llvm-project/llvm/test/Transforms/SpeculateAroundPHIs/basic-x86.ll

640 lines
18 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; Test the basic functionality of speculating around PHI nodes based on reduced
; cost of the constant operands to the PHI nodes using the x86 cost model.
;
; REQUIRES: x86-registered-target
; RUN: opt -S -passes=spec-phis < %s | FileCheck %s
target triple = "x86_64-unknown-unknown"
define i32 @test_basic(i1 %flag, i32 %arg) {
; CHECK-LABEL: @test_basic(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: [[SUM_0:%.*]] = add i32 [[ARG:%.*]], 7
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: [[SUM_1:%.*]] = add i32 [[ARG]], 11
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[SUM_PHI:%.*]] = phi i32 [ [[SUM_0]], [[A]] ], [ [[SUM_1]], [[B]] ]
; CHECK-NEXT: ret i32 [[SUM_PHI]]
;
entry:
br i1 %flag, label %a, label %b
a:
br label %exit
b:
br label %exit
exit:
%p = phi i32 [ 7, %a ], [ 11, %b ]
%sum = add i32 %arg, %p
ret i32 %sum
}
; Check that we handle commuted operands and get the constant onto the RHS.
define i32 @test_commuted(i1 %flag, i32 %arg) {
; CHECK-LABEL: @test_commuted(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: [[SUM_0:%.*]] = add i32 [[ARG:%.*]], 7
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: [[SUM_1:%.*]] = add i32 [[ARG]], 11
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[SUM_PHI:%.*]] = phi i32 [ [[SUM_0]], [[A]] ], [ [[SUM_1]], [[B]] ]
; CHECK-NEXT: ret i32 [[SUM_PHI]]
;
entry:
br i1 %flag, label %a, label %b
a:
br label %exit
b:
br label %exit
exit:
%p = phi i32 [ 7, %a ], [ 11, %b ]
%sum = add i32 %p, %arg
ret i32 %sum
}
define i32 @test_split_crit_edge(i1 %flag, i32 %arg) {
; CHECK-LABEL: @test_split_crit_edge(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[ENTRY_EXIT_CRIT_EDGE:%.*]], label [[A:%.*]]
; CHECK: entry.exit_crit_edge:
; CHECK-NEXT: [[SUM_0:%.*]] = add i32 [[ARG:%.*]], 7
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: a:
; CHECK-NEXT: [[SUM_1:%.*]] = add i32 [[ARG]], 11
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[SUM_PHI:%.*]] = phi i32 [ [[SUM_0]], [[ENTRY_EXIT_CRIT_EDGE]] ], [ [[SUM_1]], [[A]] ]
; CHECK-NEXT: ret i32 [[SUM_PHI]]
;
entry:
br i1 %flag, label %exit, label %a
a:
br label %exit
exit:
%p = phi i32 [ 7, %entry ], [ 11, %a ]
%sum = add i32 %arg, %p
ret i32 %sum
}
define i32 @test_no_spec_dominating_inst(i1 %flag, i32* %ptr) {
; CHECK-LABEL: @test_no_spec_dominating_inst(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[LOAD:%.*]] = load i32, i32* [[PTR:%.*]]
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: [[SUM_0:%.*]] = add i32 [[LOAD]], 7
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: [[SUM_1:%.*]] = add i32 [[LOAD]], 11
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[SUM_PHI:%.*]] = phi i32 [ [[SUM_0]], [[A]] ], [ [[SUM_1]], [[B]] ]
; CHECK-NEXT: ret i32 [[SUM_PHI]]
;
entry:
%load = load i32, i32* %ptr
br i1 %flag, label %a, label %b
a:
br label %exit
b:
br label %exit
exit:
%p = phi i32 [ 7, %a ], [ 11, %b ]
%sum = add i32 %load, %p
ret i32 %sum
}
; We have special logic handling PHI nodes, make sure it doesn't get confused
; by a dominating PHI.
define i32 @test_no_spec_dominating_phi(i1 %flag1, i1 %flag2, i32 %x, i32 %y) {
; CHECK-LABEL: @test_no_spec_dominating_phi(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG1:%.*]], label [[X_BLOCK:%.*]], label [[Y_BLOCK:%.*]]
; CHECK: x.block:
; CHECK-NEXT: br label [[MERGE:%.*]]
; CHECK: y.block:
; CHECK-NEXT: br label [[MERGE]]
; CHECK: merge:
; CHECK-NEXT: [[XY_PHI:%.*]] = phi i32 [ [[X:%.*]], [[X_BLOCK]] ], [ [[Y:%.*]], [[Y_BLOCK]] ]
; CHECK-NEXT: br i1 [[FLAG2:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: [[SUM_0:%.*]] = add i32 [[XY_PHI]], 7
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: [[SUM_1:%.*]] = add i32 [[XY_PHI]], 11
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[SUM_PHI:%.*]] = phi i32 [ [[SUM_0]], [[A]] ], [ [[SUM_1]], [[B]] ]
; CHECK-NEXT: ret i32 [[SUM_PHI]]
;
entry:
br i1 %flag1, label %x.block, label %y.block
x.block:
br label %merge
y.block:
br label %merge
merge:
%xy.phi = phi i32 [ %x, %x.block ], [ %y, %y.block ]
br i1 %flag2, label %a, label %b
a:
br label %exit
b:
br label %exit
exit:
%p = phi i32 [ 7, %a ], [ 11, %b ]
%sum = add i32 %xy.phi, %p
ret i32 %sum
}
; Ensure that we will speculate some number of "free" instructions on the given
; architecture even though they are unrelated to the PHI itself.
define i32 @test_speculate_free_insts(i1 %flag, i64 %arg) {
; CHECK-LABEL: @test_speculate_free_insts(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: [[T1_0:%.*]] = trunc i64 [[ARG:%.*]] to i48
; CHECK-NEXT: [[T2_0:%.*]] = trunc i48 [[T1_0]] to i32
; CHECK-NEXT: [[SUM_0:%.*]] = add i32 [[T2_0]], 7
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: [[T1_1:%.*]] = trunc i64 [[ARG]] to i48
; CHECK-NEXT: [[T2_1:%.*]] = trunc i48 [[T1_1]] to i32
; CHECK-NEXT: [[SUM_1:%.*]] = add i32 [[T2_1]], 11
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[SUM_PHI:%.*]] = phi i32 [ [[SUM_0]], [[A]] ], [ [[SUM_1]], [[B]] ]
; CHECK-NEXT: ret i32 [[SUM_PHI]]
;
entry:
br i1 %flag, label %a, label %b
a:
br label %exit
b:
br label %exit
exit:
%p = phi i32 [ 7, %a ], [ 11, %b ]
%t1 = trunc i64 %arg to i48
%t2 = trunc i48 %t1 to i32
%sum = add i32 %t2, %p
ret i32 %sum
}
define i32 @test_speculate_free_phis(i1 %flag, i32 %arg1, i32 %arg2) {
; CHECK-LABEL: @test_speculate_free_phis(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: [[SUM_0:%.*]] = add i32 [[ARG1:%.*]], 7
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: [[SUM_1:%.*]] = add i32 [[ARG2:%.*]], 11
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[SUM_PHI:%.*]] = phi i32 [ [[SUM_0]], [[A]] ], [ [[SUM_1]], [[B]] ]
; CHECK-NEXT: [[P2:%.*]] = phi i32 [ [[ARG1]], [[A]] ], [ [[ARG2]], [[B]] ]
; CHECK-NEXT: ret i32 [[SUM_PHI]]
;
entry:
br i1 %flag, label %a, label %b
a:
br label %exit
b:
br label %exit
; We don't DCE the now unused PHI node...
exit:
%p1 = phi i32 [ 7, %a ], [ 11, %b ]
%p2 = phi i32 [ %arg1, %a ], [ %arg2, %b ]
%sum = add i32 %p2, %p1
ret i32 %sum
}
; We shouldn't speculate multiple uses even if each individually looks
; profitable because of the total cost.
define i32 @test_no_spec_multi_uses(i1 %flag, i32 %arg1, i32 %arg2, i32 %arg3) {
; CHECK-LABEL: @test_no_spec_multi_uses(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[P:%.*]] = phi i32 [ 7, [[A]] ], [ 11, [[B]] ]
; CHECK-NEXT: [[ADD1:%.*]] = add i32 [[ARG1:%.*]], [[P]]
; CHECK-NEXT: [[ADD2:%.*]] = add i32 [[ARG2:%.*]], [[P]]
; CHECK-NEXT: [[ADD3:%.*]] = add i32 [[ARG3:%.*]], [[P]]
; CHECK-NEXT: [[SUM1:%.*]] = add i32 [[ADD1]], [[ADD2]]
; CHECK-NEXT: [[SUM2:%.*]] = add i32 [[SUM1]], [[ADD3]]
; CHECK-NEXT: ret i32 [[SUM2]]
;
entry:
br i1 %flag, label %a, label %b
a:
br label %exit
b:
br label %exit
exit:
%p = phi i32 [ 7, %a ], [ 11, %b ]
%add1 = add i32 %arg1, %p
%add2 = add i32 %arg2, %p
%add3 = add i32 %arg3, %p
%sum1 = add i32 %add1, %add2
%sum2 = add i32 %sum1, %add3
ret i32 %sum2
}
define i32 @test_multi_phis1(i1 %flag, i32 %arg) {
; CHECK-LABEL: @test_multi_phis1(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: [[SUM1_0:%.*]] = add i32 [[ARG:%.*]], 1
; CHECK-NEXT: [[SUM2_0:%.*]] = add i32 [[SUM1_0]], 3
; CHECK-NEXT: [[SUM3_0:%.*]] = add i32 [[SUM2_0]], 5
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: [[SUM1_1:%.*]] = add i32 [[ARG]], 2
; CHECK-NEXT: [[SUM2_1:%.*]] = add i32 [[SUM1_1]], 4
; CHECK-NEXT: [[SUM3_1:%.*]] = add i32 [[SUM2_1]], 6
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[SUM3_PHI:%.*]] = phi i32 [ [[SUM3_0]], [[A]] ], [ [[SUM3_1]], [[B]] ]
; CHECK-NEXT: ret i32 [[SUM3_PHI]]
;
entry:
br i1 %flag, label %a, label %b
a:
br label %exit
b:
br label %exit
exit:
%p1 = phi i32 [ 1, %a ], [ 2, %b ]
%p2 = phi i32 [ 3, %a ], [ 4, %b ]
%p3 = phi i32 [ 5, %a ], [ 6, %b ]
%sum1 = add i32 %arg, %p1
%sum2 = add i32 %sum1, %p2
%sum3 = add i32 %sum2, %p3
ret i32 %sum3
}
; Check that the order of the PHIs doesn't impact the behavior.
define i32 @test_multi_phis2(i1 %flag, i32 %arg) {
; CHECK-LABEL: @test_multi_phis2(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: [[SUM1_0:%.*]] = add i32 [[ARG:%.*]], 1
; CHECK-NEXT: [[SUM2_0:%.*]] = add i32 [[SUM1_0]], 3
; CHECK-NEXT: [[SUM3_0:%.*]] = add i32 [[SUM2_0]], 5
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: [[SUM1_1:%.*]] = add i32 [[ARG]], 2
; CHECK-NEXT: [[SUM2_1:%.*]] = add i32 [[SUM1_1]], 4
; CHECK-NEXT: [[SUM3_1:%.*]] = add i32 [[SUM2_1]], 6
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[SUM3_PHI:%.*]] = phi i32 [ [[SUM3_0]], [[A]] ], [ [[SUM3_1]], [[B]] ]
; CHECK-NEXT: ret i32 [[SUM3_PHI]]
;
entry:
br i1 %flag, label %a, label %b
a:
br label %exit
b:
br label %exit
exit:
%p3 = phi i32 [ 5, %a ], [ 6, %b ]
%p2 = phi i32 [ 3, %a ], [ 4, %b ]
%p1 = phi i32 [ 1, %a ], [ 2, %b ]
%sum1 = add i32 %arg, %p1
%sum2 = add i32 %sum1, %p2
%sum3 = add i32 %sum2, %p3
ret i32 %sum3
}
define i32 @test_no_spec_indirectbr(i1 %flag, i32 %arg) {
; CHECK-LABEL: @test_no_spec_indirectbr(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: indirectbr i8* undef, [label %exit]
; CHECK: b:
; CHECK-NEXT: indirectbr i8* undef, [label %exit]
; CHECK: exit:
; CHECK-NEXT: [[P:%.*]] = phi i32 [ 7, [[A]] ], [ 11, [[B]] ]
; CHECK-NEXT: [[SUM:%.*]] = add i32 [[ARG:%.*]], [[P]]
; CHECK-NEXT: ret i32 [[SUM]]
;
entry:
br i1 %flag, label %a, label %b
a:
indirectbr i8* undef, [label %exit]
b:
indirectbr i8* undef, [label %exit]
exit:
%p = phi i32 [ 7, %a ], [ 11, %b ]
%sum = add i32 %arg, %p
ret i32 %sum
}
declare void @g()
declare i32 @__gxx_personality_v0(...)
; FIXME: We should be able to handle this case -- only the exceptional edge is
; impossible to split.
define i32 @test_no_spec_invoke_continue(i1 %flag, i32 %arg) personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
; CHECK-LABEL: @test_no_spec_invoke_continue(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: to label [[EXIT:%.*]] unwind label [[LPAD:%.*]]
; CHECK: b:
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: to label [[EXIT]] unwind label [[LPAD]]
; CHECK: exit:
; CHECK-NEXT: [[P:%.*]] = phi i32 [ 7, [[A]] ], [ 11, [[B]] ]
; CHECK-NEXT: [[SUM:%.*]] = add i32 [[ARG:%.*]], [[P]]
; CHECK-NEXT: ret i32 [[SUM]]
; CHECK: lpad:
; CHECK-NEXT: [[LP:%.*]] = landingpad { i8*, i32 }
; CHECK-NEXT: cleanup
; CHECK-NEXT: resume { i8*, i32 } undef
;
entry:
br i1 %flag, label %a, label %b
a:
invoke void @g()
to label %exit unwind label %lpad
b:
invoke void @g()
to label %exit unwind label %lpad
exit:
%p = phi i32 [ 7, %a ], [ 11, %b ]
%sum = add i32 %arg, %p
ret i32 %sum
lpad:
%lp = landingpad { i8*, i32 }
cleanup
resume { i8*, i32 } undef
}
define i32 @test_no_spec_landingpad(i32 %arg, i32* %ptr) personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
; CHECK-LABEL: @test_no_spec_landingpad(
; CHECK-NEXT: entry:
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: to label [[INVOKE_CONT:%.*]] unwind label [[LPAD:%.*]]
; CHECK: invoke.cont:
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: to label [[EXIT:%.*]] unwind label [[LPAD]]
; CHECK: lpad:
; CHECK-NEXT: [[P:%.*]] = phi i32 [ 7, [[ENTRY:%.*]] ], [ 11, [[INVOKE_CONT]] ]
; CHECK-NEXT: [[LP:%.*]] = landingpad { i8*, i32 }
; CHECK-NEXT: cleanup
; CHECK-NEXT: [[SUM:%.*]] = add i32 [[ARG:%.*]], [[P]]
; CHECK-NEXT: store i32 [[SUM]], i32* [[PTR:%.*]]
; CHECK-NEXT: resume { i8*, i32 } undef
; CHECK: exit:
; CHECK-NEXT: ret i32 0
;
entry:
invoke void @g()
to label %invoke.cont unwind label %lpad
invoke.cont:
invoke void @g()
to label %exit unwind label %lpad
lpad:
%p = phi i32 [ 7, %entry ], [ 11, %invoke.cont ]
%lp = landingpad { i8*, i32 }
cleanup
%sum = add i32 %arg, %p
store i32 %sum, i32* %ptr
resume { i8*, i32 } undef
exit:
ret i32 0
}
declare i32 @__CxxFrameHandler3(...)
define i32 @test_no_spec_cleanuppad(i32 %arg, i32* %ptr) personality i32 (...)* @__CxxFrameHandler3 {
; CHECK-LABEL: @test_no_spec_cleanuppad(
; CHECK-NEXT: entry:
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: to label [[INVOKE_CONT:%.*]] unwind label [[LPAD:%.*]]
; CHECK: invoke.cont:
; CHECK-NEXT: invoke void @g()
; CHECK-NEXT: to label [[EXIT:%.*]] unwind label [[LPAD]]
; CHECK: lpad:
; CHECK-NEXT: [[P:%.*]] = phi i32 [ 7, [[ENTRY:%.*]] ], [ 11, [[INVOKE_CONT]] ]
; CHECK-NEXT: [[CP:%.*]] = cleanuppad within none []
; CHECK-NEXT: [[SUM:%.*]] = add i32 [[ARG:%.*]], [[P]]
; CHECK-NEXT: store i32 [[SUM]], i32* [[PTR:%.*]]
; CHECK-NEXT: cleanupret from [[CP]] unwind to caller
; CHECK: exit:
; CHECK-NEXT: ret i32 0
;
entry:
invoke void @g()
to label %invoke.cont unwind label %lpad
invoke.cont:
invoke void @g()
to label %exit unwind label %lpad
lpad:
%p = phi i32 [ 7, %entry ], [ 11, %invoke.cont ]
%cp = cleanuppad within none []
%sum = add i32 %arg, %p
store i32 %sum, i32* %ptr
cleanupret from %cp unwind to caller
exit:
ret i32 0
}
; Check that we don't fall over when confronted with seemingly reasonable code
; for us to handle but in an unreachable region and with non-PHI use-def
; cycles.
define i32 @test_unreachable_non_phi_cycles(i1 %flag, i32 %arg) {
; CHECK-LABEL: @test_unreachable_non_phi_cycles(
; CHECK-NEXT: entry:
; CHECK-NEXT: ret i32 42
; CHECK: a:
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[P:%.*]] = phi i32 [ 7, [[A:%.*]] ], [ 11, [[B:%.*]] ]
; CHECK-NEXT: [[ZEXT:%.*]] = zext i32 [[SUM:%.*]] to i64
; CHECK-NEXT: [[TRUNC:%.*]] = trunc i64 [[ZEXT]] to i32
; CHECK-NEXT: [[SUM]] = add i32 [[TRUNC]], [[P]]
; CHECK-NEXT: br i1 [[FLAG:%.*]], label [[A]], label [[B]]
;
entry:
ret i32 42
a:
br label %exit
b:
br label %exit
exit:
%p = phi i32 [ 7, %a ], [ 11, %b ]
%zext = zext i32 %sum to i64
%trunc = trunc i64 %zext to i32
%sum = add i32 %trunc, %p
br i1 %flag, label %a, label %b
}
; Check that we don't speculate in the face of an expensive immediate. There
; are two reasons this should never speculate. First, even a local analysis
; should fail because it makes some paths (%a) potentially more expensive due
; to multiple uses of the immediate. Additionally, when we go to speculate the
; instructions, their cost will also be too high.
; FIXME: The goal is really to test the first property, but there doesn't
; happen to be any way to use free-to-speculate instructions here so that it
; would be the only interesting property.
define i64 @test_expensive_imm(i32 %flag, i64 %arg) {
; CHECK-LABEL: @test_expensive_imm(
; CHECK-NEXT: entry:
; CHECK-NEXT: switch i32 [[FLAG:%.*]], label [[A:%.*]] [
; CHECK-NEXT: i32 1, label [[B:%.*]]
; CHECK-NEXT: i32 2, label [[C:%.*]]
; CHECK-NEXT: i32 3, label [[D:%.*]]
; CHECK-NEXT: ]
; CHECK: a:
; CHECK-NEXT: br label [[EXIT:%.*]]
; CHECK: b:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: c:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: d:
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[P:%.*]] = phi i64 [ 4294967296, [[A]] ], [ 1, [[B]] ], [ 1, [[C]] ], [ 1, [[D]] ]
; CHECK-NEXT: [[SUM1:%.*]] = add i64 [[ARG:%.*]], [[P]]
; CHECK-NEXT: [[SUM2:%.*]] = add i64 [[SUM1]], [[P]]
; CHECK-NEXT: ret i64 [[SUM2]]
;
entry:
switch i32 %flag, label %a [
i32 1, label %b
i32 2, label %c
i32 3, label %d
]
a:
br label %exit
b:
br label %exit
c:
br label %exit
d:
br label %exit
exit:
%p = phi i64 [ 4294967296, %a ], [ 1, %b ], [ 1, %c ], [ 1, %d ]
%sum1 = add i64 %arg, %p
%sum2 = add i64 %sum1, %p
ret i64 %sum2
}
define i32 @test_no_spec_non_postdominating_uses(i1 %flag1, i1 %flag2, i32 %arg) {
; CHECK-LABEL: @test_no_spec_non_postdominating_uses(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[FLAG1:%.*]], label [[A:%.*]], label [[B:%.*]]
; CHECK: a:
; CHECK-NEXT: [[SUM1_0:%.*]] = add i32 [[ARG:%.*]], 7
; CHECK-NEXT: br label [[MERGE:%.*]]
; CHECK: b:
; CHECK-NEXT: [[SUM1_1:%.*]] = add i32 [[ARG]], 11
; CHECK-NEXT: br label [[MERGE]]
; CHECK: merge:
; CHECK-NEXT: [[SUM1_PHI:%.*]] = phi i32 [ [[SUM1_0]], [[A]] ], [ [[SUM1_1]], [[B]] ]
; CHECK-NEXT: [[P2:%.*]] = phi i32 [ 13, [[A]] ], [ 42, [[B]] ]
; CHECK-NEXT: br i1 [[FLAG2:%.*]], label [[EXIT1:%.*]], label [[EXIT2:%.*]]
; CHECK: exit1:
; CHECK-NEXT: ret i32 [[SUM1_PHI]]
; CHECK: exit2:
; CHECK-NEXT: [[SUM2:%.*]] = add i32 [[ARG]], [[P2]]
; CHECK-NEXT: ret i32 [[SUM2]]
;
entry:
br i1 %flag1, label %a, label %b
a:
br label %merge
b:
br label %merge
merge:
%p1 = phi i32 [ 7, %a ], [ 11, %b ]
%p2 = phi i32 [ 13, %a ], [ 42, %b ]
%sum1 = add i32 %arg, %p1
br i1 %flag2, label %exit1, label %exit2
exit1:
ret i32 %sum1
exit2:
%sum2 = add i32 %arg, %p2
ret i32 %sum2
}