
|
case 4:
|
|
CPU = "i486";
|
|
break;
|
|
case 5:
|
|
if (testFeature(X86::FEATURE_MMX)) {
|
|
CPU = "pentium-mmx";
|
|
break;
|
|
}
|
|
CPU = "pentium";
|
|
break;
|
|
case 6:
|
|
switch (Model) {
|
|
case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
|
|
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
|
|
// mobile processor, Intel Core 2 Extreme processor, Intel
|
|
// Pentium Dual-Core processor, Intel Xeon processor, model
|
|
// 0Fh. All processors are manufactured using the 65 nm process.
|
|
case 0x16: // Intel Celeron processor model 16h. All processors are
|
|
// manufactured using the 65 nm process
|
|
CPU = "core2";
|
|
*Type = X86::INTEL_CORE2;
|
|
break;
|
|
case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
|
|
// 17h. All processors are manufactured using the 45 nm process.
|
|
//
|
|
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
|
|
case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
|
|
// the 45 nm process.
|
|
CPU = "penryn";
|
|
*Type = X86::INTEL_CORE2;
|
|
break;
|
|
case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
|
|
// processors are manufactured using the 45 nm process.
|
|
case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
|
|
// As found in a Summer 2010 model iMac.
|
|
case 0x1f:
|
|
case 0x2e: // Nehalem EX
|
|
CPU = "nehalem";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_NEHALEM;
|
|
break;
|
|
case 0x25: // Intel Core i7, laptop version.
|
|
case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
|
|
// processors are manufactured using the 32 nm process.
|
|
case 0x2f: // Westmere EX
|
|
CPU = "westmere";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_WESTMERE;
|
|
break;
|
|
case 0x2a: // Intel Core i7 processor. All processors are manufactured
|
|
// using the 32 nm process.
|
|
case 0x2d:
|
|
CPU = "sandybridge";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
|
|
break;
|
|
case 0x3a:
|
|
case 0x3e: // Ivy Bridge EP
|
|
CPU = "ivybridge";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_IVYBRIDGE;
|
|
break;
|
|
|
|
// Haswell:
|
|
case 0x3c:
|
|
case 0x3f:
|
|
case 0x45:
|
|
case 0x46:
|
|
CPU = "haswell";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_HASWELL;
|
|
break;
|
|
|
|
// Broadwell:
|
|
case 0x3d:
|
|
case 0x47:
|
|
case 0x4f:
|
|
case 0x56:
|
|
CPU = "broadwell";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_BROADWELL;
|
|
break;
|
|
|
|
// Skylake:
|
|
case 0x4e: // Skylake mobile
|
|
case 0x5e: // Skylake desktop
|
|
case 0x8e: // Kaby Lake mobile
|
|
case 0x9e: // Kaby Lake desktop
|
|
case 0xa5: // Comet Lake-H/S
|
|
case 0xa6: // Comet Lake-U
|
|
CPU = "skylake";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_SKYLAKE;
|
|
break;
|
|
|
|
// Skylake Xeon:
|
|
case 0x55:
|
|
*Type = X86::INTEL_COREI7;
|
|
if (testFeature(X86::FEATURE_AVX512BF16)) {
|
|
CPU = "cooperlake";
|
|
*Subtype = X86::INTEL_COREI7_COOPERLAKE;
|
|
} else if (testFeature(X86::FEATURE_AVX512VNNI)) {
|
|
CPU = "cascadelake";
|
|
*Subtype = X86::INTEL_COREI7_CASCADELAKE;
|
|
} else {
|
|
CPU = "skylake-avx512";
|
|
*Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
|
|
}
|
|
break;
|
|
|
|
// Cannonlake:
|
|
case 0x66:
|
|
CPU = "cannonlake";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_CANNONLAKE;
|
|
break;
|
|
|
|
// Icelake:
|
|
case 0x7d:
|
|
case 0x7e:
|
|
CPU = "icelake-client";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
|
|
break;
|
|
|
|
// Icelake Xeon:
|
|
case 0x6a:
|
|
case 0x6c:
|
|
CPU = "icelake-server";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_ICELAKE_SERVER;
|
|
break;
|
|
|
|
// Sapphire Rapids:
|
|
case 0x8f:
|
|
CPU = "sapphirerapids";
|
|
*Type = X86::INTEL_COREI7;
|
|
*Subtype = X86::INTEL_COREI7_SAPPHIRERAPIDS;
|
|
break;
|
|
|
|
case 0x1c: // Most 45 nm Intel Atom processors
|
|
case 0x26: // 45 nm Atom Lincroft
|
|
case 0x27: // 32 nm Atom Medfield
|
|
case 0x35: // 32 nm Atom Midview
|
|
case 0x36: // 32 nm Atom Midview
|
|
CPU = "bonnell";
|
|
*Type = X86::INTEL_BONNELL;
|
|
break;
|
|
|
|
// Atom Silvermont codes from the Intel software optimization guide.
|
|
case 0x37:
|
|
case 0x4a:
|
|
case 0x4d:
|
|
case 0x5a:
|
|
case 0x5d:
|
|
case 0x4c: // really airmont
|
|
CPU = "silvermont";
|
|
*Type = X86::INTEL_SILVERMONT;
|
|
break;
|
|
// Goldmont:
|
|
case 0x5c: // Apollo Lake
|
|
case 0x5f: // Denverton
|
|
CPU = "goldmont";
|
|
*Type = X86::INTEL_GOLDMONT;
|
|
break;
|
|
case 0x7a:
|
|
CPU = "goldmont-plus";
|
|
*Type = X86::INTEL_GOLDMONT_PLUS;
|
|
break;
|
|
case 0x86:
|
|
CPU = "tremont";
|
|
*Type = X86::INTEL_TREMONT;
|
|
break;
|
|
|
|
// Xeon Phi (Knights Landing + Knights Mill):
|
|
case 0x57:
|
|
CPU = "knl";
|
|
*Type = X86::INTEL_KNL;
|
|
break;
|
|
case 0x85:
|
|
CPU = "knm";
|
|
*Type = X86::INTEL_KNM;
|
|
break;
|
|
|
|
default: // Unknown family 6 CPU, try to guess.
|
|
// Don't both with Type/Subtype here, they aren't used by the caller.
|
|
// They're used above to keep the code in sync with compiler-rt.
|
|
// TODO detect tigerlake host from model
|
|
if (testFeature(X86::FEATURE_AVX512VP2INTERSECT)) {
|
|
CPU = "tigerlake";
|
|
} else if (testFeature(X86::FEATURE_AVX512VBMI2)) {
|
|
CPU = "icelake-client";
|
|
} else if (testFeature(X86::FEATURE_AVX512VBMI)) {
|
|
CPU = "cannonlake";
|
|
} else if (testFeature(X86::FEATURE_AVX512BF16)) {
|
|
CPU = "cooperlake";
|
|
} else if (testFeature(X86::FEATURE_AVX512VNNI)) {
|
|
CPU = "cascadelake";
|
|
} else if (testFeature(X86::FEATURE_AVX512VL)) {
|
|
CPU = "skylake-avx512";
|
|
} else if (testFeature(X86::FEATURE_AVX512ER)) {
|
|
CPU = "knl";
|
|
} else if (testFeature(X86::FEATURE_CLFLUSHOPT)) {
|
|
if (testFeature(X86::FEATURE_SHA))
|
|
CPU = "goldmont";
|
|
else
|
|
CPU = "skylake";
|
|
} else if (testFeature(X86::FEATURE_ADX)) {
|
|
CPU = "broadwell";
|
|
} else if (testFeature(X86::FEATURE_AVX2)) {
|
|
CPU = "haswell";
|
|
} else if (testFeature(X86::FEATURE_AVX)) {
|
|
CPU = "sandybridge";
|
|
} else if (testFeature(X86::FEATURE_SSE4_2)) {
|
|
if (testFeature(X86::FEATURE_MOVBE))
|
|
CPU = "silvermont";
|
|
else
|
|
CPU = "nehalem";
|
|
} else if (testFeature(X86::FEATURE_SSE4_1)) {
|
|
CPU = "penryn";
|
|
} else if (testFeature(X86::FEATURE_SSSE3)) {
|
|
if (testFeature(X86::FEATURE_MOVBE))
|
|
CPU = "bonnell";
|
|
else
|
|
CPU = "core2";
|
|
} else if (testFeature(X86::FEATURE_64BIT)) {
|
|
CPU = "core2";
|
|
} else if (testFeature(X86::FEATURE_SSE3)) {
|
|
CPU = "yonah";
|
|
} else if (testFeature(X86::FEATURE_SSE2)) {
|
|
CPU = "pentium-m";
|
|
} else if (testFeature(X86::FEATURE_SSE)) {
|
|
CPU = "pentium3";
|
|
} else if (testFeature(X86::FEATURE_MMX)) {
|
|
CPU = "pentium2";
|
|
} else {
|
|
CPU = "pentiumpro";
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case 15: {
|
|
if (testFeature(X86::FEATURE_64BIT)) {
|
|
CPU = "nocona";
|
|
break;
|
|
}
|
|
if (testFeature(X86::FEATURE_SSE3)) {
|
|
CPU = "prescott";
|
|
break;
|
|
}
|
|
CPU = "pentium4";
|
|
break;
|
|
}
|
|
default:
|
|
break; // Unknown.
|
|
}
|
|
|
|
return CPU;
|
|
}
|
|
|
|
static StringRef
|
|
getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
|
|
const unsigned *Features,
|
|
unsigned *Type, unsigned *Subtype) {
|
|
auto testFeature = [&](unsigned F) {
|
|
return (Features[F / 32] & (1U << (F % 32))) != 0;
|
|
};
|
|
|
|
StringRef CPU;
|
|
|
|
switch (Family) {
|
|
case 4:
|
|
CPU = "i486";
|
|
break;
|
|
case 5:
|
|
CPU = "pentium";
|
|
switch (Model) {
|
|
case 6:
|
|
case 7:
|
|
CPU = "k6";
|
|
break;
|
|
case 8:
|
|
CPU = "k6-2";
|
|
break;
|
|
case 9:
|
|
case 13:
|
|
CPU = "k6-3";
|
|
break;
|
|
case 10:
|
|
CPU = "geode";
|
|
break;
|
|
}
|
|
break;
|
|
case 6:
|
|
if (testFeature(X86::FEATURE_SSE)) {
|
|
CPU = "athlon-xp";
|
|
break;
|
|
}
|
|
CPU = "athlon";
|
|
break;
|
|
case 15:
|
|
if (testFeature(X86::FEATURE_SSE3)) {
|
|
CPU = "k8-sse3";
|
|
break;
|
|
}
|
|
CPU = "k8";
|
|
break;
|
|
case 16:
|
|
CPU = "amdfam10";
|
|
*Type = X86::AMDFAM10H; // "amdfam10"
|
|
switch (Model) {
|
|
case 2:
|
|
*Subtype = X86::AMDFAM10H_BARCELONA;
|
|
break;
|
|
case 4:
|
|
*Subtype = X86::AMDFAM10H_SHANGHAI;
|
|
break;
|
|
case 8:
|
|
*Subtype = X86::AMDFAM10H_ISTANBUL;
|
|
break;
|
|
}
|
|
break;
|
|
case 20:
|
|
CPU = "btver1";
|
|
*Type = X86::AMD_BTVER1;
|
|
break;
|
|
case 21:
|
|
CPU = "bdver1";
|
|
*Type = X86::AMDFAM15H;
|
|
if (Model >= 0x60 && Model <= 0x7f) {
|
|
CPU = "bdver4";
|
|
*Subtype = X86::AMDFAM15H_BDVER4;
|
|
break; // 60h-7Fh: Excavator
|
|
}
|
|
if (Model >= 0x30 && Model <= 0x3f) {
|
|
CPU = "bdver3";
|
|
*Subtype = X86::AMDFAM15H_BDVER3;
|
|
break; // 30h-3Fh: Steamroller
|
|
}
|
|
if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
|
|
CPU = "bdver2";
|
|
*Subtype = X86::AMDFAM15H_BDVER2;
|
|
break; // 02h, 10h-1Fh: Piledriver
|
|
}
|
|
if (Model <= 0x0f) {
|
|
*Subtype = X86::AMDFAM15H_BDVER1;
|
|
break; // 00h-0Fh: Bulldozer
|
|
}
|
|
break;
|
|
case 22:
|
|
CPU = "btver2";
|
|
*Type = X86::AMD_BTVER2;
|
|
break;
|
|
case 23:
|
|
CPU = "znver1";
|
|
*Type = X86::AMDFAM17H;
|
|
if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) {
|
|
CPU = "znver2";
|
|
*Subtype = X86::AMDFAM17H_ZNVER2;
|
|
break; // 30h-3fh, 71h: Zen2
|
|
}
|
|
if (Model <= 0x0f) {
|
|
*Subtype = X86::AMDFAM17H_ZNVER1;
|
|
break; // 00h-0Fh: Zen1
|
|
}
|
|
break;
|
|
default:
|
|
break; // Unknown AMD CPU.
|
|
}
|
|
|
|
return CPU;
|
|
}
|
|
|
|
static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
|
|
unsigned *Features) {
|
|
unsigned EAX, EBX;
|
|
|
|
auto setFeature = [&](unsigned F) {
|
|
Features[F / 32] |= 1U << (F % 32);
|
|
};
|
|
|
|
if ((EDX >> 15) & 1)
|
|
setFeature(X86::FEATURE_CMOV);
|
|
if ((EDX >> 23) & 1)
|
|
setFeature(X86::FEATURE_MMX);
|
|
if ((EDX >> 25) & 1)
|
|
setFeature(X86::FEATURE_SSE);
|
|
if ((EDX >> 26) & 1)
|
|
setFeature(X86::FEATURE_SSE2);
|
|
|
|
if ((ECX >> 0) & 1)
|
|
setFeature(X86::FEATURE_SSE3);
|
|
if ((ECX >> 1) & 1)
|
|
setFeature(X86::FEATURE_PCLMUL);
|
|
if ((ECX >> 9) & 1)
|
|
setFeature(X86::FEATURE_SSSE3);
|
|
if ((ECX >> 12) & 1)
|
|
setFeature(X86::FEATURE_FMA);
|
|
if ((ECX >> 19) & 1)
|
|
setFeature(X86::FEATURE_SSE4_1);
|
|
if ((ECX >> 20) & 1)
|
|
setFeature(X86::FEATURE_SSE4_2);
|
|
if ((ECX >> 23) & 1)
|
|
setFeature(X86::FEATURE_POPCNT);
|
|
if ((ECX >> 25) & 1)
|
|
setFeature(X86::FEATURE_AES);
|
|
|
|
if ((ECX >> 22) & 1)
|
|
setFeature(X86::FEATURE_MOVBE);
|
|
|
|
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
|
|
// indicates that the AVX registers will be saved and restored on context
|
|
// switch, then we have full AVX support.
|
|
const unsigned AVXBits = (1 << 27) | (1 << 28);
|
|
bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
|
|
((EAX & 0x6) == 0x6);
|
|
#if defined(__APPLE__)
|
|
// Darwin lazily saves the AVX512 context on first use: trust that the OS will
|
|
// save the AVX512 context if we use AVX512 instructions, even the bit is not
|
|
// set right now.
|
|
bool HasAVX512Save = true;
|
|
#else
|
|
// AVX512 requires additional context to be saved by the OS.
|
|
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
|
|
#endif
|
|
|
|
if (HasAVX)
|
|
setFeature(X86::FEATURE_AVX);
|
|
|
|
bool HasLeaf7 =
|
|
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
if (HasLeaf7 && ((EBX >> 3) & 1))
|
|
setFeature(X86::FEATURE_BMI);
|
|
if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
|
|
setFeature(X86::FEATURE_AVX2);
|
|
if (HasLeaf7 && ((EBX >> 8) & 1))
|
|
setFeature(X86::FEATURE_BMI2);
|
|
if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512F);
|
|
if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512DQ);
|
|
if (HasLeaf7 && ((EBX >> 19) & 1))
|
|
setFeature(X86::FEATURE_ADX);
|
|
if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512IFMA);
|
|
if (HasLeaf7 && ((EBX >> 23) & 1))
|
|
setFeature(X86::FEATURE_CLFLUSHOPT);
|
|
if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512PF);
|
|
if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512ER);
|
|
if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512CD);
|
|
if (HasLeaf7 && ((EBX >> 29) & 1))
|
|
setFeature(X86::FEATURE_SHA);
|
|
if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512BW);
|
|
if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512VL);
|
|
|
|
if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512VBMI);
|
|
if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512VBMI2);
|
|
if (HasLeaf7 && ((ECX >> 8) & 1))
|
|
setFeature(X86::FEATURE_GFNI);
|
|
if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
|
|
setFeature(X86::FEATURE_VPCLMULQDQ);
|
|
if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512VNNI);
|
|
if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512BITALG);
|
|
if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
|
|
|
|
if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX5124VNNIW);
|
|
if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX5124FMAPS);
|
|
if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512VP2INTERSECT);
|
|
|
|
bool HasLeaf7Subleaf1 =
|
|
MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
|
|
if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
|
|
setFeature(X86::FEATURE_AVX512BF16);
|
|
|
|
unsigned MaxExtLevel;
|
|
getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
|
|
|
|
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
|
|
!getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
|
|
if (HasExtLeaf1 && ((ECX >> 6) & 1))
|
|
setFeature(X86::FEATURE_SSE4_A);
|
|
if (HasExtLeaf1 && ((ECX >> 11) & 1))
|
|
setFeature(X86::FEATURE_XOP);
|
|
if (HasExtLeaf1 && ((ECX >> 16) & 1))
|
|
setFeature(X86::FEATURE_FMA4);
|
|
|
|
if (HasExtLeaf1 && ((EDX >> 29) & 1))
|
|
setFeature(X86::FEATURE_64BIT);
|
|
}
|
|
|
|
StringRef sys::getHostCPUName() {
|
|
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
|
|
unsigned MaxLeaf, Vendor;
|
|
|
|
if (!isCpuIdSupported())
|
|
return "generic";
|
|
|
|
if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
|
|
return "generic";
|
|
getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
unsigned Family = 0, Model = 0;
|
|
unsigned Features[(X86::CPU_FEATURE_MAX + 31) / 32] = {0};
|
|
detectX86FamilyModel(EAX, &Family, &Model);
|
|
getAvailableFeatures(ECX, EDX, MaxLeaf, Features);
|
|
|
|
// These aren't consumed in this file, but we try to keep some source code the
|
|
// same or similar to compiler-rt.
|
|
unsigned Type = 0;
|
|
unsigned Subtype = 0;
|
|
|
|
StringRef CPU;
|
|
|
|
if (Vendor == SIG_INTEL) {
|
|
CPU = getIntelProcessorTypeAndSubtype(Family, Model, Features, &Type,
|
|
&Subtype);
|
|
} else if (Vendor == SIG_AMD) {
|
|
CPU = getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type,
|
|
&Subtype);
|
|
}
|
|
|
|
if (!CPU.empty())
|
|
return CPU;
|
|
|
|
return "generic";
|
|
}
|
|
|
|
#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
|
|
StringRef sys::getHostCPUName() {
|
|
host_basic_info_data_t hostInfo;
|
|
mach_msg_type_number_t infoCount;
|
|
|
|
infoCount = HOST_BASIC_INFO_COUNT;
|
|
mach_port_t hostPort = mach_host_self();
|
|
host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
|
|
&infoCount);
|
|
mach_port_deallocate(mach_task_self(), hostPort);
|
|
|
|
if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
|
|
return "generic";
|
|
|
|
switch (hostInfo.cpu_subtype) {
|
|
case CPU_SUBTYPE_POWERPC_601:
|
|
return "601";
|
|
case CPU_SUBTYPE_POWERPC_602:
|
|
return "602";
|
|
case CPU_SUBTYPE_POWERPC_603:
|
|
return "603";
|
|
case CPU_SUBTYPE_POWERPC_603e:
|
|
return "603e";
|
|
case CPU_SUBTYPE_POWERPC_603ev:
|
|
return "603ev";
|
|
case CPU_SUBTYPE_POWERPC_604:
|
|
return "604";
|
|
case CPU_SUBTYPE_POWERPC_604e:
|
|
return "604e";
|
|
case CPU_SUBTYPE_POWERPC_620:
|
|
return "620";
|
|
case CPU_SUBTYPE_POWERPC_750:
|
|
return "750";
|
|
case CPU_SUBTYPE_POWERPC_7400:
|
|
return "7400";
|
|
case CPU_SUBTYPE_POWERPC_7450:
|
|
return "7450";
|
|
case CPU_SUBTYPE_POWERPC_970:
|
|
return "970";
|
|
default:;
|
|
}
|
|
|
|
return "generic";
|
|
}
|
|
#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
|
|
StringRef sys::getHostCPUName() {
|
|
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
|
|
StringRef Content = P ? P->getBuffer() : "";
|
|
return detail::getHostCPUNameForPowerPC(Content);
|
|
}
|
|
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
|
|
StringRef sys::getHostCPUName() {
|
|
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
|
|
StringRef Content = P ? P->getBuffer() : "";
|
|
return detail::getHostCPUNameForARM(Content);
|
|
}
|
|
#elif defined(__linux__) && defined(__s390x__)
|
|
StringRef sys::getHostCPUName() {
|
|
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
|
|
StringRef Content = P ? P->getBuffer() : "";
|
|
return detail::getHostCPUNameForS390x(Content);
|
|
}
|
|
#elif defined(__APPLE__) && defined(__aarch64__)
|
|
StringRef sys::getHostCPUName() {
|
|
return "cyclone";
|
|
}
|
|
#elif defined(__APPLE__) && defined(__arm__)
|
|
StringRef sys::getHostCPUName() {
|
|
host_basic_info_data_t hostInfo;
|
|
mach_msg_type_number_t infoCount;
|
|
|
|
infoCount = HOST_BASIC_INFO_COUNT;
|
|
mach_port_t hostPort = mach_host_self();
|
|
host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
|
|
&infoCount);
|
|
mach_port_deallocate(mach_task_self(), hostPort);
|
|
|
|
if (hostInfo.cpu_type != CPU_TYPE_ARM) {
|
|
assert(false && "CPUType not equal to ARM should not be possible on ARM");
|
|
return "generic";
|
|
}
|
|
switch (hostInfo.cpu_subtype) {
|
|
case CPU_SUBTYPE_ARM_V7S:
|
|
return "swift";
|
|
default:;
|
|
}
|
|
|
|
return "generic";
|
|
}
|
|
#else
|
|
StringRef sys::getHostCPUName() { return "generic"; }
|
|
#endif
|
|
|
|
#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
|
|
// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
|
|
// using the number of unique physical/core id pairs. The following
|
|
// implementation reads the /proc/cpuinfo format on an x86_64 system.
|
|
int computeHostNumPhysicalCores() {
|
|
// Enabled represents the number of physical id/core id pairs with at least
|
|
// one processor id enabled by the CPU affinity mask.
|
|
cpu_set_t Affinity, Enabled;
|
|
if (sched_getaffinity(0, sizeof(Affinity), &Affinity) != 0)
|
|
return -1;
|
|
CPU_ZERO(&Enabled);
|
|
|
|
// Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
|
|
// mmapped because it appears to have 0 size.
|
|
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
|
|
llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
|
|
if (std::error_code EC = Text.getError()) {
|
|
llvm::errs() << "Can't read "
|
|
<< "/proc/cpuinfo: " << EC.message() << "\n";
|
|
return -1;
|
|
}
|
|
SmallVector<StringRef, 8> strs;
|
|
(*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
|
|
/*KeepEmpty=*/false);
|
|
int CurProcessor = -1;
|
|
int CurPhysicalId = -1;
|
|
int CurSiblings = -1;
|
|
int CurCoreId = -1;
|
|
for (StringRef Line : strs) {
|
|
std::pair<StringRef, StringRef> Data = Line.split(':');
|
|
auto Name = Data.first.trim();
|
|
auto Val = Data.second.trim();
|
|
// These fields are available if the kernel is configured with CONFIG_SMP.
|
|
if (Name == "processor")
|
|
Val.getAsInteger(10, CurProcessor);
|
|
else if (Name == "physical id")
|
|
Val.getAsInteger(10, CurPhysicalId);
|
|
else if (Name == "siblings")
|
|
Val.getAsInteger(10, CurSiblings);
|
|
else if (Name == "core id") {
|
|
Val.getAsInteger(10, CurCoreId);
|
|
// The processor id corresponds to an index into cpu_set_t.
|
|
if (CPU_ISSET(CurProcessor, &Affinity))
|
|
CPU_SET(CurPhysicalId * CurSiblings + CurCoreId, &Enabled);
|
|
}
|
|
}
|
|
return CPU_COUNT(&Enabled);
|
|
}
|
|
#elif defined(__linux__) && defined(__powerpc__)
|
|
int computeHostNumPhysicalCores() {
|
|
cpu_set_t Affinity;
|
|
if (sched_getaffinity(0, sizeof(Affinity), &Affinity) == 0)
|
|
return CPU_COUNT(&Affinity);
|
|
|
|
// The call to sched_getaffinity() may have failed because the Affinity
|
|
// mask is too small for the number of CPU's on the system (i.e. the
|
|
// system has more than 1024 CPUs). Allocate a mask large enough for
|
|
// twice as many CPUs.
|
|
cpu_set_t *DynAffinity;
|
|
DynAffinity = CPU_ALLOC(2048);
|
|
if (sched_getaffinity(0, CPU_ALLOC_SIZE(2048), DynAffinity) == 0) {
|
|
int NumCPUs = CPU_COUNT(DynAffinity);
|
|
CPU_FREE(DynAffinity);
|
|
return NumCPUs;
|
|
}
|
|
return -1;
|
|
}
|
|
#elif defined(__linux__) && defined(__s390x__)
|
|
int computeHostNumPhysicalCores() { return sysconf(_SC_NPROCESSORS_ONLN); }
|
|
#elif defined(__APPLE__) && defined(__x86_64__)
|
|
#include <sys/param.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
// Gets the number of *physical cores* on the machine.
|
|
int computeHostNumPhysicalCores() {
|
|
uint32_t count;
|
|
size_t len = sizeof(count);
|
|
sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
|
|
if (count < 1) {
|
|
int nm[2];
|
|
nm[0] = CTL_HW;
|
|
nm[1] = HW_AVAILCPU;
|
|
sysctl(nm, 2, &count, &len, NULL, 0);
|
|
if (count < 1)
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
#elif defined(__MVS__)
|
|
int computeHostNumPhysicalCores() {
|
|
enum {
|
|
// Byte offset of the pointer to the Communications Vector Table (CVT) in
|
|
// the Prefixed Save Area (PSA). The table entry is a 31-bit pointer and
|
|
// will be zero-extended to uintptr_t.
|
|
FLCCVT = 16,
|
|
// Byte offset of the pointer to the Common System Data Area (CSD) in the
|
|
// CVT. The table entry is a 31-bit pointer and will be zero-extended to
|
|
// uintptr_t.
|
|
CVTCSD = 660,
|
|
// Byte offset to the number of live CPs in the LPAR, stored as a signed
|
|
// 32-bit value in the table.
|
|
CSD_NUMBER_ONLINE_STANDARD_CPS = 264,
|
|
};
|
|
char *PSA = 0;
|
|
char *CVT = reinterpret_cast<char *>(
|
|
static_cast<uintptr_t>(reinterpret_cast<unsigned int &>(PSA[FLCCVT])));
|
|
char *CSD = reinterpret_cast<char *>(
|
|
static_cast<uintptr_t>(reinterpret_cast<unsigned int &>(CVT[CVTCSD])));
|
|
return reinterpret_cast<int &>(CSD[CSD_NUMBER_ONLINE_STANDARD_CPS]);
|
|
}
|
|
#elif defined(_WIN32) && LLVM_ENABLE_THREADS != 0
|
|
// Defined in llvm/lib/Support/Windows/Threading.inc
|
|
int computeHostNumPhysicalCores();
|
|
#else
|
|
// On other systems, return -1 to indicate unknown.
|
|
static int computeHostNumPhysicalCores() { return -1; }
|
|
#endif
|
|
|
|
int sys::getHostNumPhysicalCores() {
|
|
static int NumCores = computeHostNumPhysicalCores();
|
|
return NumCores;
|
|
}
|
|
|
|
#if defined(__i386__) || defined(_M_IX86) || \
|
|
defined(__x86_64__) || defined(_M_X64)
|
|
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
|
|
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
|
|
unsigned MaxLevel;
|
|
|
|
if (getX86CpuIDAndInfo(0, &MaxLevel, &EBX, &ECX, &EDX) || MaxLevel < 1)
|
|
return false;
|
|
|
|
getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
Features["cx8"] = (EDX >> 8) & 1;
|
|
Features["cmov"] = (EDX >> 15) & 1;
|
|
Features["mmx"] = (EDX >> 23) & 1;
|
|
Features["fxsr"] = (EDX >> 24) & 1;
|
|
Features["sse"] = (EDX >> 25) & 1;
|
|
Features["sse2"] = (EDX >> 26) & 1;
|
|
|
|
Features["sse3"] = (ECX >> 0) & 1;
|
|
Features["pclmul"] = (ECX >> 1) & 1;
|
|
Features["ssse3"] = (ECX >> 9) & 1;
|
|
Features["cx16"] = (ECX >> 13) & 1;
|
|
Features["sse4.1"] = (ECX >> 19) & 1;
|
|
Features["sse4.2"] = (ECX >> 20) & 1;
|
|
Features["movbe"] = (ECX >> 22) & 1;
|
|
Features["popcnt"] = (ECX >> 23) & 1;
|
|
Features["aes"] = (ECX >> 25) & 1;
|
|
Features["rdrnd"] = (ECX >> 30) & 1;
|
|
|
|
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
|
|
// indicates that the AVX registers will be saved and restored on context
|
|
// switch, then we have full AVX support.
|
|
bool HasXSave = ((ECX >> 27) & 1) && !getX86XCR0(&EAX, &EDX);
|
|
bool HasAVXSave = HasXSave && ((ECX >> 28) & 1) && ((EAX & 0x6) == 0x6);
|
|
#if defined(__APPLE__)
|
|
// Darwin lazily saves the AVX512 context on first use: trust that the OS will
|
|
// save the AVX512 context if we use AVX512 instructions, even the bit is not
|
|
// set right now.
|
|
bool HasAVX512Save = true;
|
|
#else
|
|
// AVX512 requires additional context to be saved by the OS.
|
|
bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
|
|
#endif
|
|
// AMX requires additional context to be saved by the OS.
|
|
const unsigned AMXBits = (1 << 17) | (1 << 18);
|
|
bool HasAMXSave = HasXSave && ((EAX & AMXBits) == AMXBits);
|
|
|
|
Features["avx"] = HasAVXSave;
|
|
Features["fma"] = ((ECX >> 12) & 1) && HasAVXSave;
|
|
// Only enable XSAVE if OS has enabled support for saving YMM state.
|
|
Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
|
|
Features["f16c"] = ((ECX >> 29) & 1) && HasAVXSave;
|
|
|
|
unsigned MaxExtLevel;
|
|
getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
|
|
|
|
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
|
|
!getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
|
|
Features["sahf"] = HasExtLeaf1 && ((ECX >> 0) & 1);
|
|
Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
|
|
Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
|
|
Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
|
|
Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
|
|
Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);
|
|
Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
|
|
Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
|
|
Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
|
|
|
|
Features["64bit"] = HasExtLeaf1 && ((EDX >> 29) & 1);
|
|
|
|
// Miscellaneous memory related features, detected by
|
|
// using the 0x80000008 leaf of the CPUID instruction
|
|
bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
|
|
!getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
|
|
Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
|
|
Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
|
|
|
|
bool HasLeaf7 =
|
|
MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
|
|
Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
|
|
Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
|
|
// AVX2 is only supported if we have the OS save support from AVX.
|
|
Features["avx2"] = HasLeaf7 && ((EBX >> 5) & 1) && HasAVXSave;
|
|
Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
|
|
Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1);
|
|
Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
|
|
// AVX512 is only supported if the OS supports the context save for it.
|
|
Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
|
|
Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
|
|
Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
|
|
Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
|
|
Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
|
|
Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
|
|
Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
|
|
Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
|
|
Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
|
|
Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
|
|
Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
|
|
Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
|
|
Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
|
|
|
|
Features["prefetchwt1"] = HasLeaf7 && ((ECX >> 0) & 1);
|
|
Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
|
|
Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
|
|
Features["waitpkg"] = HasLeaf7 && ((ECX >> 5) & 1);
|
|
Features["avx512vbmi2"] = HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save;
|
|
Features["shstk"] = HasLeaf7 && ((ECX >> 7) & 1);
|
|
Features["gfni"] = HasLeaf7 && ((ECX >> 8) & 1);
|
|
Features["vaes"] = HasLeaf7 && ((ECX >> 9) & 1) && HasAVXSave;
|
|
Features["vpclmulqdq"] = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
|
|
Features["avx512vnni"] = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
|
|
Features["avx512bitalg"] = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
|
|
Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
|
|
Features["rdpid"] = HasLeaf7 && ((ECX >> 22) & 1);
|
|
Features["kl"] = HasLeaf7 && ((ECX >> 23) & 1); // key locker
|
|
Features["cldemote"] = HasLeaf7 && ((ECX >> 25) & 1);
|
|
Features["movdiri"] = HasLeaf7 && ((ECX >> 27) & 1);
|
|
Features["movdir64b"] = HasLeaf7 && ((ECX >> 28) & 1);
|
|
Features["enqcmd"] = HasLeaf7 && ((ECX >> 29) & 1);
|
|
|
|
Features["uintr"] = HasLeaf7 && ((EDX >> 5) & 1);
|
|
Features["avx512vp2intersect"] =
|
|
HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save;
|
|
Features["serialize"] = HasLeaf7 && ((EDX >> 14) & 1);
|
|
Features["tsxldtrk"] = HasLeaf7 && ((EDX >> 16) & 1);
|
|
// There are two CPUID leafs which information associated with the pconfig
|
|
// instruction:
|
|
// EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
|
|
// bit of EDX), while the EAX=0x1b leaf returns information on the
|
|
// availability of specific pconfig leafs.
|
|
// The target feature here only refers to the the first of these two.
|
|
// Users might need to check for the availability of specific pconfig
|
|
// leaves using cpuid, since that information is ignored while
|
|
// detecting features using the "-march=native" flag.
|
|
// For more info, see X86 ISA docs.
|
|
Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
|
|
Features["amx-bf16"] = HasLeaf7 && ((EDX >> 22) & 1) && HasAMXSave;
|
|
Features["amx-tile"] = HasLeaf7 && ((EDX >> 24) & 1) && HasAMXSave;
|
|
Features["amx-int8"] = HasLeaf7 && ((EDX >> 25) & 1) && HasAMXSave;
|
|
bool HasLeaf7Subleaf1 =
|
|
MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
|
|
Features["avxvnni"] = HasLeaf7Subleaf1 && ((EAX >> 4) & 1) && HasAVXSave;
|
|
Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
|
|
Features["hreset"] = HasLeaf7Subleaf1 && ((EAX >> 22) & 1);
|
|
|
|
bool HasLeafD = MaxLevel >= 0xd &&
|
|
!getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
// Only enable XSAVE if OS has enabled support for saving YMM state.
|
|
Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
|
|
Features["xsavec"] = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
|
|
Features["xsaves"] = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
|
|
|
|
bool HasLeaf14 = MaxLevel >= 0x14 &&
|
|
!getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
|
|
|
|
Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
|
|
|
|
bool HasLeaf19 =
|
|
MaxLevel >= 0x19 && !getX86CpuIDAndInfo(0x19, &EAX, &EBX, &ECX, &EDX);
|
|
Features["widekl"] = HasLeaf7 && HasLeaf19 && ((EBX >> 2) & 1);
|
|
|
|
return true;
|
|
}
|
|
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
|
|
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
|
|
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
|
|
if (!P)
|
|
return false;
|
|
|
|
SmallVector<StringRef, 32> Lines;
|
|
P->getBuffer().split(Lines, "\n");
|
|
|
|
SmallVector<StringRef, 32> CPUFeatures;
|
|
|
|
// Look for the CPU features.
|
|
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
|
|
if (Lines[I].startswith("Features")) {
|
|
Lines[I].split(CPUFeatures, ' ');
|
|
break;
|
|
}
|
|
|
|
#if defined(__aarch64__)
|
|
// Keep track of which crypto features we have seen
|
|
enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
|
|
uint32_t crypto = 0;
|
|
#endif
|
|
|
|
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
|
|
StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
|
|
#if defined(__aarch64__)
|
|
.Case("asimd", "neon")
|
|
.Case("fp", "fp-armv8")
|
|
.Case("crc32", "crc")
|
|
#else
|
|
.Case("half", "fp16")
|
|
.Case("neon", "neon")
|
|
.Case("vfpv3", "vfp3")
|
|
.Case("vfpv3d16", "d16")
|
|
.Case("vfpv4", "vfp4")
|
|
.Case("idiva", "hwdiv-arm")
|
|
.Case("idivt", "hwdiv")
|
|
#endif
|
|
.Default("");
|
|
|
|
#if defined(__aarch64__)
|
|
// We need to check crypto separately since we need all of the crypto
|
|
// extensions to enable the subtarget feature
|
|
if (CPUFeatures[I] == "aes")
|
|
crypto |= CAP_AES;
|
|
else if (CPUFeatures[I] == "pmull")
|
|
crypto |= CAP_PMULL;
|
|
else if (CPUFeatures[I] == "sha1")
|
|
crypto |= CAP_SHA1;
|
|
else if (CPUFeatures[I] == "sha2")
|
|
crypto |= CAP_SHA2;
|
|
#endif
|
|
|
|
if (LLVMFeatureStr != "")
|
|
Features[LLVMFeatureStr] = true;
|
|
}
|
|
|
|
#if defined(__aarch64__)
|
|
// If we have all crypto bits we can add the feature
|
|
if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
|
|
Features["crypto"] = true;
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
#elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64))
|
|
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
|
|
if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE))
|
|
Features["neon"] = true;
|
|
if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE))
|
|
Features["crc"] = true;
|
|
if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE))
|
|
Features["crypto"] = true;
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
|
|
#endif
|
|
|
|
std::string sys::getProcessTriple() {
|
|
std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
|
|
Triple PT(Triple::normalize(TargetTripleString));
|
|
|
|
if (sizeof(void *) == 8 && PT.isArch32Bit())
|
|
PT = PT.get64BitArchVariant();
|
|
if (sizeof(void *) == 4 && PT.isArch64Bit())
|
|
PT = PT.get32BitArchVariant();
|
|
|
|
return PT.str();
|
|
}
|