llvm-project/llvm/lib/IR/Verifier.cpp

5903 lines
225 KiB
C++

//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
// * Both of a binary operator's parameters are of the same type
// * Verify that the indices of mem access instructions match other operands
// * Verify that arithmetic and other things are only performed on first-class
// types. Verify that shifts & logicals only happen on integrals f.e.
// * All of the constants in a switch statement are of the correct type
// * The code is in valid SSA form
// * It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!]
// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
// * PHI nodes must have an entry for each predecessor, with no extras.
// * PHI nodes must be the first thing in a basic block, all grouped together
// * PHI nodes must have at least one entry
// * All basic blocks should only end with terminator insts, not contain them
// * The entry node to a function must not have predecessors
// * All Instructions must be embedded into a basic block
// * Functions cannot take a void-typed parameter
// * Verify that a function's argument list agrees with it's declared type.
// * It is illegal to specify a name for a void value.
// * It is illegal to have a internal global value with no initializer
// * It is illegal to have a ret instruction that returns a value that does not
// agree with the function return value type.
// * Function call argument types match the function prototype
// * A landing pad is defined by a landingpad instruction, and can be jumped to
// only by the unwind edge of an invoke instruction.
// * A landingpad instruction must be the first non-PHI instruction in the
// block.
// * Landingpad instructions must be in a function with a personality function.
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Verifier.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
using namespace llvm;
namespace llvm {
struct VerifierSupport {
raw_ostream *OS;
const Module &M;
ModuleSlotTracker MST;
Triple TT;
const DataLayout &DL;
LLVMContext &Context;
/// Track the brokenness of the module while recursively visiting.
bool Broken = false;
/// Broken debug info can be "recovered" from by stripping the debug info.
bool BrokenDebugInfo = false;
/// Whether to treat broken debug info as an error.
bool TreatBrokenDebugInfoAsError = true;
explicit VerifierSupport(raw_ostream *OS, const Module &M)
: OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
Context(M.getContext()) {}
private:
void Write(const Module *M) {
*OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
}
void Write(const Value *V) {
if (V)
Write(*V);
}
void Write(const Value &V) {
if (isa<Instruction>(V)) {
V.print(*OS, MST);
*OS << '\n';
} else {
V.printAsOperand(*OS, true, MST);
*OS << '\n';
}
}
void Write(const Metadata *MD) {
if (!MD)
return;
MD->print(*OS, MST, &M);
*OS << '\n';
}
template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
Write(MD.get());
}
void Write(const NamedMDNode *NMD) {
if (!NMD)
return;
NMD->print(*OS, MST);
*OS << '\n';
}
void Write(Type *T) {
if (!T)
return;
*OS << ' ' << *T;
}
void Write(const Comdat *C) {
if (!C)
return;
*OS << *C;
}
void Write(const APInt *AI) {
if (!AI)
return;
*OS << *AI << '\n';
}
void Write(const unsigned i) { *OS << i << '\n'; }
template <typename T> void Write(ArrayRef<T> Vs) {
for (const T &V : Vs)
Write(V);
}
template <typename T1, typename... Ts>
void WriteTs(const T1 &V1, const Ts &... Vs) {
Write(V1);
WriteTs(Vs...);
}
template <typename... Ts> void WriteTs() {}
public:
/// A check failed, so printout out the condition and the message.
///
/// This provides a nice place to put a breakpoint if you want to see why
/// something is not correct.
void CheckFailed(const Twine &Message) {
if (OS)
*OS << Message << '\n';
Broken = true;
}
/// A check failed (with values to print).
///
/// This calls the Message-only version so that the above is easier to set a
/// breakpoint on.
template <typename T1, typename... Ts>
void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
CheckFailed(Message);
if (OS)
WriteTs(V1, Vs...);
}
/// A debug info check failed.
void DebugInfoCheckFailed(const Twine &Message) {
if (OS)
*OS << Message << '\n';
Broken |= TreatBrokenDebugInfoAsError;
BrokenDebugInfo = true;
}
/// A debug info check failed (with values to print).
template <typename T1, typename... Ts>
void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
const Ts &... Vs) {
DebugInfoCheckFailed(Message);
if (OS)
WriteTs(V1, Vs...);
}
};
} // namespace llvm
namespace {
class Verifier : public InstVisitor<Verifier>, VerifierSupport {
friend class InstVisitor<Verifier>;
DominatorTree DT;
/// When verifying a basic block, keep track of all of the
/// instructions we have seen so far.
///
/// This allows us to do efficient dominance checks for the case when an
/// instruction has an operand that is an instruction in the same block.
SmallPtrSet<Instruction *, 16> InstsInThisBlock;
/// Keep track of the metadata nodes that have been checked already.
SmallPtrSet<const Metadata *, 32> MDNodes;
/// Keep track which DISubprogram is attached to which function.
DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
/// Track all DICompileUnits visited.
SmallPtrSet<const Metadata *, 2> CUVisited;
/// The result type for a landingpad.
Type *LandingPadResultTy;
/// Whether we've seen a call to @llvm.localescape in this function
/// already.
bool SawFrameEscape;
/// Whether the current function has a DISubprogram attached to it.
bool HasDebugInfo = false;
/// Whether source was present on the first DIFile encountered in each CU.
DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
/// Stores the count of how many objects were passed to llvm.localescape for a
/// given function and the largest index passed to llvm.localrecover.
DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
// Maps catchswitches and cleanuppads that unwind to siblings to the
// terminators that indicate the unwind, used to detect cycles therein.
MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
/// Cache of constants visited in search of ConstantExprs.
SmallPtrSet<const Constant *, 32> ConstantExprVisited;
/// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
SmallVector<const Function *, 4> DeoptimizeDeclarations;
// Verify that this GlobalValue is only used in this module.
// This map is used to avoid visiting uses twice. We can arrive at a user
// twice, if they have multiple operands. In particular for very large
// constant expressions, we can arrive at a particular user many times.
SmallPtrSet<const Value *, 32> GlobalValueVisited;
// Keeps track of duplicate function argument debug info.
SmallVector<const DILocalVariable *, 16> DebugFnArgs;
TBAAVerifier TBAAVerifyHelper;
void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
public:
explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
const Module &M)
: VerifierSupport(OS, M), LandingPadResultTy(nullptr),
SawFrameEscape(false), TBAAVerifyHelper(this) {
TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
}
bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
bool verify(const Function &F) {
assert(F.getParent() == &M &&
"An instance of this class only works with a specific module!");
// First ensure the function is well-enough formed to compute dominance
// information, and directly compute a dominance tree. We don't rely on the
// pass manager to provide this as it isolates us from a potentially
// out-of-date dominator tree and makes it significantly more complex to run
// this code outside of a pass manager.
// FIXME: It's really gross that we have to cast away constness here.
if (!F.empty())
DT.recalculate(const_cast<Function &>(F));
for (const BasicBlock &BB : F) {
if (!BB.empty() && BB.back().isTerminator())
continue;
if (OS) {
*OS << "Basic Block in function '" << F.getName()
<< "' does not have terminator!\n";
BB.printAsOperand(*OS, true, MST);
*OS << "\n";
}
return false;
}
Broken = false;
// FIXME: We strip const here because the inst visitor strips const.
visit(const_cast<Function &>(F));
verifySiblingFuncletUnwinds();
InstsInThisBlock.clear();
DebugFnArgs.clear();
LandingPadResultTy = nullptr;
SawFrameEscape = false;
SiblingFuncletInfo.clear();
return !Broken;
}
/// Verify the module that this instance of \c Verifier was initialized with.
bool verify() {
Broken = false;
// Collect all declarations of the llvm.experimental.deoptimize intrinsic.
for (const Function &F : M)
if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
DeoptimizeDeclarations.push_back(&F);
// Now that we've visited every function, verify that we never asked to
// recover a frame index that wasn't escaped.
verifyFrameRecoverIndices();
for (const GlobalVariable &GV : M.globals())
visitGlobalVariable(GV);
for (const GlobalAlias &GA : M.aliases())
visitGlobalAlias(GA);
for (const NamedMDNode &NMD : M.named_metadata())
visitNamedMDNode(NMD);
for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
visitComdat(SMEC.getValue());
visitModuleFlags(M);
visitModuleIdents(M);
visitModuleCommandLines(M);
verifyCompileUnits();
verifyDeoptimizeCallingConvs();
DISubprogramAttachments.clear();
return !Broken;
}
private:
/// Whether a metadata node is allowed to be, or contain, a DILocation.
enum class AreDebugLocsAllowed { No, Yes };
// Verification methods...
void visitGlobalValue(const GlobalValue &GV);
void visitGlobalVariable(const GlobalVariable &GV);
void visitGlobalAlias(const GlobalAlias &GA);
void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
const GlobalAlias &A, const Constant &C);
void visitNamedMDNode(const NamedMDNode &NMD);
void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
void visitComdat(const Comdat &C);
void visitModuleIdents(const Module &M);
void visitModuleCommandLines(const Module &M);
void visitModuleFlags(const Module &M);
void visitModuleFlag(const MDNode *Op,
DenseMap<const MDString *, const MDNode *> &SeenIDs,
SmallVectorImpl<const MDNode *> &Requirements);
void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
void visitFunction(const Function &F);
void visitBasicBlock(BasicBlock &BB);
void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
void visitProfMetadata(Instruction &I, MDNode *MD);
template <class Ty> bool isValidMetadataArray(const MDTuple &N);
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
#include "llvm/IR/Metadata.def"
void visitDIScope(const DIScope &N);
void visitDIVariable(const DIVariable &N);
void visitDILexicalBlockBase(const DILexicalBlockBase &N);
void visitDITemplateParameter(const DITemplateParameter &N);
void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
// InstVisitor overrides...
using InstVisitor<Verifier>::visit;
void visit(Instruction &I);
void visitTruncInst(TruncInst &I);
void visitZExtInst(ZExtInst &I);
void visitSExtInst(SExtInst &I);
void visitFPTruncInst(FPTruncInst &I);
void visitFPExtInst(FPExtInst &I);
void visitFPToUIInst(FPToUIInst &I);
void visitFPToSIInst(FPToSIInst &I);
void visitUIToFPInst(UIToFPInst &I);
void visitSIToFPInst(SIToFPInst &I);
void visitIntToPtrInst(IntToPtrInst &I);
void visitPtrToIntInst(PtrToIntInst &I);
void visitBitCastInst(BitCastInst &I);
void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
void visitPHINode(PHINode &PN);
void visitCallBase(CallBase &Call);
void visitUnaryOperator(UnaryOperator &U);
void visitBinaryOperator(BinaryOperator &B);
void visitICmpInst(ICmpInst &IC);
void visitFCmpInst(FCmpInst &FC);
void visitExtractElementInst(ExtractElementInst &EI);
void visitInsertElementInst(InsertElementInst &EI);
void visitShuffleVectorInst(ShuffleVectorInst &EI);
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
void visitCallInst(CallInst &CI);
void visitInvokeInst(InvokeInst &II);
void visitGetElementPtrInst(GetElementPtrInst &GEP);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void verifyDominatesUse(Instruction &I, unsigned i);
void visitInstruction(Instruction &I);
void visitTerminator(Instruction &I);
void visitBranchInst(BranchInst &BI);
void visitReturnInst(ReturnInst &RI);
void visitSwitchInst(SwitchInst &SI);
void visitIndirectBrInst(IndirectBrInst &BI);
void visitCallBrInst(CallBrInst &CBI);
void visitSelectInst(SelectInst &SI);
void visitUserOp1(Instruction &I);
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
void visitAtomicRMWInst(AtomicRMWInst &RMWI);
void visitFenceInst(FenceInst &FI);
void visitAllocaInst(AllocaInst &AI);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
void visitEHPadPredecessors(Instruction &I);
void visitLandingPadInst(LandingPadInst &LPI);
void visitResumeInst(ResumeInst &RI);
void visitCatchPadInst(CatchPadInst &CPI);
void visitCatchReturnInst(CatchReturnInst &CatchReturn);
void visitCleanupPadInst(CleanupPadInst &CPI);
void visitFuncletPadInst(FuncletPadInst &FPI);
void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
void visitCleanupReturnInst(CleanupReturnInst &CRI);
void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
void verifySwiftErrorValue(const Value *SwiftErrorVal);
void verifyMustTailCall(CallInst &CI);
bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
unsigned ArgNo, std::string &Suffix);
bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
const Value *V);
void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
const Value *V, bool IsIntrinsic);
void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
void visitConstantExprsRecursively(const Constant *EntryC);
void visitConstantExpr(const ConstantExpr *CE);
void verifyStatepoint(const CallBase &Call);
void verifyFrameRecoverIndices();
void verifySiblingFuncletUnwinds();
void verifyFragmentExpression(const DbgVariableIntrinsic &I);
template <typename ValueOrMetadata>
void verifyFragmentExpression(const DIVariable &V,
DIExpression::FragmentInfo Fragment,
ValueOrMetadata *Desc);
void verifyFnArgs(const DbgVariableIntrinsic &I);
void verifyNotEntryValue(const DbgVariableIntrinsic &I);
/// Module-level debug info verification...
void verifyCompileUnits();
/// Module-level verification that all @llvm.experimental.deoptimize
/// declarations share the same calling convention.
void verifyDeoptimizeCallingConvs();
/// Verify all-or-nothing property of DIFile source attribute within a CU.
void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
};
} // end anonymous namespace
/// We know that cond should be true, if not print an error message.
#define Assert(C, ...) \
do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
/// We know that a debug info condition should be true, if not print
/// an error message.
#define AssertDI(C, ...) \
do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
void Verifier::visit(Instruction &I) {
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
InstVisitor<Verifier>::visit(I);
}
// Helper to recursively iterate over indirect users. By
// returning false, the callback can ask to stop recursing
// further.
static void forEachUser(const Value *User,
SmallPtrSet<const Value *, 32> &Visited,
llvm::function_ref<bool(const Value *)> Callback) {
if (!Visited.insert(User).second)
return;
for (const Value *TheNextUser : User->materialized_users())
if (Callback(TheNextUser))
forEachUser(TheNextUser, Visited, Callback);
}
void Verifier::visitGlobalValue(const GlobalValue &GV) {
Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
"Global is external, but doesn't have external or weak linkage!", &GV);
if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
Assert(GO->getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", GO);
Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
"Only global variables can have appending linkage!", &GV);
if (GV.hasAppendingLinkage()) {
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
Assert(GVar && GVar->getValueType()->isArrayTy(),
"Only global arrays can have appending linkage!", GVar);
}
if (GV.isDeclarationForLinker())
Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
if (GV.hasDLLImportStorageClass()) {
Assert(!GV.isDSOLocal(),
"GlobalValue with DLLImport Storage is dso_local!", &GV);
Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
GV.hasAvailableExternallyLinkage(),
"Global is marked as dllimport, but not external", &GV);
}
if (GV.isImplicitDSOLocal())
Assert(GV.isDSOLocal(),
"GlobalValue with local linkage or non-default "
"visibility must be dso_local!",
&GV);
forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
if (const Instruction *I = dyn_cast<Instruction>(V)) {
if (!I->getParent() || !I->getParent()->getParent())
CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
I);
else if (I->getParent()->getParent()->getParent() != &M)
CheckFailed("Global is referenced in a different module!", &GV, &M, I,
I->getParent()->getParent(),
I->getParent()->getParent()->getParent());
return false;
} else if (const Function *F = dyn_cast<Function>(V)) {
if (F->getParent() != &M)
CheckFailed("Global is used by function in a different module", &GV, &M,
F, F->getParent());
return false;
}
return true;
});
}
void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
if (GV.hasInitializer()) {
Assert(GV.getInitializer()->getType() == GV.getValueType(),
"Global variable initializer type does not match global "
"variable type!",
&GV);
// If the global has common linkage, it must have a zero initializer and
// cannot be constant.
if (GV.hasCommonLinkage()) {
Assert(GV.getInitializer()->isNullValue(),
"'common' global must have a zero initializer!", &GV);
Assert(!GV.isConstant(), "'common' global may not be marked constant!",
&GV);
Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
}
}
if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
GV.getName() == "llvm.global_dtors")) {
Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
"invalid linkage for intrinsic global variable", &GV);
// Don't worry about emitting an error for it not being an array,
// visitGlobalValue will complain on appending non-array.
if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
StructType *STy = dyn_cast<StructType>(ATy->getElementType());
PointerType *FuncPtrTy =
FunctionType::get(Type::getVoidTy(Context), false)->
getPointerTo(DL.getProgramAddressSpace());
Assert(STy &&
(STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
STy->getTypeAtIndex(1) == FuncPtrTy,
"wrong type for intrinsic global variable", &GV);
Assert(STy->getNumElements() == 3,
"the third field of the element type is mandatory, "
"specify i8* null to migrate from the obsoleted 2-field form");
Type *ETy = STy->getTypeAtIndex(2);
Assert(ETy->isPointerTy() &&
cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
"wrong type for intrinsic global variable", &GV);
}
}
if (GV.hasName() && (GV.getName() == "llvm.used" ||
GV.getName() == "llvm.compiler.used")) {
Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
"invalid linkage for intrinsic global variable", &GV);
Type *GVType = GV.getValueType();
if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
Assert(PTy, "wrong type for intrinsic global variable", &GV);
if (GV.hasInitializer()) {
const Constant *Init = GV.getInitializer();
const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
Assert(InitArray, "wrong initalizer for intrinsic global variable",
Init);
for (Value *Op : InitArray->operands()) {
Value *V = Op->stripPointerCasts();
Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
isa<GlobalAlias>(V),
"invalid llvm.used member", V);
Assert(V->hasName(), "members of llvm.used must be named", V);
}
}
}
}
// Visit any debug info attachments.
SmallVector<MDNode *, 1> MDs;
GV.getMetadata(LLVMContext::MD_dbg, MDs);
for (auto *MD : MDs) {
if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
visitDIGlobalVariableExpression(*GVE);
else
AssertDI(false, "!dbg attachment of global variable must be a "
"DIGlobalVariableExpression");
}
// Scalable vectors cannot be global variables, since we don't know
// the runtime size. If the global is a struct or an array containing
// scalable vectors, that will be caught by the isValidElementType methods
// in StructType or ArrayType instead.
Assert(!isa<ScalableVectorType>(GV.getValueType()),
"Globals cannot contain scalable vectors", &GV);
if (!GV.hasInitializer()) {
visitGlobalValue(GV);
return;
}
// Walk any aggregate initializers looking for bitcasts between address spaces
visitConstantExprsRecursively(GV.getInitializer());
visitGlobalValue(GV);
}
void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
SmallPtrSet<const GlobalAlias*, 4> Visited;
Visited.insert(&GA);
visitAliaseeSubExpr(Visited, GA, C);
}
void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
const GlobalAlias &GA, const Constant &C) {
if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
&GA);
if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
&GA);
} else {
// Only continue verifying subexpressions of GlobalAliases.
// Do not recurse into global initializers.
return;
}
}
if (const auto *CE = dyn_cast<ConstantExpr>(&C))
visitConstantExprsRecursively(CE);
for (const Use &U : C.operands()) {
Value *V = &*U;
if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
else if (const auto *C2 = dyn_cast<Constant>(V))
visitAliaseeSubExpr(Visited, GA, *C2);
}
}
void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
"Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!",
&GA);
const Constant *Aliasee = GA.getAliasee();
Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
Assert(GA.getType() == Aliasee->getType(),
"Alias and aliasee types should match!", &GA);
Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
"Aliasee should be either GlobalValue or ConstantExpr", &GA);
visitAliaseeSubExpr(GA, *Aliasee);
visitGlobalValue(GA);
}
void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
// There used to be various other llvm.dbg.* nodes, but we don't support
// upgrading them and we want to reserve the namespace for future uses.
if (NMD.getName().startswith("llvm.dbg."))
AssertDI(NMD.getName() == "llvm.dbg.cu",
"unrecognized named metadata node in the llvm.dbg namespace",
&NMD);
for (const MDNode *MD : NMD.operands()) {
if (NMD.getName() == "llvm.dbg.cu")
AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
if (!MD)
continue;
visitMDNode(*MD, AreDebugLocsAllowed::Yes);
}
}
void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
// Only visit each node once. Metadata can be mutually recursive, so this
// avoids infinite recursion here, as well as being an optimization.
if (!MDNodes.insert(&MD).second)
return;
switch (MD.getMetadataID()) {
default:
llvm_unreachable("Invalid MDNode subclass");
case Metadata::MDTupleKind:
break;
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
visit##CLASS(cast<CLASS>(MD)); \
break;
#include "llvm/IR/Metadata.def"
}
for (const Metadata *Op : MD.operands()) {
if (!Op)
continue;
Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
&MD, Op);
AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
"DILocation not allowed within this metadata node", &MD, Op);
if (auto *N = dyn_cast<MDNode>(Op)) {
visitMDNode(*N, AllowLocs);
continue;
}
if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
visitValueAsMetadata(*V, nullptr);
continue;
}
}
// Check these last, so we diagnose problems in operands first.
Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
}
void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
Assert(MD.getValue(), "Expected valid value", &MD);
Assert(!MD.getValue()->getType()->isMetadataTy(),
"Unexpected metadata round-trip through values", &MD, MD.getValue());
auto *L = dyn_cast<LocalAsMetadata>(&MD);
if (!L)
return;
Assert(F, "function-local metadata used outside a function", L);
// If this was an instruction, bb, or argument, verify that it is in the
// function that we expect.
Function *ActualF = nullptr;
if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
Assert(I->getParent(), "function-local metadata not in basic block", L, I);
ActualF = I->getParent()->getParent();
} else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
ActualF = BB->getParent();
else if (Argument *A = dyn_cast<Argument>(L->getValue()))
ActualF = A->getParent();
assert(ActualF && "Unimplemented function local metadata case!");
Assert(ActualF == F, "function-local metadata used in wrong function", L);
}
void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
Metadata *MD = MDV.getMetadata();
if (auto *N = dyn_cast<MDNode>(MD)) {
visitMDNode(*N, AreDebugLocsAllowed::No);
return;
}
// Only visit each node once. Metadata can be mutually recursive, so this
// avoids infinite recursion here, as well as being an optimization.
if (!MDNodes.insert(MD).second)
return;
if (auto *V = dyn_cast<ValueAsMetadata>(MD))
visitValueAsMetadata(*V, F);
}
static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
void Verifier::visitDILocation(const DILocation &N) {
AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
"location requires a valid scope", &N, N.getRawScope());
if (auto *IA = N.getRawInlinedAt())
AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
}
void Verifier::visitGenericDINode(const GenericDINode &N) {
AssertDI(N.getTag(), "invalid tag", &N);
}
void Verifier::visitDIScope(const DIScope &N) {
if (auto *F = N.getRawFile())
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
}
void Verifier::visitDISubrange(const DISubrange &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
"Subrange must contain count or upperBound", &N);
AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
"Subrange can have any one of count or upperBound", &N);
AssertDI(!N.getRawCountNode() || N.getCount(),
"Count must either be a signed constant or a DIVariable", &N);
auto Count = N.getCount();
AssertDI(!Count || !Count.is<ConstantInt *>() ||
Count.get<ConstantInt *>()->getSExtValue() >= -1,
"invalid subrange count", &N);
auto *LBound = N.getRawLowerBound();
AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
"LowerBound must be signed constant or DIVariable or DIExpression",
&N);
auto *UBound = N.getRawUpperBound();
AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
"UpperBound must be signed constant or DIVariable or DIExpression",
&N);
auto *Stride = N.getRawStride();
AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
"Stride must be signed constant or DIVariable or DIExpression", &N);
}
void Verifier::visitDIEnumerator(const DIEnumerator &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
}
void Verifier::visitDIBasicType(const DIBasicType &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
N.getTag() == dwarf::DW_TAG_unspecified_type,
"invalid tag", &N);
AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
"has conflicting flags", &N);
}
void Verifier::visitDIDerivedType(const DIDerivedType &N) {
// Common scope checks.
visitDIScope(N);
AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
N.getTag() == dwarf::DW_TAG_pointer_type ||
N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
N.getTag() == dwarf::DW_TAG_reference_type ||
N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
N.getTag() == dwarf::DW_TAG_const_type ||
N.getTag() == dwarf::DW_TAG_volatile_type ||
N.getTag() == dwarf::DW_TAG_restrict_type ||
N.getTag() == dwarf::DW_TAG_atomic_type ||
N.getTag() == dwarf::DW_TAG_member ||
N.getTag() == dwarf::DW_TAG_inheritance ||
N.getTag() == dwarf::DW_TAG_friend,
"invalid tag", &N);
if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
N.getRawExtraData());
}
AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
N.getRawBaseType());
if (N.getDWARFAddressSpace()) {
AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
N.getTag() == dwarf::DW_TAG_reference_type ||
N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
"DWARF address space only applies to pointer or reference types",
&N);
}
}
/// Detect mutually exclusive flags.
static bool hasConflictingReferenceFlags(unsigned Flags) {
return ((Flags & DINode::FlagLValueReference) &&
(Flags & DINode::FlagRValueReference)) ||
((Flags & DINode::FlagTypePassByValue) &&
(Flags & DINode::FlagTypePassByReference));
}
void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
auto *Params = dyn_cast<MDTuple>(&RawParams);
AssertDI(Params, "invalid template params", &N, &RawParams);
for (Metadata *Op : Params->operands()) {
AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
&N, Params, Op);
}
}
void Verifier::visitDICompositeType(const DICompositeType &N) {
// Common scope checks.
visitDIScope(N);
AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
N.getTag() == dwarf::DW_TAG_structure_type ||
N.getTag() == dwarf::DW_TAG_union_type ||
N.getTag() == dwarf::DW_TAG_enumeration_type ||
N.getTag() == dwarf::DW_TAG_class_type ||
N.getTag() == dwarf::DW_TAG_variant_part,
"invalid tag", &N);
AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
N.getRawBaseType());
AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
"invalid composite elements", &N, N.getRawElements());
AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
N.getRawVTableHolder());
AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
"invalid reference flags", &N);
unsigned DIBlockByRefStruct = 1 << 4;
AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
"DIBlockByRefStruct on DICompositeType is no longer supported", &N);
if (N.isVector()) {
const DINodeArray Elements = N.getElements();
AssertDI(Elements.size() == 1 &&
Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
"invalid vector, expected one element of type subrange", &N);
}
if (auto *Params = N.getRawTemplateParams())
visitTemplateParams(N, *Params);
if (N.getTag() == dwarf::DW_TAG_class_type ||
N.getTag() == dwarf::DW_TAG_union_type) {
AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
"class/union requires a filename", &N, N.getFile());
}
if (auto *D = N.getRawDiscriminator()) {
AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
"discriminator can only appear on variant part");
}
if (N.getRawDataLocation()) {
AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
"dataLocation can only appear in array type");
}
}
void Verifier::visitDISubroutineType(const DISubroutineType &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
if (auto *Types = N.getRawTypeArray()) {
AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
for (Metadata *Ty : N.getTypeArray()->operands()) {
AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
}
}
AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
"invalid reference flags", &N);
}
void Verifier::visitDIFile(const DIFile &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
if (Checksum) {
AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
"invalid checksum kind", &N);
size_t Size;
switch (Checksum->Kind) {
case DIFile::CSK_MD5:
Size = 32;
break;
case DIFile::CSK_SHA1:
Size = 40;
break;
case DIFile::CSK_SHA256:
Size = 64;
break;
}
AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
"invalid checksum", &N);
}
}
void Verifier::visitDICompileUnit(const DICompileUnit &N) {
AssertDI(N.isDistinct(), "compile units must be distinct", &N);
AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
// Don't bother verifying the compilation directory or producer string
// as those could be empty.
AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
N.getRawFile());
AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
N.getFile());
verifySourceDebugInfo(N, *N.getFile());
AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
"invalid emission kind", &N);
if (auto *Array = N.getRawEnumTypes()) {
AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
for (Metadata *Op : N.getEnumTypes()->operands()) {
auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
"invalid enum type", &N, N.getEnumTypes(), Op);
}
}
if (auto *Array = N.getRawRetainedTypes()) {
AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
for (Metadata *Op : N.getRetainedTypes()->operands()) {
AssertDI(Op && (isa<DIType>(Op) ||
(isa<DISubprogram>(Op) &&
!cast<DISubprogram>(Op)->isDefinition())),
"invalid retained type", &N, Op);
}
}
if (auto *Array = N.getRawGlobalVariables()) {
AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
for (Metadata *Op : N.getGlobalVariables()->operands()) {
AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
"invalid global variable ref", &N, Op);
}
}
if (auto *Array = N.getRawImportedEntities()) {
AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
for (Metadata *Op : N.getImportedEntities()->operands()) {
AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
&N, Op);
}
}
if (auto *Array = N.getRawMacros()) {
AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
for (Metadata *Op : N.getMacros()->operands()) {
AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
}
}
CUVisited.insert(&N);
}
void Verifier::visitDISubprogram(const DISubprogram &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
if (auto *F = N.getRawFile())
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
else
AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
if (auto *T = N.getRawType())
AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
N.getRawContainingType());
if (auto *Params = N.getRawTemplateParams())
visitTemplateParams(N, *Params);
if (auto *S = N.getRawDeclaration())
AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
"invalid subprogram declaration", &N, S);
if (auto *RawNode = N.getRawRetainedNodes()) {
auto *Node = dyn_cast<MDTuple>(RawNode);
AssertDI(Node, "invalid retained nodes list", &N, RawNode);
for (Metadata *Op : Node->operands()) {
AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
"invalid retained nodes, expected DILocalVariable or DILabel",
&N, Node, Op);
}
}
AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
"invalid reference flags", &N);
auto *Unit = N.getRawUnit();
if (N.isDefinition()) {
// Subprogram definitions (not part of the type hierarchy).
AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
if (N.getFile())
verifySourceDebugInfo(*N.getUnit(), *N.getFile());
} else {
// Subprogram declarations (part of the type hierarchy).
AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
}
if (auto *RawThrownTypes = N.getRawThrownTypes()) {
auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
for (Metadata *Op : ThrownTypes->operands())
AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
Op);
}
if (N.areAllCallsDescribed())
AssertDI(N.isDefinition(),
"DIFlagAllCallsDescribed must be attached to a definition");
}
void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
"invalid local scope", &N, N.getRawScope());
if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
}
void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
visitDILexicalBlockBase(N);
AssertDI(N.getLine() || !N.getColumn(),
"cannot have column info without line info", &N);
}
void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
visitDILexicalBlockBase(N);
}
void Verifier::visitDICommonBlock(const DICommonBlock &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
if (auto *S = N.getRawScope())
AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
if (auto *S = N.getRawDecl())
AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
}
void Verifier::visitDINamespace(const DINamespace &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
if (auto *S = N.getRawScope())
AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
}
void Verifier::visitDIMacro(const DIMacro &N) {
AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
N.getMacinfoType() == dwarf::DW_MACINFO_undef,
"invalid macinfo type", &N);
AssertDI(!N.getName().empty(), "anonymous macro", &N);
if (!N.getValue().empty()) {
assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
}
}
void Verifier::visitDIMacroFile(const DIMacroFile &N) {
AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
"invalid macinfo type", &N);
if (auto *F = N.getRawFile())
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
if (auto *Array = N.getRawElements()) {
AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
for (Metadata *Op : N.getElements()->operands()) {
AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
}
}
}
void Verifier::visitDIModule(const DIModule &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
AssertDI(!N.getName().empty(), "anonymous module", &N);
}
void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
}
void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
visitDITemplateParameter(N);
AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
&N);
}
void Verifier::visitDITemplateValueParameter(
const DITemplateValueParameter &N) {
visitDITemplateParameter(N);
AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
"invalid tag", &N);
}
void Verifier::visitDIVariable(const DIVariable &N) {
if (auto *S = N.getRawScope())
AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
if (auto *F = N.getRawFile())
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
}
void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
// Checks common to all variables.
visitDIVariable(N);
AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
// Assert only if the global variable is not an extern
if (N.isDefinition())
AssertDI(N.getType(), "missing global variable type", &N);
if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
AssertDI(isa<DIDerivedType>(Member),
"invalid static data member declaration", &N, Member);
}
}
void Verifier::visitDILocalVariable(const DILocalVariable &N) {
// Checks common to all variables.
visitDIVariable(N);
AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
"local variable requires a valid scope", &N, N.getRawScope());
if (auto Ty = N.getType())
AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
}
void Verifier::visitDILabel(const DILabel &N) {
if (auto *S = N.getRawScope())
AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
if (auto *F = N.getRawFile())
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
"label requires a valid scope", &N, N.getRawScope());
}
void Verifier::visitDIExpression(const DIExpression &N) {
AssertDI(N.isValid(), "invalid expression", &N);
}
void Verifier::visitDIGlobalVariableExpression(
const DIGlobalVariableExpression &GVE) {
AssertDI(GVE.getVariable(), "missing variable");
if (auto *Var = GVE.getVariable())
visitDIGlobalVariable(*Var);
if (auto *Expr = GVE.getExpression()) {
visitDIExpression(*Expr);
if (auto Fragment = Expr->getFragmentInfo())
verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
}
}
void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
if (auto *T = N.getRawType())
AssertDI(isType(T), "invalid type ref", &N, T);
if (auto *F = N.getRawFile())
AssertDI(isa<DIFile>(F), "invalid file", &N, F);
}
void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
N.getTag() == dwarf::DW_TAG_imported_declaration,
"invalid tag", &N);
if (auto *S = N.getRawScope())
AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
N.getRawEntity());
}
void Verifier::visitComdat(const Comdat &C) {
// In COFF the Module is invalid if the GlobalValue has private linkage.
// Entities with private linkage don't have entries in the symbol table.
if (TT.isOSBinFormatCOFF())
if (const GlobalValue *GV = M.getNamedValue(C.getName()))
Assert(!GV->hasPrivateLinkage(),
"comdat global value has private linkage", GV);
}
void Verifier::visitModuleIdents(const Module &M) {
const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
if (!Idents)
return;
// llvm.ident takes a list of metadata entry. Each entry has only one string.
// Scan each llvm.ident entry and make sure that this requirement is met.
for (const MDNode *N : Idents->operands()) {
Assert(N->getNumOperands() == 1,
"incorrect number of operands in llvm.ident metadata", N);
Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"),
N->getOperand(0));
}
}
void Verifier::visitModuleCommandLines(const Module &M) {
const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
if (!CommandLines)
return;
// llvm.commandline takes a list of metadata entry. Each entry has only one
// string. Scan each llvm.commandline entry and make sure that this
// requirement is met.
for (const MDNode *N : CommandLines->operands()) {
Assert(N->getNumOperands() == 1,
"incorrect number of operands in llvm.commandline metadata", N);
Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
("invalid value for llvm.commandline metadata entry operand"
"(the operand should be a string)"),
N->getOperand(0));
}
}
void Verifier::visitModuleFlags(const Module &M) {
const NamedMDNode *Flags = M.getModuleFlagsMetadata();
if (!Flags) return;
// Scan each flag, and track the flags and requirements.
DenseMap<const MDString*, const MDNode*> SeenIDs;
SmallVector<const MDNode*, 16> Requirements;
for (const MDNode *MDN : Flags->operands())
visitModuleFlag(MDN, SeenIDs, Requirements);
// Validate that the requirements in the module are valid.
for (const MDNode *Requirement : Requirements) {
const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
const Metadata *ReqValue = Requirement->getOperand(1);
const MDNode *Op = SeenIDs.lookup(Flag);
if (!Op) {
CheckFailed("invalid requirement on flag, flag is not present in module",
Flag);
continue;
}
if (Op->getOperand(2) != ReqValue) {
CheckFailed(("invalid requirement on flag, "
"flag does not have the required value"),
Flag);
continue;
}
}
}
void
Verifier::visitModuleFlag(const MDNode *Op,
DenseMap<const MDString *, const MDNode *> &SeenIDs,
SmallVectorImpl<const MDNode *> &Requirements) {
// Each module flag should have three arguments, the merge behavior (a
// constant int), the flag ID (an MDString), and the value.
Assert(Op->getNumOperands() == 3,
"incorrect number of operands in module flag", Op);
Module::ModFlagBehavior MFB;
if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
Assert(
mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
"invalid behavior operand in module flag (expected constant integer)",
Op->getOperand(0));
Assert(false,
"invalid behavior operand in module flag (unexpected constant)",
Op->getOperand(0));
}
MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
Assert(ID, "invalid ID operand in module flag (expected metadata string)",
Op->getOperand(1));
// Sanity check the values for behaviors with additional requirements.
switch (MFB) {
case Module::Error:
case Module::Warning:
case Module::Override:
// These behavior types accept any value.
break;
case Module::Max: {
Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
"invalid value for 'max' module flag (expected constant integer)",
Op->getOperand(2));
break;
}
case Module::Require: {
// The value should itself be an MDNode with two operands, a flag ID (an
// MDString), and a value.
MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
Assert(Value && Value->getNumOperands() == 2,
"invalid value for 'require' module flag (expected metadata pair)",
Op->getOperand(2));
Assert(isa<MDString>(Value->getOperand(0)),
("invalid value for 'require' module flag "
"(first value operand should be a string)"),
Value->getOperand(0));
// Append it to the list of requirements, to check once all module flags are
// scanned.
Requirements.push_back(Value);
break;
}
case Module::Append:
case Module::AppendUnique: {
// These behavior types require the operand be an MDNode.
Assert(isa<MDNode>(Op->getOperand(2)),
"invalid value for 'append'-type module flag "
"(expected a metadata node)",
Op->getOperand(2));
break;
}
}
// Unless this is a "requires" flag, check the ID is unique.
if (MFB != Module::Require) {
bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
Assert(Inserted,
"module flag identifiers must be unique (or of 'require' type)", ID);
}
if (ID->getString() == "wchar_size") {
ConstantInt *Value
= mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
Assert(Value, "wchar_size metadata requires constant integer argument");
}
if (ID->getString() == "Linker Options") {
// If the llvm.linker.options named metadata exists, we assume that the
// bitcode reader has upgraded the module flag. Otherwise the flag might
// have been created by a client directly.
Assert(M.getNamedMetadata("llvm.linker.options"),
"'Linker Options' named metadata no longer supported");
}
if (ID->getString() == "SemanticInterposition") {
ConstantInt *Value =
mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
Assert(Value,
"SemanticInterposition metadata requires constant integer argument");
}
if (ID->getString() == "CG Profile") {
for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
visitModuleFlagCGProfileEntry(MDO);
}
}
void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
auto CheckFunction = [&](const MDOperand &FuncMDO) {
if (!FuncMDO)
return;
auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
FuncMDO);
};
auto Node = dyn_cast_or_null<MDNode>(MDO);
Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
CheckFunction(Node->getOperand(0));
CheckFunction(Node->getOperand(1));
auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
Assert(Count && Count->getType()->isIntegerTy(),
"expected an integer constant", Node->getOperand(2));
}
/// Return true if this attribute kind only applies to functions.
static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
switch (Kind) {
case Attribute::NoMerge:
case Attribute::NoReturn:
case Attribute::NoSync:
case Attribute::WillReturn:
case Attribute::NoCfCheck:
case Attribute::NoUnwind:
case Attribute::NoInline:
case Attribute::AlwaysInline:
case Attribute::OptimizeForSize:
case Attribute::StackProtect:
case Attribute::StackProtectReq:
case Attribute::StackProtectStrong:
case Attribute::SafeStack:
case Attribute::ShadowCallStack:
case Attribute::NoRedZone:
case Attribute::NoImplicitFloat:
case Attribute::Naked:
case Attribute::InlineHint:
case Attribute::StackAlignment:
case Attribute::UWTable:
case Attribute::NonLazyBind:
case Attribute::ReturnsTwice:
case Attribute::SanitizeAddress:
case Attribute::SanitizeHWAddress:
case Attribute::SanitizeMemTag:
case Attribute::SanitizeThread:
case Attribute::SanitizeMemory:
case Attribute::MinSize:
case Attribute::NoDuplicate:
case Attribute::Builtin:
case Attribute::NoBuiltin:
case Attribute::Cold:
case Attribute::OptForFuzzing:
case Attribute::OptimizeNone:
case Attribute::JumpTable:
case Attribute::Convergent:
case Attribute::ArgMemOnly:
case Attribute::NoRecurse:
case Attribute::InaccessibleMemOnly:
case Attribute::InaccessibleMemOrArgMemOnly:
case Attribute::AllocSize:
case Attribute::SpeculativeLoadHardening:
case Attribute::Speculatable:
case Attribute::StrictFP:
case Attribute::NullPointerIsValid:
return true;
default:
break;
}
return false;
}
/// Return true if this is a function attribute that can also appear on
/// arguments.
static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
Kind == Attribute::ReadNone || Kind == Attribute::NoFree ||
Kind == Attribute::Preallocated;
}
void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
const Value *V) {
for (Attribute A : Attrs) {
if (A.isStringAttribute())
continue;
if (A.isIntAttribute() !=
Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) {
CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
V);
return;
}
if (isFuncOnlyAttr(A.getKindAsEnum())) {
if (!IsFunction) {
CheckFailed("Attribute '" + A.getAsString() +
"' only applies to functions!",
V);
return;
}
} else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
CheckFailed("Attribute '" + A.getAsString() +
"' does not apply to functions!",
V);
return;
}
}
}
// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type. The value V is printed in error messages.
void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
const Value *V) {
if (!Attrs.hasAttributes())
return;
verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
if (Attrs.hasAttribute(Attribute::ImmArg)) {
Assert(Attrs.getNumAttributes() == 1,
"Attribute 'immarg' is incompatible with other attributes", V);
}
// Check for mutually incompatible attributes. Only inreg is compatible with
// sret.
unsigned AttrCount = 0;
AttrCount += Attrs.hasAttribute(Attribute::ByVal);
AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
Attrs.hasAttribute(Attribute::InReg);
AttrCount += Attrs.hasAttribute(Attribute::Nest);
Assert(AttrCount <= 1,
"Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
"and 'sret' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)),
"Attributes "
"'inalloca and readonly' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)),
"Attributes "
"'sret and returned' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
Attrs.hasAttribute(Attribute::SExt)),
"Attributes "
"'zeroext and signext' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)),
"Attributes "
"'readnone and readonly' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)),
"Attributes "
"'readnone and writeonly' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)),
"Attributes "
"'readonly and writeonly' are incompatible!",
V);
Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)),
"Attributes "
"'noinline and alwaysinline' are incompatible!",
V);
if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
"Attribute 'byval' type does not match parameter!", V);
}
if (Attrs.hasAttribute(Attribute::Preallocated)) {
Assert(Attrs.getPreallocatedType() ==
cast<PointerType>(Ty)->getElementType(),
"Attribute 'preallocated' type does not match parameter!", V);
}
AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
"Wrong types for attribute: " +
AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
V);
if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
SmallPtrSet<Type*, 4> Visited;
if (!PTy->getElementType()->isSized(&Visited)) {
Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
!Attrs.hasAttribute(Attribute::InAlloca) &&
!Attrs.hasAttribute(Attribute::Preallocated),
"Attributes 'byval', 'inalloca', and 'preallocated' do not "
"support unsized types!",
V);
}
if (!isa<PointerType>(PTy->getElementType()))
Assert(!Attrs.hasAttribute(Attribute::SwiftError),
"Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!",
V);
} else {
Assert(!Attrs.hasAttribute(Attribute::ByVal),
"Attribute 'byval' only applies to parameters with pointer type!",
V);
Assert(!Attrs.hasAttribute(Attribute::SwiftError),
"Attribute 'swifterror' only applies to parameters "
"with pointer type!",
V);
}
}
// Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
const Value *V, bool IsIntrinsic) {
if (Attrs.isEmpty())
return;
bool SawNest = false;
bool SawReturned = false;
bool SawSRet = false;
bool SawSwiftSelf = false;
bool SawSwiftError = false;
// Verify return value attributes.
AttributeSet RetAttrs = Attrs.getRetAttributes();
Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) &&
!RetAttrs.hasAttribute(Attribute::StructRet) &&
!RetAttrs.hasAttribute(Attribute::NoCapture) &&
!RetAttrs.hasAttribute(Attribute::NoFree) &&
!RetAttrs.hasAttribute(Attribute::Returned) &&
!RetAttrs.hasAttribute(Attribute::InAlloca) &&
!RetAttrs.hasAttribute(Attribute::Preallocated) &&
!RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)),
"Attributes 'byval', 'inalloca', 'preallocated', 'nest', 'sret', "
"'nocapture', 'nofree', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!",
V);
Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) &&
!RetAttrs.hasAttribute(Attribute::ReadNone)),
"Attribute '" + RetAttrs.getAsString() +
"' does not apply to function returns",
V);
verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
// Verify parameter attributes.
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
Type *Ty = FT->getParamType(i);
AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
if (!IsIntrinsic) {
Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
"immarg attribute only applies to intrinsics",V);
}
verifyParameterAttrs(ArgAttrs, Ty, V);
if (ArgAttrs.hasAttribute(Attribute::Nest)) {
Assert(!SawNest, "More than one parameter has attribute nest!", V);
SawNest = true;
}
if (ArgAttrs.hasAttribute(Attribute::Returned)) {
Assert(!SawReturned, "More than one parameter has attribute returned!",
V);
Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
"Incompatible argument and return types for 'returned' attribute",
V);
SawReturned = true;
}
if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
Assert(i == 0 || i == 1,
"Attribute 'sret' is not on first or second parameter!", V);
SawSRet = true;
}
if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
SawSwiftSelf = true;
}
if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
V);
SawSwiftError = true;
}
if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
Assert(i == FT->getNumParams() - 1,
"inalloca isn't on the last parameter!", V);
}
}
if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
return;
verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)),
"Attributes 'readnone and readonly' are incompatible!", V);
Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)),
"Attributes 'readnone and writeonly' are incompatible!", V);
Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)),
"Attributes 'readonly and writeonly' are incompatible!", V);
Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
"Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!",
V);
Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
"Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)),
"Attributes 'noinline and alwaysinline' are incompatible!", V);
if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
Assert(Attrs.hasFnAttribute(Attribute::NoInline),
"Attribute 'optnone' requires 'noinline'!", V);
Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
"Attributes 'optsize and optnone' are incompatible!", V);
Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
"Attributes 'minsize and optnone' are incompatible!", V);
}
if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
const GlobalValue *GV = cast<GlobalValue>(V);
Assert(GV->hasGlobalUnnamedAddr(),
"Attribute 'jumptable' requires 'unnamed_addr'", V);
}
if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
std::pair<unsigned, Optional<unsigned>> Args =
Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
if (ParamNo >= FT->getNumParams()) {
CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
return false;
}
if (!FT->getParamType(ParamNo)->isIntegerTy()) {
CheckFailed("'allocsize' " + Name +
" argument must refer to an integer parameter",
V);
return false;
}
return true;
};
if (!CheckParam("element size", Args.first))
return;
if (Args.second && !CheckParam("number of elements", *Args.second))
return;
}
if (Attrs.hasFnAttribute("frame-pointer")) {
StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
"frame-pointer").getValueAsString();
if (FP != "all" && FP != "non-leaf" && FP != "none")
CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
}
if (Attrs.hasFnAttribute("patchable-function-prefix")) {
StringRef S = Attrs
.getAttribute(AttributeList::FunctionIndex,
"patchable-function-prefix")
.getValueAsString();
unsigned N;
if (S.getAsInteger(10, N))
CheckFailed(
"\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
}
if (Attrs.hasFnAttribute("patchable-function-entry")) {
StringRef S = Attrs
.getAttribute(AttributeList::FunctionIndex,
"patchable-function-entry")
.getValueAsString();
unsigned N;
if (S.getAsInteger(10, N))
CheckFailed(
"\"patchable-function-entry\" takes an unsigned integer: " + S, V);
}
}
void Verifier::verifyFunctionMetadata(
ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
for (const auto &Pair : MDs) {
if (Pair.first == LLVMContext::MD_prof) {
MDNode *MD = Pair.second;
Assert(MD->getNumOperands() >= 2,
"!prof annotations should have no less than 2 operands", MD);
// Check first operand.
Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
MD);
Assert(isa<MDString>(MD->getOperand(0)),
"expected string with name of the !prof annotation", MD);
MDString *MDS = cast<MDString>(MD->getOperand(0));
StringRef ProfName = MDS->getString();
Assert(ProfName.equals("function_entry_count") ||
ProfName.equals("synthetic_function_entry_count"),
"first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'",
MD);
// Check second operand.
Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
MD);
Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
"expected integer argument to function_entry_count", MD);
}
}
}
void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
if (!ConstantExprVisited.insert(EntryC).second)
return;
SmallVector<const Constant *, 16> Stack;
Stack.push_back(EntryC);
while (!Stack.empty()) {
const Constant *C = Stack.pop_back_val();
// Check this constant expression.
if (const auto *CE = dyn_cast<ConstantExpr>(C))
visitConstantExpr(CE);
if (const auto *GV = dyn_cast<GlobalValue>(C)) {
// Global Values get visited separately, but we do need to make sure
// that the global value is in the correct module
Assert(GV->getParent() == &M, "Referencing global in another module!",
EntryC, &M, GV, GV->getParent());
continue;
}
// Visit all sub-expressions.
for (const Use &U : C->operands()) {
const auto *OpC = dyn_cast<Constant>(U);
if (!OpC)
continue;
if (!ConstantExprVisited.insert(OpC).second)
continue;
Stack.push_back(OpC);
}
}
}
void Verifier::visitConstantExpr(const ConstantExpr *CE) {
if (CE->getOpcode() == Instruction::BitCast)
Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
CE->getType()),
"Invalid bitcast", CE);
if (CE->getOpcode() == Instruction::IntToPtr ||
CE->getOpcode() == Instruction::PtrToInt) {
auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
? CE->getType()
: CE->getOperand(0)->getType();
StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
? "inttoptr not supported for non-integral pointers"
: "ptrtoint not supported for non-integral pointers";
Assert(
!DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
Msg);
}
}
bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
// There shouldn't be more attribute sets than there are parameters plus the
// function and return value.
return Attrs.getNumAttrSets() <= Params + 2;
}
/// Verify that statepoint intrinsic is well formed.
void Verifier::verifyStatepoint(const CallBase &Call) {
assert(Call.getCalledFunction() &&
Call.getCalledFunction()->getIntrinsicID() ==
Intrinsic::experimental_gc_statepoint);
Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
!Call.onlyAccessesArgMemory(),
"gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics",
Call);
const int64_t NumPatchBytes =
cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
Assert(NumPatchBytes >= 0,
"gc.statepoint number of patchable bytes must be "
"positive",
Call);
const Value *Target = Call.getArgOperand(2);
auto *PT = dyn_cast<PointerType>(Target->getType());
Assert(PT && PT->getElementType()->isFunctionTy(),
"gc.statepoint callee must be of function pointer type", Call, Target);
FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
Assert(NumCallArgs >= 0,
"gc.statepoint number of arguments to underlying call "
"must be positive",
Call);
const int NumParams = (int)TargetFuncType->getNumParams();
if (TargetFuncType->isVarArg()) {
Assert(NumCallArgs >= NumParams,
"gc.statepoint mismatch in number of vararg call args", Call);
// TODO: Remove this limitation
Assert(TargetFuncType->getReturnType()->isVoidTy(),
"gc.statepoint doesn't support wrapping non-void "
"vararg functions yet",
Call);
} else
Assert(NumCallArgs == NumParams,
"gc.statepoint mismatch in number of call args", Call);
const uint64_t Flags
= cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
"unknown flag used in gc.statepoint flags argument", Call);
// Verify that the types of the call parameter arguments match
// the type of the wrapped callee.
AttributeList Attrs = Call.getAttributes();
for (int i = 0; i < NumParams; i++) {
Type *ParamType = TargetFuncType->getParamType(i);
Type *ArgType = Call.getArgOperand(5 + i)->getType();
Assert(ArgType == ParamType,
"gc.statepoint call argument does not match wrapped "
"function type",
Call);
if (TargetFuncType->isVarArg()) {
AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
"Attribute 'sret' cannot be used for vararg call arguments!",
Call);
}
}
const int EndCallArgsInx = 4 + NumCallArgs;
const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
Assert(isa<ConstantInt>(NumTransitionArgsV),
"gc.statepoint number of transition arguments "
"must be constant integer",
Call);
const int NumTransitionArgs =
cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
Assert(NumTransitionArgs >= 0,
"gc.statepoint number of transition arguments must be positive", Call);
const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
// We're migrating away from inline operands to operand bundles, enforce
// the either/or property during transition.
if (Call.getOperandBundle(LLVMContext::OB_gc_transition)) {
Assert(NumTransitionArgs == 0,
"can't use both deopt operands and deopt bundle on a statepoint");
}
const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
Assert(isa<ConstantInt>(NumDeoptArgsV),
"gc.statepoint number of deoptimization arguments "
"must be constant integer",
Call);
const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
Assert(NumDeoptArgs >= 0,
"gc.statepoint number of deoptimization arguments "
"must be positive",
Call);
// We're migrating away from inline operands to operand bundles, enforce
// the either/or property during transition.
if (Call.getOperandBundle(LLVMContext::OB_deopt)) {
Assert(NumDeoptArgs == 0,
"can't use both deopt operands and deopt bundle on a statepoint");
}
const int ExpectedNumArgs =
7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
Assert(ExpectedNumArgs <= (int)Call.arg_size(),
"gc.statepoint too few arguments according to length fields", Call);
// Check that the only uses of this gc.statepoint are gc.result or
// gc.relocate calls which are tied to this statepoint and thus part
// of the same statepoint sequence
for (const User *U : Call.users()) {
const CallInst *UserCall = dyn_cast<const CallInst>(U);
Assert(UserCall, "illegal use of statepoint token", Call, U);
if (!UserCall)
continue;
Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
"gc.result or gc.relocate are the only value uses "
"of a gc.statepoint",
Call, U);
if (isa<GCResultInst>(UserCall)) {
Assert(UserCall->getArgOperand(0) == &Call,
"gc.result connected to wrong gc.statepoint", Call, UserCall);
} else if (isa<GCRelocateInst>(Call)) {
Assert(UserCall->getArgOperand(0) == &Call,
"gc.relocate connected to wrong gc.statepoint", Call, UserCall);
}
}
// Note: It is legal for a single derived pointer to be listed multiple
// times. It's non-optimal, but it is legal. It can also happen after
// insertion if we strip a bitcast away.
// Note: It is really tempting to check that each base is relocated and
// that a derived pointer is never reused as a base pointer. This turns
// out to be problematic since optimizations run after safepoint insertion
// can recognize equality properties that the insertion logic doesn't know
// about. See example statepoint.ll in the verifier subdirectory
}
void Verifier::verifyFrameRecoverIndices() {
for (auto &Counts : FrameEscapeInfo) {
Function *F = Counts.first;
unsigned EscapedObjectCount = Counts.second.first;
unsigned MaxRecoveredIndex = Counts.second.second;
Assert(MaxRecoveredIndex <= EscapedObjectCount,
"all indices passed to llvm.localrecover must be less than the "
"number of arguments passed to llvm.localescape in the parent "
"function",
F);
}
}
static Instruction *getSuccPad(Instruction *Terminator) {
BasicBlock *UnwindDest;
if (auto *II = dyn_cast<InvokeInst>(Terminator))
UnwindDest = II->getUnwindDest();
else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
UnwindDest = CSI->getUnwindDest();
else
UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
return UnwindDest->getFirstNonPHI();
}
void Verifier::verifySiblingFuncletUnwinds() {
SmallPtrSet<Instruction *, 8> Visited;
SmallPtrSet<Instruction *, 8> Active;
for (const auto &Pair : SiblingFuncletInfo) {
Instruction *PredPad = Pair.first;
if (Visited.count(PredPad))
continue;
Active.insert(PredPad);
Instruction *Terminator = Pair.second;
do {
Instruction *SuccPad = getSuccPad(Terminator);
if (Active.count(SuccPad)) {
// Found a cycle; report error
Instruction *CyclePad = SuccPad;
SmallVector<Instruction *, 8> CycleNodes;
do {
CycleNodes.push_back(CyclePad);
Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
if (CycleTerminator != CyclePad)
CycleNodes.push_back(CycleTerminator);
CyclePad = getSuccPad(CycleTerminator);
} while (CyclePad != SuccPad);
Assert(false, "EH pads can't handle each other's exceptions",
ArrayRef<Instruction *>(CycleNodes));
}
// Don't re-walk a node we've already checked
if (!Visited.insert(SuccPad).second)
break;
// Walk to this successor if it has a map entry.
PredPad = SuccPad;
auto TermI = SiblingFuncletInfo.find(PredPad);
if (TermI == SiblingFuncletInfo.end())
break;
Terminator = TermI->second;
Active.insert(PredPad);
} while (true);
// Each node only has one successor, so we've walked all the active
// nodes' successors.
Active.clear();
}
}
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(const Function &F) {
visitGlobalValue(F);
// Check function arguments.
FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.arg_size();
Assert(&Context == &F.getContext(),
"Function context does not match Module context!", &F);
Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
Assert(FT->getNumParams() == NumArgs,
"# formal arguments must match # of arguments for function type!", &F,
FT);
Assert(F.getReturnType()->isFirstClassType() ||
F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
"Functions cannot return aggregate values!", &F);
Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
"Invalid struct return type!", &F);
AttributeList Attrs = F.getAttributes();
Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
"Attribute after last parameter!", &F);
bool isLLVMdotName = F.getName().size() >= 5 &&
F.getName().substr(0, 5) == "llvm.";
// Check function attributes.
verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
// On function declarations/definitions, we do not support the builtin
// attribute. We do not check this in VerifyFunctionAttrs since that is
// checking for Attributes that can/can not ever be on functions.
Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
"Attribute 'builtin' can only be applied to a callsite.", &F);
// Check that this function meets the restrictions on this calling convention.
// Sometimes varargs is used for perfectly forwarding thunks, so some of these
// restrictions can be lifted.
switch (F.getCallingConv()) {
default:
case CallingConv::C:
break;
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
Assert(F.getReturnType()->isVoidTy(),
"Calling convention requires void return type", &F);
LLVM_FALLTHROUGH;
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
Assert(!F.hasStructRetAttr(),
"Calling convention does not allow sret", &F);
LLVM_FALLTHROUGH;
case CallingConv::Fast:
case CallingConv::Cold:
case CallingConv::Intel_OCL_BI:
case CallingConv::PTX_Kernel:
case CallingConv::PTX_Device:
Assert(!F.isVarArg(), "Calling convention does not support varargs or "
"perfect forwarding!",
&F);
break;
}
// Check that the argument values match the function type for this function...
unsigned i = 0;
for (const Argument &Arg : F.args()) {
Assert(Arg.getType() == FT->getParamType(i),
"Argument value does not match function argument type!", &Arg,
FT->getParamType(i));
Assert(Arg.getType()->isFirstClassType(),
"Function arguments must have first-class types!", &Arg);
if (!isLLVMdotName) {
Assert(!Arg.getType()->isMetadataTy(),
"Function takes metadata but isn't an intrinsic", &Arg, &F);
Assert(!Arg.getType()->isTokenTy(),
"Function takes token but isn't an intrinsic", &Arg, &F);
}
// Check that swifterror argument is only used by loads and stores.
if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
verifySwiftErrorValue(&Arg);
}
++i;
}
if (!isLLVMdotName)
Assert(!F.getReturnType()->isTokenTy(),
"Functions returns a token but isn't an intrinsic", &F);
// Get the function metadata attachments.
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
F.getAllMetadata(MDs);
assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
verifyFunctionMetadata(MDs);
// Check validity of the personality function
if (F.hasPersonalityFn()) {
auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
if (Per)
Assert(Per->getParent() == F.getParent(),
"Referencing personality function in another module!",
&F, F.getParent(), Per, Per->getParent());
}
if (F.isMaterializable()) {
// Function has a body somewhere we can't see.
Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
MDs.empty() ? nullptr : MDs.front().second);
} else if (F.isDeclaration()) {
for (const auto &I : MDs) {
// This is used for call site debug information.
AssertDI(I.first != LLVMContext::MD_dbg ||
!cast<DISubprogram>(I.second)->isDistinct(),
"function declaration may only have a unique !dbg attachment",
&F);
Assert(I.first != LLVMContext::MD_prof,
"function declaration may not have a !prof attachment", &F);
// Verify the metadata itself.
visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
}
Assert(!F.hasPersonalityFn(),
"Function declaration shouldn't have a personality routine", &F);
} else {
// Verify that this function (which has a body) is not named "llvm.*". It
// is not legal to define intrinsics.
Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
// Check the entry node
const BasicBlock *Entry = &F.getEntryBlock();
Assert(pred_empty(Entry),
"Entry block to function must not have predecessors!", Entry);
// The address of the entry block cannot be taken, unless it is dead.
if (Entry->hasAddressTaken()) {
Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
"blockaddress may not be used with the entry block!", Entry);
}
unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
// Visit metadata attachments.
for (const auto &I : MDs) {
// Verify that the attachment is legal.
auto AllowLocs = AreDebugLocsAllowed::No;
switch (I.first) {
default:
break;
case LLVMContext::MD_dbg: {
++NumDebugAttachments;
AssertDI(NumDebugAttachments == 1,
"function must have a single !dbg attachment", &F, I.second);
AssertDI(isa<DISubprogram>(I.second),
"function !dbg attachment must be a subprogram", &F, I.second);
auto *SP = cast<DISubprogram>(I.second);
const Function *&AttachedTo = DISubprogramAttachments[SP];
AssertDI(!AttachedTo || AttachedTo == &F,
"DISubprogram attached to more than one function", SP, &F);
AttachedTo = &F;
AllowLocs = AreDebugLocsAllowed::Yes;
break;
}
case LLVMContext::MD_prof:
++NumProfAttachments;
Assert(NumProfAttachments == 1,
"function must have a single !prof attachment", &F, I.second);
break;
}
// Verify the metadata itself.
visitMDNode(*I.second, AllowLocs);
}
}
// If this function is actually an intrinsic, verify that it is only used in
// direct call/invokes, never having its "address taken".
// Only do this if the module is materialized, otherwise we don't have all the
// uses.
if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
const User *U;
if (F.hasAddressTaken(&U))
Assert(false, "Invalid user of intrinsic instruction!", U);
}
auto *N = F.getSubprogram();
HasDebugInfo = (N != nullptr);
if (!HasDebugInfo)
return;
// Check that all !dbg attachments lead to back to N.
//
// FIXME: Check this incrementally while visiting !dbg attachments.
// FIXME: Only check when N is the canonical subprogram for F.
SmallPtrSet<const MDNode *, 32> Seen;
auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
// Be careful about using DILocation here since we might be dealing with
// broken code (this is the Verifier after all).
const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
if (!DL)
return;
if (!Seen.insert(DL).second)
return;
Metadata *Parent = DL->getRawScope();
AssertDI(Parent && isa<DILocalScope>(Parent),
"DILocation's scope must be a DILocalScope", N, &F, &I, DL,
Parent);
DILocalScope *Scope = DL->getInlinedAtScope();
Assert(Scope, "Failed to find DILocalScope", DL);
if (!Seen.insert(Scope).second)
return;
DISubprogram *SP = Scope->getSubprogram();
// Scope and SP could be the same MDNode and we don't want to skip
// validation in that case
if (SP && ((Scope != SP) && !Seen.insert(SP).second))
return;
AssertDI(SP->describes(&F),
"!dbg attachment points at wrong subprogram for function", N, &F,
&I, DL, Scope, SP);
};
for (auto &BB : F)
for (auto &I : BB) {
VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
// The llvm.loop annotations also contain two DILocations.
if (auto MD = I.getMetadata(LLVMContext::MD_loop))
for (unsigned i = 1; i < MD->getNumOperands(); ++i)
VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
if (BrokenDebugInfo)
return;
}
}
// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
InstsInThisBlock.clear();
// Ensure that basic blocks have terminators!
Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
// Check constraints that this basic block imposes on all of the PHI nodes in
// it.
if (isa<PHINode>(BB.front())) {
SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
llvm::sort(Preds);
for (const PHINode &PN : BB.phis()) {
// Ensure that PHI nodes have at least one entry!
Assert(PN.getNumIncomingValues() != 0,
"PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!",
&PN);
Assert(PN.getNumIncomingValues() == Preds.size(),
"PHINode should have one entry for each predecessor of its "
"parent basic block!",
&PN);
// Get and sort all incoming values in the PHI node...
Values.clear();
Values.reserve(PN.getNumIncomingValues());
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
Values.push_back(
std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
llvm::sort(Values);
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
// Check to make sure that if there is more than one entry for a
// particular basic block in this PHI node, that the incoming values are
// all identical.
//
Assert(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second,
"PHI node has multiple entries for the same basic block with "
"different incoming values!",
&PN, Values[i].first, Values[i].second, Values[i - 1].second);
// Check to make sure that the predecessors and PHI node entries are
// matched up.
Assert(Values[i].first == Preds[i],
"PHI node entries do not match predecessors!", &PN,
Values[i].first, Preds[i]);
}
}
}
// Check that all instructions have their parent pointers set up correctly.
for (auto &I : BB)
{
Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
}
}
void Verifier::visitTerminator(Instruction &I) {
// Ensure that terminators only exist at the end of the basic block.
Assert(&I == I.getParent()->getTerminator(),
"Terminator found in the middle of a basic block!", I.getParent());
visitInstruction(I);
}
void Verifier::visitBranchInst(BranchInst &BI) {
if (BI.isConditional()) {
Assert(BI.getCondition()->getType()->isIntegerTy(1),
"Branch condition is not 'i1' type!", &BI, BI.getCondition());
}
visitTerminator(BI);
}
void Verifier::visitReturnInst(ReturnInst &RI) {
Function *F = RI.getParent()->getParent();
unsigned N = RI.getNumOperands();
if (F->getReturnType()->isVoidTy())
Assert(N == 0,
"Found return instr that returns non-void in Function of void "
"return type!",
&RI, F->getReturnType());
else
Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
"Function return type does not match operand "
"type of return inst!",
&RI, F->getReturnType());
// Check to make sure that the return value has necessary properties for
// terminators...
visitTerminator(RI);
}
void Verifier::visitSwitchInst(SwitchInst &SI) {
// Check to make sure that all of the constants in the switch instruction
// have the same type as the switched-on value.
Type *SwitchTy = SI.getCondition()->getType();
SmallPtrSet<ConstantInt*, 32> Constants;
for (auto &Case : SI.cases()) {
Assert(Case.getCaseValue()->getType() == SwitchTy,
"Switch constants must all be same type as switch value!", &SI);
Assert(Constants.insert(Case.getCaseValue()).second,
"Duplicate integer as switch case", &SI, Case.getCaseValue());
}
visitTerminator(SI);
}
void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
Assert(BI.getAddress()->getType()->isPointerTy(),
"Indirectbr operand must have pointer type!", &BI);
for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
Assert(BI.getDestination(i)->getType()->isLabelTy(),
"Indirectbr destinations must all have pointer type!", &BI);
visitTerminator(BI);
}
void Verifier::visitCallBrInst(CallBrInst &CBI) {
Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
&CBI);
for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
"Callbr successors must all have pointer type!", &CBI);
for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
"Using an unescaped label as a callbr argument!", &CBI);
if (isa<BasicBlock>(CBI.getOperand(i)))
for (unsigned j = i + 1; j != e; ++j)
Assert(CBI.getOperand(i) != CBI.getOperand(j),
"Duplicate callbr destination!", &CBI);
}
{
SmallPtrSet<BasicBlock *, 4> ArgBBs;
for (Value *V : CBI.args())
if (auto *BA = dyn_cast<BlockAddress>(V))
ArgBBs.insert(BA->getBasicBlock());
for (BasicBlock *BB : CBI.getIndirectDests())
Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
}
visitTerminator(CBI);
}
void Verifier::visitSelectInst(SelectInst &SI) {
Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
SI.getOperand(2)),
"Invalid operands for select instruction!", &SI);
Assert(SI.getTrueValue()->getType() == SI.getType(),
"Select values must have same type as select instruction!", &SI);
visitInstruction(SI);
}
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
Assert(false, "User-defined operators should not live outside of a pass!", &I);
}
void Verifier::visitTruncInst(TruncInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"trunc source and destination must both be a vector or neither", &I);
Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
visitInstruction(I);
}
void Verifier::visitZExtInst(ZExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"zext source and destination must both be a vector or neither", &I);
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
visitInstruction(I);
}
void Verifier::visitSExtInst(SExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"sext source and destination must both be a vector or neither", &I);
Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
visitInstruction(I);
}
void Verifier::visitFPTruncInst(FPTruncInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"fptrunc source and destination must both be a vector or neither", &I);
Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
visitInstruction(I);
}
void Verifier::visitFPExtInst(FPExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"fpext source and destination must both be a vector or neither", &I);
Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
visitInstruction(I);
}
void Verifier::visitUIToFPInst(UIToFPInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert(SrcVec == DstVec,
"UIToFP source and dest must both be vector or scalar", &I);
Assert(SrcTy->isIntOrIntVectorTy(),
"UIToFP source must be integer or integer vector", &I);
Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
&I);
if (SrcVec && DstVec)
Assert(cast<VectorType>(SrcTy)->getElementCount() ==
cast<VectorType>(DestTy)->getElementCount(),
"UIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitSIToFPInst(SIToFPInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert(SrcVec == DstVec,
"SIToFP source and dest must both be vector or scalar", &I);
Assert(SrcTy->isIntOrIntVectorTy(),
"SIToFP source must be integer or integer vector", &I);
Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
&I);
if (SrcVec && DstVec)
Assert(cast<VectorType>(SrcTy)->getElementCount() ==
cast<VectorType>(DestTy)->getElementCount(),
"SIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToUIInst(FPToUIInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert(SrcVec == DstVec,
"FPToUI source and dest must both be vector or scalar", &I);
Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
&I);
Assert(DestTy->isIntOrIntVectorTy(),
"FPToUI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert(cast<VectorType>(SrcTy)->getElementCount() ==
cast<VectorType>(DestTy)->getElementCount(),
"FPToUI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToSIInst(FPToSIInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert(SrcVec == DstVec,
"FPToSI source and dest must both be vector or scalar", &I);
Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
&I);
Assert(DestTy->isIntOrIntVectorTy(),
"FPToSI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert(cast<VectorType>(SrcTy)->getElementCount() ==
cast<VectorType>(DestTy)->getElementCount(),
"FPToSI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
Assert(!DL.isNonIntegralPointerType(PTy),
"ptrtoint not supported for non-integral pointers");
Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
&I);
if (SrcTy->isVectorTy()) {
auto *VSrc = cast<VectorType>(SrcTy);
auto *VDest = cast<VectorType>(DestTy);
Assert(VSrc->getElementCount() == VDest->getElementCount(),
"PtrToInt Vector width mismatch", &I);
}
visitInstruction(I);
}
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert(SrcTy->isIntOrIntVectorTy(),
"IntToPtr source must be an integral", &I);
Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
Assert(!DL.isNonIntegralPointerType(PTy),
"inttoptr not supported for non-integral pointers");
Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
&I);
if (SrcTy->isVectorTy()) {
auto *VSrc = cast<VectorType>(SrcTy);
auto *VDest = cast<VectorType>(DestTy);
Assert(VSrc->getElementCount() == VDest->getElementCount(),
"IntToPtr Vector width mismatch", &I);
}
visitInstruction(I);
}
void Verifier::visitBitCastInst(BitCastInst &I) {
Assert(
CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
"Invalid bitcast", &I);
visitInstruction(I);
}
void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
&I);
Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
&I);
Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
"AddrSpaceCast must be between different address spaces", &I);
if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
Assert(SrcVTy->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"AddrSpaceCast vector pointer number of elements mismatch", &I);
visitInstruction(I);
}
/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
// Ensure that the PHI nodes are all grouped together at the top of the block.
// This can be tested by checking whether the instruction before this is
// either nonexistent (because this is begin()) or is a PHI node. If not,
// then there is some other instruction before a PHI.
Assert(&PN == &PN.getParent()->front() ||
isa<PHINode>(--BasicBlock::iterator(&PN)),
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
// Check that a PHI doesn't yield a Token.
Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
// Check that all of the values of the PHI node have the same type as the
// result, and that the incoming blocks are really basic blocks.
for (Value *IncValue : PN.incoming_values()) {
Assert(PN.getType() == IncValue->getType(),
"PHI node operands are not the same type as the result!", &PN);
}
// All other PHI node constraints are checked in the visitBasicBlock method.
visitInstruction(PN);
}
void Verifier::visitCallBase(CallBase &Call) {
Assert(Call.getCalledOperand()->getType()->isPointerTy(),
"Called function must be a pointer!", Call);
PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
Assert(FPTy->getElementType()->isFunctionTy(),
"Called function is not pointer to function type!", Call);
Assert(FPTy->getElementType() == Call.getFunctionType(),
"Called function is not the same type as the call!", Call);
FunctionType *FTy = Call.getFunctionType();
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
Assert(Call.arg_size() >= FTy->getNumParams(),
"Called function requires more parameters than were provided!",
Call);
else
Assert(Call.arg_size() == FTy->getNumParams(),
"Incorrect number of arguments passed to called function!", Call);
// Verify that all arguments to the call match the function type.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
"Call parameter type does not match function signature!",
Call.getArgOperand(i), FTy->getParamType(i), Call);
AttributeList Attrs = Call.getAttributes();
Assert(verifyAttributeCount(Attrs, Call.arg_size()),
"Attribute after last parameter!", Call);
bool IsIntrinsic = Call.getCalledFunction() &&
Call.getCalledFunction()->getName().startswith("llvm.");
Function *Callee =
dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
// Don't allow speculatable on call sites, unless the underlying function
// declaration is also speculatable.
Assert(Callee && Callee->isSpeculatable(),
"speculatable attribute may not apply to call sites", Call);
}
if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
Assert(Call.getCalledFunction()->getIntrinsicID() ==
Intrinsic::call_preallocated_arg,
"preallocated as a call site attribute can only be on "
"llvm.call.preallocated.arg");
}
// Verify call attributes.
verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
// Conservatively check the inalloca argument.
// We have a bug if we can find that there is an underlying alloca without
// inalloca.
if (Call.hasInAllocaArgument()) {
Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
Assert(AI->isUsedWithInAlloca(),
"inalloca argument for call has mismatched alloca", AI, Call);
}
// For each argument of the callsite, if it has the swifterror argument,
// make sure the underlying alloca/parameter it comes from has a swifterror as
// well.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
if (Call.paramHasAttr(i, Attribute::SwiftError)) {
Value *SwiftErrorArg = Call.getArgOperand(i);
if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
Assert(AI->isSwiftError(),
"swifterror argument for call has mismatched alloca", AI, Call);
continue;
}
auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
Assert(ArgI,
"swifterror argument should come from an alloca or parameter",
SwiftErrorArg, Call);
Assert(ArgI->hasSwiftErrorAttr(),
"swifterror argument for call has mismatched parameter", ArgI,
Call);
}
if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
// Don't allow immarg on call sites, unless the underlying declaration
// also has the matching immarg.
Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
"immarg may not apply only to call sites",
Call.getArgOperand(i), Call);
}
if (Call.paramHasAttr(i, Attribute::ImmArg)) {
Value *ArgVal = Call.getArgOperand(i);
Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
"immarg operand has non-immediate parameter", ArgVal, Call);
}
if (Call.paramHasAttr(i, Attribute::Preallocated)) {
Value *ArgVal = Call.getArgOperand(i);
bool hasOB =
Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
bool isMustTail = Call.isMustTailCall();
Assert(hasOB != isMustTail,
"preallocated operand either requires a preallocated bundle or "
"the call to be musttail (but not both)",
ArgVal, Call);
}
}
if (FTy->isVarArg()) {
// FIXME? is 'nest' even legal here?
bool SawNest = false;
bool SawReturned = false;
for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
SawNest = true;
if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
SawReturned = true;
}
// Check attributes on the varargs part.
for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
Type *Ty = Call.getArgOperand(Idx)->getType();
AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
verifyParameterAttrs(ArgAttrs, Ty, &Call);
if (ArgAttrs.hasAttribute(Attribute::Nest)) {
Assert(!SawNest, "More than one parameter has attribute nest!", Call);
SawNest = true;
}
if (ArgAttrs.hasAttribute(Attribute::Returned)) {
Assert(!SawReturned, "More than one parameter has attribute returned!",
Call);
Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
"Incompatible argument and return types for 'returned' "
"attribute",
Call);
SawReturned = true;
}
// Statepoint intrinsic is vararg but the wrapped function may be not.
// Allow sret here and check the wrapped function in verifyStatepoint.
if (!Call.getCalledFunction() ||
Call.getCalledFunction()->getIntrinsicID() !=
Intrinsic::experimental_gc_statepoint)
Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
"Attribute 'sret' cannot be used for vararg call arguments!",
Call);
if (ArgAttrs.hasAttribute(Attribute::InAlloca))
Assert(Idx == Call.arg_size() - 1,
"inalloca isn't on the last argument!", Call);
}
}
// Verify that there's no metadata unless it's a direct call to an intrinsic.
if (!IsIntrinsic) {
for (Type *ParamTy : FTy->params()) {
Assert(!ParamTy->isMetadataTy(),
"Function has metadata parameter but isn't an intrinsic", Call);
Assert(!ParamTy->isTokenTy(),
"Function has token parameter but isn't an intrinsic", Call);
}
}
// Verify that indirect calls don't return tokens.
if (!Call.getCalledFunction())
Assert(!FTy->getReturnType()->isTokenTy(),
"Return type cannot be token for indirect call!");
if (Function *F = Call.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
visitIntrinsicCall(ID, Call);
// Verify that a callsite has at most one "deopt", at most one "funclet", at
// most one "gc-transition", at most one "cfguardtarget",
// and at most one "preallocated" operand bundle.
bool FoundDeoptBundle = false, FoundFuncletBundle = false,
FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
FoundPreallocatedBundle = false, FoundGCLiveBundle = false;;
for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
OperandBundleUse BU = Call.getOperandBundleAt(i);
uint32_t Tag = BU.getTagID();
if (Tag == LLVMContext::OB_deopt) {
Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
FoundDeoptBundle = true;
} else if (Tag == LLVMContext::OB_gc_transition) {
Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
Call);
FoundGCTransitionBundle = true;
} else if (Tag == LLVMContext::OB_funclet) {
Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
FoundFuncletBundle = true;
Assert(BU.Inputs.size() == 1,
"Expected exactly one funclet bundle operand", Call);
Assert(isa<FuncletPadInst>(BU.Inputs.front()),
"Funclet bundle operands should correspond to a FuncletPadInst",
Call);
} else if (Tag == LLVMContext::OB_cfguardtarget) {
Assert(!FoundCFGuardTargetBundle,
"Multiple CFGuardTarget operand bundles", Call);
FoundCFGuardTargetBundle = true;
Assert(BU.Inputs.size() == 1,
"Expected exactly one cfguardtarget bundle operand", Call);
} else if (Tag == LLVMContext::OB_preallocated) {
Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
Call);
FoundPreallocatedBundle = true;
Assert(BU.Inputs.size() == 1,
"Expected exactly one preallocated bundle operand", Call);
auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
Assert(Input &&
Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
"\"preallocated\" argument must be a token from "
"llvm.call.preallocated.setup",
Call);
} else if (Tag == LLVMContext::OB_gc_live) {
Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
Call);
FoundGCLiveBundle = true;
}
}
// Verify that each inlinable callsite of a debug-info-bearing function in a
// debug-info-bearing function has a debug location attached to it. Failure to
// do so causes assertion failures when the inliner sets up inline scope info.
if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
Call.getCalledFunction()->getSubprogram())
AssertDI(Call.getDebugLoc(),
"inlinable function call in a function with "
"debug info must have a !dbg location",
Call);
visitInstruction(Call);
}
/// Two types are "congruent" if they are identical, or if they are both pointer
/// types with different pointee types and the same address space.
static bool isTypeCongruent(Type *L, Type *R) {
if (L == R)
return true;
PointerType *PL = dyn_cast<PointerType>(L);
PointerType *PR = dyn_cast<PointerType>(R);
if (!PL || !PR)
return false;
return PL->getAddressSpace() == PR->getAddressSpace();
}
static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
static const Attribute::AttrKind ABIAttrs[] = {
Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
Attribute::InReg, Attribute::SwiftSelf, Attribute::SwiftError,
Attribute::Preallocated};
AttrBuilder Copy;
for (auto AK : ABIAttrs) {
if (Attrs.hasParamAttribute(I, AK))
Copy.addAttribute(AK);
}
// `align` is ABI-affecting only in combination with `byval`.
if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
Attrs.hasParamAttribute(I, Attribute::ByVal))
Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
return Copy;
}
void Verifier::verifyMustTailCall(CallInst &CI) {
Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
// - The caller and callee prototypes must match. Pointer types of
// parameters or return types may differ in pointee type, but not
// address space.
Function *F = CI.getParent()->getParent();
FunctionType *CallerTy = F->getFunctionType();
FunctionType *CalleeTy = CI.getFunctionType();
if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
"cannot guarantee tail call due to mismatched parameter counts",
&CI);
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
Assert(
isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
"cannot guarantee tail call due to mismatched parameter types", &CI);
}
}
Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
"cannot guarantee tail call due to mismatched varargs", &CI);
Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
"cannot guarantee tail call due to mismatched return types", &CI);
// - The calling conventions of the caller and callee must match.
Assert(F->getCallingConv() == CI.getCallingConv(),
"cannot guarantee tail call due to mismatched calling conv", &CI);
// - All ABI-impacting function attributes, such as sret, byval, inreg,
// returned, preallocated, and inalloca, must match.
AttributeList CallerAttrs = F->getAttributes();
AttributeList CalleeAttrs = CI.getAttributes();
for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
Assert(CallerABIAttrs == CalleeABIAttrs,
"cannot guarantee tail call due to mismatched ABI impacting "
"function attributes",
&CI, CI.getOperand(I));
}
// - The call must immediately precede a :ref:`ret <i_ret>` instruction,
// or a pointer bitcast followed by a ret instruction.
// - The ret instruction must return the (possibly bitcasted) value
// produced by the call or void.
Value *RetVal = &CI;
Instruction *Next = CI.getNextNode();
// Handle the optional bitcast.
if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
Assert(BI->getOperand(0) == RetVal,
"bitcast following musttail call must use the call", BI);
RetVal = BI;
Next = BI->getNextNode();
}
// Check the return.
ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
Assert(Ret, "musttail call must precede a ret with an optional bitcast",
&CI);
Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
"musttail call result must be returned", Ret);
}
void Verifier::visitCallInst(CallInst &CI) {
visitCallBase(CI);
if (CI.isMustTailCall())
verifyMustTailCall(CI);
}
void Verifier::visitInvokeInst(InvokeInst &II) {
visitCallBase(II);
// Verify that the first non-PHI instruction of the unwind destination is an
// exception handling instruction.
Assert(
II.getUnwindDest()->isEHPad(),
"The unwind destination does not have an exception handling instruction!",
&II);
visitTerminator(II);
}
/// visitUnaryOperator - Check the argument to the unary operator.
///
void Verifier::visitUnaryOperator(UnaryOperator &U) {
Assert(U.getType() == U.getOperand(0)->getType(),
"Unary operators must have same type for"
"operands and result!",
&U);
switch (U.getOpcode()) {
// Check that floating-point arithmetic operators are only used with
// floating-point operands.
case Instruction::FNeg:
Assert(U.getType()->isFPOrFPVectorTy(),
"FNeg operator only works with float types!", &U);
break;
default:
llvm_unreachable("Unknown UnaryOperator opcode!");
}
visitInstruction(U);
}
/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
"Both operands to a binary operator are not of the same type!", &B);
switch (B.getOpcode()) {
// Check that integer arithmetic operators are only used with
// integral operands.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
Assert(B.getType()->isIntOrIntVectorTy(),
"Integer arithmetic operators only work with integral types!", &B);
Assert(B.getType() == B.getOperand(0)->getType(),
"Integer arithmetic operators must have same type "
"for operands and result!",
&B);
break;
// Check that floating-point arithmetic operators are only used with
// floating-point operands.
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
Assert(B.getType()->isFPOrFPVectorTy(),
"Floating-point arithmetic operators only work with "
"floating-point types!",
&B);
Assert(B.getType() == B.getOperand(0)->getType(),
"Floating-point arithmetic operators must have same type "
"for operands and result!",
&B);
break;
// Check that logical operators are only used with integral operands.
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
Assert(B.getType()->isIntOrIntVectorTy(),
"Logical operators only work with integral types!", &B);
Assert(B.getType() == B.getOperand(0)->getType(),
"Logical operators must have same type for operands and result!",
&B);
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Assert(B.getType()->isIntOrIntVectorTy(),
"Shifts only work with integral types!", &B);
Assert(B.getType() == B.getOperand(0)->getType(),
"Shift return type must be same as operands!", &B);
break;
default:
llvm_unreachable("Unknown BinaryOperator opcode!");
}
visitInstruction(B);
}
void Verifier::visitICmpInst(ICmpInst &IC) {
// Check that the operands are the same type
Type *Op0Ty = IC.getOperand(0)->getType();
Type *Op1Ty = IC.getOperand(1)->getType();
Assert(Op0Ty == Op1Ty,
"Both operands to ICmp instruction are not of the same type!", &IC);
// Check that the operands are the right type
Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
"Invalid operand types for ICmp instruction", &IC);
// Check that the predicate is valid.
Assert(IC.isIntPredicate(),
"Invalid predicate in ICmp instruction!", &IC);
visitInstruction(IC);
}
void Verifier::visitFCmpInst(FCmpInst &FC) {
// Check that the operands are the same type
Type *Op0Ty = FC.getOperand(0)->getType();
Type *Op1Ty = FC.getOperand(1)->getType();
Assert(Op0Ty == Op1Ty,
"Both operands to FCmp instruction are not of the same type!", &FC);
// Check that the operands are the right type
Assert(Op0Ty->isFPOrFPVectorTy(),
"Invalid operand types for FCmp instruction", &FC);
// Check that the predicate is valid.
Assert(FC.isFPPredicate(),
"Invalid predicate in FCmp instruction!", &FC);
visitInstruction(FC);
}
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
Assert(
ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
"Invalid extractelement operands!", &EI);
visitInstruction(EI);
}
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
IE.getOperand(2)),
"Invalid insertelement operands!", &IE);
visitInstruction(IE);
}
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
SV.getShuffleMask()),
"Invalid shufflevector operands!", &SV);
visitInstruction(SV);
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
Assert(isa<PointerType>(TargetTy),
"GEP base pointer is not a vector or a vector of pointers", &GEP);
Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
Assert(all_of(
Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
"GEP indexes must be integers", &GEP);
Type *ElTy =
GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
GEP.getResultElementType() == ElTy,
"GEP is not of right type for indices!", &GEP, ElTy);
if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
// Additional checks for vector GEPs.
ElementCount GEPWidth = GEPVTy->getElementCount();
if (GEP.getPointerOperandType()->isVectorTy())
Assert(
GEPWidth ==
cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
"Vector GEP result width doesn't match operand's", &GEP);
for (Value *Idx : Idxs) {
Type *IndexTy = Idx->getType();
if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
ElementCount IndexWidth = IndexVTy->getElementCount();
Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
}
Assert(IndexTy->isIntOrIntVectorTy(),
"All GEP indices should be of integer type");
}
}
if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
"GEP address space doesn't match type", &GEP);
}
visitInstruction(GEP);
}
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}
void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
"precondition violation");
unsigned NumOperands = Range->getNumOperands();
Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
unsigned NumRanges = NumOperands / 2;
Assert(NumRanges >= 1, "It should have at least one range!", Range);
ConstantRange LastRange(1, true); // Dummy initial value
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Low =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
Assert(Low, "The lower limit must be an integer!", Low);
ConstantInt *High =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
Assert(High, "The upper limit must be an integer!", High);
Assert(High->getType() == Low->getType() && High->getType() == Ty,
"Range types must match instruction type!", &I);
APInt HighV = High->getValue();
APInt LowV = Low->getValue();
ConstantRange CurRange(LowV, HighV);
Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
"Range must not be empty!", Range);
if (i != 0) {
Assert(CurRange.intersectWith(LastRange).isEmptySet(),
"Intervals are overlapping", Range);
Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
Range);
Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
Range);
}
LastRange = ConstantRange(LowV, HighV);
}
if (NumRanges > 2) {
APInt FirstLow =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
APInt FirstHigh =
mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
ConstantRange FirstRange(FirstLow, FirstHigh);
Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
"Intervals are overlapping", Range);
Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
Range);
}
}
void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
unsigned Size = DL.getTypeSizeInBits(Ty);
Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
Assert(!(Size & (Size - 1)),
"atomic memory access' operand must have a power-of-two size", Ty, I);
}
void Verifier::visitLoadInst(LoadInst &LI) {
PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
Assert(PTy, "Load operand must be a pointer.", &LI);
Type *ElTy = LI.getType();
Assert(LI.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &LI);
Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
if (LI.isAtomic()) {
Assert(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease,
"Load cannot have Release ordering", &LI);
Assert(LI.getAlignment() != 0,
"Atomic load must specify explicit alignment", &LI);
Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
"atomic load operand must have integer, pointer, or floating point "
"type!",
ElTy, &LI);
checkAtomicMemAccessSize(ElTy, &LI);
} else {
Assert(LI.getSyncScopeID() == SyncScope::System,
"Non-atomic load cannot have SynchronizationScope specified", &LI);
}
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
Assert(PTy, "Store operand must be a pointer.", &SI);
Type *ElTy = PTy->getElementType();
Assert(ElTy == SI.getOperand(0)->getType(),
"Stored value type does not match pointer operand type!", &SI, ElTy);
Assert(SI.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &SI);
Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
if (SI.isAtomic()) {
Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease,
"Store cannot have Acquire ordering", &SI);
Assert(SI.getAlignment() != 0,
"Atomic store must specify explicit alignment", &SI);
Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
"atomic store operand must have integer, pointer, or floating point "
"type!",
ElTy, &SI);
checkAtomicMemAccessSize(ElTy, &SI);
} else {
Assert(SI.getSyncScopeID() == SyncScope::System,
"Non-atomic store cannot have SynchronizationScope specified", &SI);
}
visitInstruction(SI);
}
/// Check that SwiftErrorVal is used as a swifterror argument in CS.
void Verifier::verifySwiftErrorCall(CallBase &Call,
const Value *SwiftErrorVal) {
unsigned Idx = 0;
for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
if (*I == SwiftErrorVal) {
Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
"swifterror value when used in a callsite should be marked "
"with swifterror attribute",
SwiftErrorVal, Call);
}
}
}
void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
// Check that swifterror value is only used by loads, stores, or as
// a swifterror argument.
for (const User *U : SwiftErrorVal->users()) {
Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
isa<InvokeInst>(U),
"swifterror value can only be loaded and stored from, or "
"as a swifterror argument!",
SwiftErrorVal, U);
// If it is used by a store, check it is the second operand.
if (auto StoreI = dyn_cast<StoreInst>(U))
Assert(StoreI->getOperand(1) == SwiftErrorVal,
"swifterror value should be the second operand when used "
"by stores", SwiftErrorVal, U);
if (auto *Call = dyn_cast<CallBase>(U))
verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
}
}
void Verifier::visitAllocaInst(AllocaInst &AI) {
SmallPtrSet<Type*, 4> Visited;
PointerType *PTy = AI.getType();
// TODO: Relax this restriction?
Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
"Allocation instruction pointer not in the stack address space!",
&AI);
Assert(AI.getAllocatedType()->isSized(&Visited),
"Cannot allocate unsized type", &AI);
Assert(AI.getArraySize()->getType()->isIntegerTy(),
"Alloca array size must have integer type", &AI);
Assert(AI.getAlignment() <= Value::MaximumAlignment,
"huge alignment values are unsupported", &AI);
if (AI.isSwiftError()) {
verifySwiftErrorValue(&AI);
}
visitInstruction(AI);
}
void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
// FIXME: more conditions???
Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
"cmpxchg instructions must be atomic.", &CXI);
Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
"cmpxchg instructions must be atomic.", &CXI);
Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
"cmpxchg instructions cannot be unordered.", &CXI);
Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
"cmpxchg instructions cannot be unordered.", &CXI);
Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
"cmpxchg instructions failure argument shall be no stronger than the "
"success argument",
&CXI);
Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
"cmpxchg failure ordering cannot include release semantics", &CXI);
PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
Type *ElTy = PTy->getElementType();
Assert(ElTy->isIntOrPtrTy(),
"cmpxchg operand must have integer or pointer type", ElTy, &CXI);
checkAtomicMemAccessSize(ElTy, &CXI);
Assert(ElTy == CXI.getOperand(1)->getType(),
"Expected value type does not match pointer operand type!", &CXI,
ElTy);
Assert(ElTy == CXI.getOperand(2)->getType(),
"Stored value type does not match pointer operand type!", &CXI, ElTy);
visitInstruction(CXI);
}
void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
"atomicrmw instructions must be atomic.", &RMWI);
Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
"atomicrmw instructions cannot be unordered.", &RMWI);
auto Op = RMWI.getOperation();
PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
Type *ElTy = PTy->getElementType();
if (Op == AtomicRMWInst::Xchg) {
Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
AtomicRMWInst::getOperationName(Op) +
" operand must have integer or floating point type!",
&RMWI, ElTy);
} else if (AtomicRMWInst::isFPOperation(Op)) {
Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
AtomicRMWInst::getOperationName(Op) +
" operand must have floating point type!",
&RMWI, ElTy);
} else {
Assert(ElTy->isIntegerTy(), "atomicrmw " +
AtomicRMWInst::getOperationName(Op) +
" operand must have integer type!",
&RMWI, ElTy);
}
checkAtomicMemAccessSize(ElTy, &RMWI);
Assert(ElTy == RMWI.getOperand(1)->getType(),
"Argument value type does not match pointer operand type!", &RMWI,
ElTy);
Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
"Invalid binary operation!", &RMWI);
visitInstruction(RMWI);
}
void Verifier::visitFenceInst(FenceInst &FI) {
const AtomicOrdering Ordering = FI.getOrdering();
Assert(Ordering == AtomicOrdering::Acquire ||
Ordering == AtomicOrdering::Release ||
Ordering == AtomicOrdering::AcquireRelease ||
Ordering == AtomicOrdering::SequentiallyConsistent,
"fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.",
&FI);
visitInstruction(FI);
}
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
EVI.getIndices()) == EVI.getType(),
"Invalid ExtractValueInst operands!", &EVI);
visitInstruction(EVI);
}
void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
IVI.getIndices()) ==
IVI.getOperand(1)->getType(),
"Invalid InsertValueInst operands!", &IVI);
visitInstruction(IVI);
}
static Value *getParentPad(Value *EHPad) {
if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
return FPI->getParentPad();
return cast<CatchSwitchInst>(EHPad)->getParentPad();
}
void Verifier::visitEHPadPredecessors(Instruction &I) {
assert(I.isEHPad());
BasicBlock *BB = I.getParent();
Function *F = BB->getParent();
Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
// The landingpad instruction defines its parent as a landing pad block. The
// landing pad block may be branched to only by the unwind edge of an
// invoke.
for (BasicBlock *PredBB : predecessors(BB)) {
const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
"Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.",
LPI);
}
return;
}
if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
if (!pred_empty(BB))
Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
"Block containg CatchPadInst must be jumped to "
"only by its catchswitch.",
CPI);
Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
"Catchswitch cannot unwind to one of its catchpads",
CPI->getCatchSwitch(), CPI);
return;
}
// Verify that each pred has a legal terminator with a legal to/from EH
// pad relationship.
Instruction *ToPad = &I;
Value *ToPadParent = getParentPad(ToPad);
for (BasicBlock *PredBB : predecessors(BB)) {
Instruction *TI = PredBB->getTerminator();
Value *FromPad;
if (auto *II = dyn_cast<InvokeInst>(TI)) {
Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
"EH pad must be jumped to via an unwind edge", ToPad, II);
if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
FromPad = Bundle->Inputs[0];
else
FromPad = ConstantTokenNone::get(II->getContext());
} else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
FromPad = CRI->getOperand(0);
Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
} else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
FromPad = CSI;
} else {
Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
}
// The edge may exit from zero or more nested pads.
SmallSet<Value *, 8> Seen;
for (;; FromPad = getParentPad(FromPad)) {
Assert(FromPad != ToPad,
"EH pad cannot handle exceptions raised within it", FromPad, TI);
if (FromPad == ToPadParent) {
// This is a legal unwind edge.
break;
}
Assert(!isa<ConstantTokenNone>(FromPad),
"A single unwind edge may only enter one EH pad", TI);
Assert(Seen.insert(FromPad).second,
"EH pad jumps through a cycle of pads", FromPad);
}
}
}
void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
// The landingpad instruction is ill-formed if it doesn't have any clauses and
// isn't a cleanup.
Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
"LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
visitEHPadPredecessors(LPI);
if (!LandingPadResultTy)
LandingPadResultTy = LPI.getType();
else
Assert(LandingPadResultTy == LPI.getType(),
"The landingpad instruction should have a consistent result type "
"inside a function.",
&LPI);
Function *F = LPI.getParent()->getParent();
Assert(F->hasPersonalityFn(),
"LandingPadInst needs to be in a function with a personality.", &LPI);
// The landingpad instruction must be the first non-PHI instruction in the
// block.
Assert(LPI.getParent()->getLandingPadInst() == &LPI,
"LandingPadInst not the first non-PHI instruction in the block.",
&LPI);
for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
Constant *Clause = LPI.getClause(i);
if (LPI.isCatch(i)) {
Assert(isa<PointerType>(Clause->getType()),
"Catch operand does not have pointer type!", &LPI);
} else {
Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
"Filter operand is not an array of constants!", &LPI);
}
}
visitInstruction(LPI);
}
void Verifier::visitResumeInst(ResumeInst &RI) {
Assert(RI.getFunction()->hasPersonalityFn(),
"ResumeInst needs to be in a function with a personality.", &RI);
if (!LandingPadResultTy)
LandingPadResultTy = RI.getValue()->getType();
else
Assert(LandingPadResultTy == RI.getValue()->getType(),
"The resume instruction should have a consistent result type "
"inside a function.",
&RI);
visitTerminator(RI);
}
void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
BasicBlock *BB = CPI.getParent();
Function *F = BB->getParent();
Assert(F->hasPersonalityFn(),
"CatchPadInst needs to be in a function with a personality.", &CPI);
Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
"CatchPadInst needs to be directly nested in a CatchSwitchInst.",
CPI.getParentPad());
// The catchpad instruction must be the first non-PHI instruction in the
// block.
Assert(BB->getFirstNonPHI() == &CPI,
"CatchPadInst not the first non-PHI instruction in the block.", &CPI);
visitEHPadPredecessors(CPI);
visitFuncletPadInst(CPI);
}
void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
"CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
CatchReturn.getOperand(0));
visitTerminator(CatchReturn);
}
void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
BasicBlock *BB = CPI.getParent();
Function *F = BB->getParent();
Assert(F->hasPersonalityFn(),
"CleanupPadInst needs to be in a function with a personality.", &CPI);
// The cleanuppad instruction must be the first non-PHI instruction in the
// block.
Assert(BB->getFirstNonPHI() == &CPI,
"CleanupPadInst not the first non-PHI instruction in the block.",
&CPI);
auto *ParentPad = CPI.getParentPad();
Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
"CleanupPadInst has an invalid parent.", &CPI);
visitEHPadPredecessors(CPI);
visitFuncletPadInst(CPI);
}
void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
User *FirstUser = nullptr;
Value *FirstUnwindPad = nullptr;
SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
SmallSet<FuncletPadInst *, 8> Seen;
while (!Worklist.empty()) {
FuncletPadInst *CurrentPad = Worklist.pop_back_val();
Assert(Seen.insert(CurrentPad).second,
"FuncletPadInst must not be nested within itself", CurrentPad);
Value *UnresolvedAncestorPad = nullptr;
for (User *U : CurrentPad->users()) {
BasicBlock *UnwindDest;
if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
UnwindDest = CRI->getUnwindDest();
} else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
// We allow catchswitch unwind to caller to nest
// within an outer pad that unwinds somewhere else,
// because catchswitch doesn't have a nounwind variant.
// See e.g. SimplifyCFGOpt::SimplifyUnreachable.
if (CSI->unwindsToCaller())
continue;
UnwindDest = CSI->getUnwindDest();
} else if (auto *II = dyn_cast<InvokeInst>(U)) {
UnwindDest = II->getUnwindDest();
} else if (isa<CallInst>(U)) {
// Calls which don't unwind may be found inside funclet
// pads that unwind somewhere else. We don't *require*
// such calls to be annotated nounwind.
continue;
} else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
// The unwind dest for a cleanup can only be found by
// recursive search. Add it to the worklist, and we'll
// search for its first use that determines where it unwinds.
Worklist.push_back(CPI);
continue;
} else {
Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
continue;
}
Value *UnwindPad;
bool ExitsFPI;
if (UnwindDest) {
UnwindPad = UnwindDest->getFirstNonPHI();
if (!cast<Instruction>(UnwindPad)->isEHPad())
continue;
Value *UnwindParent = getParentPad(UnwindPad);
// Ignore unwind edges that don't exit CurrentPad.
if (UnwindParent == CurrentPad)
continue;
// Determine whether the original funclet pad is exited,
// and if we are scanning nested pads determine how many
// of them are exited so we can stop searching their
// children.
Value *ExitedPad = CurrentPad;
ExitsFPI = false;
do {
if (ExitedPad == &FPI) {
ExitsFPI = true;
// Now we can resolve any ancestors of CurrentPad up to
// FPI, but not including FPI since we need to make sure
// to check all direct users of FPI for consistency.
UnresolvedAncestorPad = &FPI;
break;
}
Value *ExitedParent = getParentPad(ExitedPad);
if (ExitedParent == UnwindParent) {
// ExitedPad is the ancestor-most pad which this unwind
// edge exits, so we can resolve up to it, meaning that
// ExitedParent is the first ancestor still unresolved.
UnresolvedAncestorPad = ExitedParent;
break;
}
ExitedPad = ExitedParent;
} while (!isa<ConstantTokenNone>(ExitedPad));
} else {
// Unwinding to caller exits all pads.
UnwindPad = ConstantTokenNone::get(FPI.getContext());
ExitsFPI = true;
UnresolvedAncestorPad = &FPI;
}
if (ExitsFPI) {
// This unwind edge exits FPI. Make sure it agrees with other
// such edges.
if (FirstUser) {
Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
"pad must have the same unwind "
"dest",
&FPI, U, FirstUser);
} else {
FirstUser = U;
FirstUnwindPad = UnwindPad;
// Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
getParentPad(UnwindPad) == getParentPad(&FPI))
SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
}
}
// Make sure we visit all uses of FPI, but for nested pads stop as
// soon as we know where they unwind to.
if (CurrentPad != &FPI)
break;
}
if (UnresolvedAncestorPad) {
if (CurrentPad == UnresolvedAncestorPad) {
// When CurrentPad is FPI itself, we don't mark it as resolved even if
// we've found an unwind edge that exits it, because we need to verify
// all direct uses of FPI.
assert(CurrentPad == &FPI);
continue;
}
// Pop off the worklist any nested pads that we've found an unwind
// destination for. The pads on the worklist are the uncles,
// great-uncles, etc. of CurrentPad. We've found an unwind destination
// for all ancestors of CurrentPad up to but not including
// UnresolvedAncestorPad.
Value *ResolvedPad = CurrentPad;
while (!Worklist.empty()) {
Value *UnclePad = Worklist.back();
Value *AncestorPad = getParentPad(UnclePad);
// Walk ResolvedPad up the ancestor list until we either find the
// uncle's parent or the last resolved ancestor.
while (ResolvedPad != AncestorPad) {
Value *ResolvedParent = getParentPad(ResolvedPad);
if (ResolvedParent == UnresolvedAncestorPad) {
break;
}
ResolvedPad = ResolvedParent;
}
// If the resolved ancestor search didn't find the uncle's parent,
// then the uncle is not yet resolved.
if (ResolvedPad != AncestorPad)
break;
// This uncle is resolved, so pop it from the worklist.
Worklist.pop_back();
}
}
}
if (FirstUnwindPad) {
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
Value *SwitchUnwindPad;
if (SwitchUnwindDest)
SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
else
SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
Assert(SwitchUnwindPad == FirstUnwindPad,
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch",
&FPI, FirstUser, CatchSwitch);
}
}
visitInstruction(FPI);
}
void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
BasicBlock *BB = CatchSwitch.getParent();
Function *F = BB->getParent();
Assert(F->hasPersonalityFn(),
"CatchSwitchInst needs to be in a function with a personality.",
&CatchSwitch);
// The catchswitch instruction must be the first non-PHI instruction in the
// block.
Assert(BB->getFirstNonPHI() == &CatchSwitch,
"CatchSwitchInst not the first non-PHI instruction in the block.",
&CatchSwitch);
auto *ParentPad = CatchSwitch.getParentPad();
Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
"CatchSwitchInst has an invalid parent.", ParentPad);
if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
Instruction *I = UnwindDest->getFirstNonPHI();
Assert(I->isEHPad() && !isa<LandingPadInst>(I),
"CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.",
&CatchSwitch);
// Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
if (getParentPad(I) == ParentPad)
SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
}
Assert(CatchSwitch.getNumHandlers() != 0,
"CatchSwitchInst cannot have empty handler list", &CatchSwitch);
for (BasicBlock *Handler : CatchSwitch.handlers()) {
Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
"CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
}
visitEHPadPredecessors(CatchSwitch);
visitTerminator(CatchSwitch);
}
void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
"CleanupReturnInst needs to be provided a CleanupPad", &CRI,
CRI.getOperand(0));
if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
Instruction *I = UnwindDest->getFirstNonPHI();
Assert(I->isEHPad() && !isa<LandingPadInst>(I),
"CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.",
&CRI);
}
visitTerminator(CRI);
}
void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
Instruction *Op = cast<Instruction>(I.getOperand(i));
// If the we have an invalid invoke, don't try to compute the dominance.
// We already reject it in the invoke specific checks and the dominance
// computation doesn't handle multiple edges.
if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
if (II->getNormalDest() == II->getUnwindDest())
return;
}
// Quick check whether the def has already been encountered in the same block.
// PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
// uses are defined to happen on the incoming edge, not at the instruction.
//
// FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
// wrapping an SSA value, assert that we've already encountered it. See
// related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
return;
const Use &U = I.getOperandUse(i);
Assert(DT.dominates(Op, U),
"Instruction does not dominate all uses!", Op, &I);
}
void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I);
Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
"dereferenceable, dereferenceable_or_null apply only to load"
" and inttoptr instructions, use attributes for calls or invokes", &I);
Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
"take one operand!", &I);
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
"dereferenceable_or_null metadata value must be an i64!", &I);
}
void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
Assert(MD->getNumOperands() >= 2,
"!prof annotations should have no less than 2 operands", MD);
// Check first operand.
Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
Assert(isa<MDString>(MD->getOperand(0)),
"expected string with name of the !prof annotation", MD);
MDString *MDS = cast<MDString>(MD->getOperand(0));
StringRef ProfName = MDS->getString();
// Check consistency of !prof branch_weights metadata.
if (ProfName.equals("branch_weights")) {
if (isa<InvokeInst>(&I)) {
Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
"Wrong number of InvokeInst branch_weights operands", MD);
} else {
unsigned ExpectedNumOperands = 0;
if (BranchInst *BI = dyn_cast<BranchInst>(&I))
ExpectedNumOperands = BI->getNumSuccessors();
else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
ExpectedNumOperands = SI->getNumSuccessors();
else if (isa<CallInst>(&I))
ExpectedNumOperands = 1;
else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
ExpectedNumOperands = IBI->getNumDestinations();
else if (isa<SelectInst>(&I))
ExpectedNumOperands = 2;
else
CheckFailed("!prof branch_weights are not allowed for this instruction",
MD);
Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
"Wrong number of operands", MD);
}
for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
auto &MDO = MD->getOperand(i);
Assert(MDO, "second operand should not be null", MD);
Assert(mdconst::dyn_extract<ConstantInt>(MDO),
"!prof brunch_weights operand is not a const int");
}
}
}
/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
BasicBlock *BB = I.getParent();
Assert(BB, "Instruction not embedded in basic block!", &I);
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (User *U : I.users()) {
Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
"Only PHI nodes may reference their own value!", &I);
}
}
// Check that void typed values don't have names
Assert(!I.getType()->isVoidTy() || !I.hasName(),
"Instruction has a name, but provides a void value!", &I);
// Check that the return value of the instruction is either void or a legal
// value type.
Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
"Instruction returns a non-scalar type!", &I);
// Check that the instruction doesn't produce metadata. Calls are already
// checked against the callee type.
Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
"Invalid use of metadata!", &I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
for (Use &U : I.uses()) {
if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
Assert(Used->getParent() != nullptr,
"Instruction referencing"
" instruction not embedded in a basic block!",
&I, Used);
else {
CheckFailed("Use of instruction is not an instruction!", U);
return;
}
}
// Get a pointer to the call base of the instruction if it is some form of
// call.
const CallBase *CBI = dyn_cast<CallBase>(&I);
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
// Check to make sure that only first-class-values are operands to
// instructions.
if (!I.getOperand(i)->getType()->isFirstClassType()) {
Assert(false, "Instruction operands must be first-class values!", &I);
}
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
// Check to make sure that the "address of" an intrinsic function is never
// taken.
Assert(!F->isIntrinsic() ||
(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
"Cannot take the address of an intrinsic!", &I);
Assert(
!F->isIntrinsic() || isa<CallInst>(I) ||
F->getIntrinsicID() == Intrinsic::donothing ||
F->getIntrinsicID() == Intrinsic::coro_resume ||
F->getIntrinsicID() == Intrinsic::coro_destroy ||
F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
"Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy",
&I);
Assert(F->getParent() == &M, "Referencing function in another module!",
&I, &M, F, F->getParent());
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
Assert(OpBB->getParent() == BB->getParent(),
"Referring to a basic block in another function!", &I);
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
Assert(OpArg->getParent() == BB->getParent(),
"Referring to an argument in another function!", &I);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
&M, GV, GV->getParent());
} else if (isa<Instruction>(I.getOperand(i))) {
verifyDominatesUse(I, i);
} else if (isa<InlineAsm>(I.getOperand(i))) {
Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
"Cannot take the address of an inline asm!", &I);
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
if (CE->getType()->isPtrOrPtrVectorTy() ||
!DL.getNonIntegralAddressSpaces().empty()) {
// If we have a ConstantExpr pointer, we need to see if it came from an
// illegal bitcast. If the datalayout string specifies non-integral
// address spaces then we also need to check for illegal ptrtoint and
// inttoptr expressions.
visitConstantExprsRecursively(CE);
}
}
}
if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
Assert(I.getType()->isFPOrFPVectorTy(),
"fpmath requires a floating point result!", &I);
Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
if (ConstantFP *CFP0 =
mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
const APFloat &Accuracy = CFP0->getValueAPF();
Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
"fpmath accuracy must have float type", &I);
Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
"fpmath accuracy not a positive number!", &I);
} else {
Assert(false, "invalid fpmath accuracy!", &I);
}
}
if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
"Ranges are only for loads, calls and invokes!", &I);
visitRangeMetadata(I, Range, I.getType());
}
if (I.getMetadata(LLVMContext::MD_nonnull)) {
Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
&I);
Assert(isa<LoadInst>(I),
"nonnull applies only to load instructions, use attributes"
" for calls or invokes",
&I);
}
if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
visitDereferenceableMetadata(I, MD);
if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
visitDereferenceableMetadata(I, MD);
if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
&I);
Assert(isa<LoadInst>(I), "align applies only to load instructions, "
"use attributes for calls or invokes", &I);
Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
Assert(CI && CI->getType()->isIntegerTy(64),
"align metadata value must be an i64!", &I);
uint64_t Align = CI->getZExtValue();
Assert(isPowerOf2_64(Align),
"align metadata value must be a power of 2!", &I);
Assert(Align <= Value::MaximumAlignment,
"alignment is larger that implementation defined limit", &I);
}
if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
visitProfMetadata(I, MD);
if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
visitMDNode(*N, AreDebugLocsAllowed::Yes);
}
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
verifyFragmentExpression(*DII);
verifyNotEntryValue(*DII);
}
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
I.getAllMetadata(MDs);
for (auto Attachment : MDs) {
unsigned Kind = Attachment.first;
auto AllowLocs =
(Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
? AreDebugLocsAllowed::Yes
: AreDebugLocsAllowed::No;
visitMDNode(*Attachment.second, AllowLocs);
}
InstsInThisBlock.insert(&I);
}
/// Allow intrinsics to be verified in different ways.
void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
Function *IF = Call.getCalledFunction();
Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
IF);
// Verify that the intrinsic prototype lines up with what the .td files
// describe.
FunctionType *IFTy = IF->getFunctionType();
bool IsVarArg = IFTy->isVarArg();
SmallVector<Intrinsic::IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(ID, Table);
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
// Walk the descriptors to extract overloaded types.
SmallVector<Type *, 4> ArgTys;
Intrinsic::MatchIntrinsicTypesResult Res =
Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
"Intrinsic has incorrect return type!", IF);
Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
"Intrinsic has incorrect argument type!", IF);
// Verify if the intrinsic call matches the vararg property.
if (IsVarArg)
Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
"Intrinsic was not defined with variable arguments!", IF);
else
Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
"Callsite was not defined with variable arguments!", IF);
// All descriptors should be absorbed by now.
Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
// Now that we have the intrinsic ID and the actual argument types (and we
// know they are legal for the intrinsic!) get the intrinsic name through the
// usual means. This allows us to verify the mangling of argument types into
// the name.
const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
Assert(ExpectedName == IF->getName(),
"Intrinsic name not mangled correctly for type arguments! "
"Should be: " +
ExpectedName,
IF);
// If the intrinsic takes MDNode arguments, verify that they are either global
// or are local to *this* function.
for (Value *V : Call.args())
if (auto *MD = dyn_cast<MetadataAsValue>(V))
visitMetadataAsValue(*MD, Call.getCaller());
switch (ID) {
default:
break;
case Intrinsic::assume: {
for (auto &Elem : Call.bundle_op_infos()) {
Assert(Elem.Tag->getKey() == "ignore" ||
Attribute::isExistingAttribute(Elem.Tag->getKey()),
"tags must be valid attribute names");
Attribute::AttrKind Kind =
Attribute::getAttrKindFromName(Elem.Tag->getKey());
unsigned ArgCount = Elem.End - Elem.Begin;
if (Kind == Attribute::Alignment) {
Assert(ArgCount <= 3 && ArgCount >= 2,
"alignment assumptions should have 2 or 3 arguments");
Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
"first argument should be a pointer");
Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
"second argument should be an integer");
if (ArgCount == 3)
Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
"third argument should be an integer if present");
return;
}
Assert(ArgCount <= 2, "to many arguments");
if (Kind == Attribute::None)
break;
if (Attribute::doesAttrKindHaveArgument(Kind)) {
Assert(ArgCount == 2, "this attribute should have 2 arguments");
Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
"the second argument should be a constant integral value");
} else if (isFuncOnlyAttr(Kind)) {
Assert((ArgCount) == 0, "this attribute has no argument");
} else if (!isFuncOrArgAttr(Kind)) {
Assert((ArgCount) == 1, "this attribute should have one argument");
}
}
break;
}
case Intrinsic::coro_id: {
auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
if (isa<ConstantPointerNull>(InfoArg))
break;
auto *GV = dyn_cast<GlobalVariable>(InfoArg);
Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
"info argument of llvm.coro.begin must refer to an initialized "
"constant");
Constant *Init = GV->getInitializer();
Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
"info argument of llvm.coro.begin must refer to either a struct or "
"an array");
break;
}
#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC:
#include "llvm/IR/ConstrainedOps.def"
visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
break;
case Intrinsic::dbg_declare: // llvm.dbg.declare
Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
"invalid llvm.dbg.declare intrinsic call 1", Call);
visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
break;
case Intrinsic::dbg_addr: // llvm.dbg.addr
visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
break;
case Intrinsic::dbg_value: // llvm.dbg.value
visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
break;
case Intrinsic::dbg_label: // llvm.dbg.label
visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
break;
case Intrinsic::memcpy:
case Intrinsic::memcpy_inline:
case Intrinsic::memmove:
case Intrinsic::memset: {
const auto *MI = cast<MemIntrinsic>(&Call);
auto IsValidAlignment = [&](unsigned Alignment) -> bool {
return Alignment == 0 || isPowerOf2_32(Alignment);
};
Assert(IsValidAlignment(MI->getDestAlignment()),
"alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
Call);
if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
Assert(IsValidAlignment(MTI->getSourceAlignment()),
"alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
Call);
}
break;
}
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memset_element_unordered_atomic: {
const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
ConstantInt *ElementSizeCI =
cast<ConstantInt>(AMI->getRawElementSizeInBytes());
const APInt &ElementSizeVal = ElementSizeCI->getValue();
Assert(ElementSizeVal.isPowerOf2(),
"element size of the element-wise atomic memory intrinsic "
"must be a power of 2",
Call);
auto IsValidAlignment = [&](uint64_t Alignment) {
return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
};
uint64_t DstAlignment = AMI->getDestAlignment();
Assert(IsValidAlignment(DstAlignment),
"incorrect alignment of the destination argument", Call);
if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
uint64_t SrcAlignment = AMT->getSourceAlignment();
Assert(IsValidAlignment(SrcAlignment),
"incorrect alignment of the source argument", Call);
}
break;
}
case Intrinsic::call_preallocated_setup: {
auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
Assert(NumArgs != nullptr,
"llvm.call.preallocated.setup argument must be a constant");
bool FoundCall = false;
for (User *U : Call.users()) {
auto *UseCall = dyn_cast<CallBase>(U);
Assert(UseCall != nullptr,
"Uses of llvm.call.preallocated.setup must be calls");
const Function *Fn = UseCall->getCalledFunction();
if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
Assert(AllocArgIndex != nullptr,
"llvm.call.preallocated.alloc arg index must be a constant");
auto AllocArgIndexInt = AllocArgIndex->getValue();
Assert(AllocArgIndexInt.sge(0) &&
AllocArgIndexInt.slt(NumArgs->getValue()),
"llvm.call.preallocated.alloc arg index must be between 0 and "
"corresponding "
"llvm.call.preallocated.setup's argument count");
} else if (Fn && Fn->getIntrinsicID() ==
Intrinsic::call_preallocated_teardown) {
// nothing to do
} else {
Assert(!FoundCall, "Can have at most one call corresponding to a "
"llvm.call.preallocated.setup");
FoundCall = true;
size_t NumPreallocatedArgs = 0;
for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) {
if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
++NumPreallocatedArgs;
}
}
Assert(NumPreallocatedArgs != 0,
"cannot use preallocated intrinsics on a call without "
"preallocated arguments");
Assert(NumArgs->equalsInt(NumPreallocatedArgs),
"llvm.call.preallocated.setup arg size must be equal to number "
"of preallocated arguments "
"at call site",
Call, *UseCall);
// getOperandBundle() cannot be called if more than one of the operand
// bundle exists. There is already a check elsewhere for this, so skip
// here if we see more than one.
if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
1) {
return;
}
auto PreallocatedBundle =
UseCall->getOperandBundle(LLVMContext::OB_preallocated);
Assert(PreallocatedBundle,
"Use of llvm.call.preallocated.setup outside intrinsics "
"must be in \"preallocated\" operand bundle");
Assert(PreallocatedBundle->Inputs.front().get() == &Call,
"preallocated bundle must have token from corresponding "
"llvm.call.preallocated.setup");
}
}
break;
}
case Intrinsic::call_preallocated_arg: {
auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
Intrinsic::call_preallocated_setup,
"llvm.call.preallocated.arg token argument must be a "
"llvm.call.preallocated.setup");
Assert(Call.hasFnAttr(Attribute::Preallocated),
"llvm.call.preallocated.arg must be called with a \"preallocated\" "
"call site attribute");
break;
}
case Intrinsic::call_preallocated_teardown: {
auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
Intrinsic::call_preallocated_setup,
"llvm.call.preallocated.teardown token argument must be a "
"llvm.call.preallocated.setup");
break;
}
case Intrinsic::gcroot:
case Intrinsic::gcwrite:
case Intrinsic::gcread:
if (ID == Intrinsic::gcroot) {
AllocaInst *AI =
dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
Assert(isa<Constant>(Call.getArgOperand(1)),
"llvm.gcroot parameter #2 must be a constant.", Call);
if (!AI->getAllocatedType()->isPointerTy()) {
Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
"llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.",
Call);
}
}
Assert(Call.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", Call);
break;
case Intrinsic::init_trampoline:
Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
"llvm.init_trampoline parameter #2 must resolve to a function.",
Call);
break;
case Intrinsic::prefetch:
Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
"invalid arguments to llvm.prefetch", Call);
break;
case Intrinsic::stackprotector:
Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
"llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
break;
case Intrinsic::localescape: {
BasicBlock *BB = Call.getParent();
Assert(BB == &BB->getParent()->front(),
"llvm.localescape used outside of entry block", Call);
Assert(!SawFrameEscape,
"multiple calls to llvm.localescape in one function", Call);
for (Value *Arg : Call.args()) {
if (isa<ConstantPointerNull>(Arg))
continue; // Null values are allowed as placeholders.
auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
Assert(AI && AI->isStaticAlloca(),
"llvm.localescape only accepts static allocas", Call);
}
FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
SawFrameEscape = true;
break;
}
case Intrinsic::localrecover: {
Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
Function *Fn = dyn_cast<Function>(FnArg);
Assert(Fn && !Fn->isDeclaration(),
"llvm.localrecover first "
"argument must be function defined in this module",
Call);
auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
auto &Entry = FrameEscapeInfo[Fn];
Entry.second = unsigned(
std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
break;
}
case Intrinsic::experimental_gc_statepoint:
if (auto *CI = dyn_cast<CallInst>(&Call))
Assert(!CI->isInlineAsm(),
"gc.statepoint support for inline assembly unimplemented", CI);
Assert(Call.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", Call);
verifyStatepoint(Call);
break;
case Intrinsic::experimental_gc_result: {
Assert(Call.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", Call);
// Are we tied to a statepoint properly?
const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
const Function *StatepointFn =
StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
Assert(StatepointFn && StatepointFn->isDeclaration() &&
StatepointFn->getIntrinsicID() ==
Intrinsic::experimental_gc_statepoint,
"gc.result operand #1 must be from a statepoint", Call,
Call.getArgOperand(0));
// Assert that result type matches wrapped callee.
const Value *Target = StatepointCall->getArgOperand(2);
auto *PT = cast<PointerType>(Target->getType());
auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
Assert(Call.getType() == TargetFuncType->getReturnType(),
"gc.result result type does not match wrapped callee", Call);
break;
}
case Intrinsic::experimental_gc_relocate: {
Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
Assert(isa<PointerType>(Call.getType()->getScalarType()),
"gc.relocate must return a pointer or a vector of pointers", Call);
// Check that this relocate is correctly tied to the statepoint
// This is case for relocate on the unwinding path of an invoke statepoint
if (LandingPadInst *LandingPad =
dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
const BasicBlock *InvokeBB =
LandingPad->getParent()->getUniquePredecessor();
// Landingpad relocates should have only one predecessor with invoke
// statepoint terminator
Assert(InvokeBB, "safepoints should have unique landingpads",
LandingPad->getParent());
Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
InvokeBB);
Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
"gc relocate should be linked to a statepoint", InvokeBB);
} else {
// In all other cases relocate should be tied to the statepoint directly.
// This covers relocates on a normal return path of invoke statepoint and
// relocates of a call statepoint.
auto Token = Call.getArgOperand(0);
Assert(isa<GCStatepointInst>(Token),
"gc relocate is incorrectly tied to the statepoint", Call, Token);
}
// Verify rest of the relocate arguments.
const CallBase &StatepointCall =
*cast<GCRelocateInst>(Call).getStatepoint();
// Both the base and derived must be piped through the safepoint.
Value *Base = Call.getArgOperand(1);
Assert(isa<ConstantInt>(Base),
"gc.relocate operand #2 must be integer offset", Call);
Value *Derived = Call.getArgOperand(2);
Assert(isa<ConstantInt>(Derived),
"gc.relocate operand #3 must be integer offset", Call);
const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
// Check the bounds
if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
Assert(BaseIndex < Opt->Inputs.size(),
"gc.relocate: statepoint base index out of bounds", Call);
Assert(DerivedIndex < Opt->Inputs.size(),
"gc.relocate: statepoint derived index out of bounds", Call);
} else {
Assert(BaseIndex < StatepointCall.arg_size(),
"gc.relocate: statepoint base index out of bounds", Call);
Assert(DerivedIndex < StatepointCall.arg_size(),
"gc.relocate: statepoint derived index out of bounds", Call);
// Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
// section of the statepoint's argument.
Assert(StatepointCall.arg_size() > 0,
"gc.statepoint: insufficient arguments");
Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
"gc.statement: number of call arguments must be constant integer");
const uint64_t NumCallArgs =
cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
Assert(StatepointCall.arg_size() > NumCallArgs + 5,
"gc.statepoint: mismatch in number of call arguments");
Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
"gc.statepoint: number of transition arguments must be "
"a constant integer");
const uint64_t NumTransitionArgs =
cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
->getZExtValue();
const uint64_t DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
"gc.statepoint: number of deoptimization arguments must be "
"a constant integer");
const uint64_t NumDeoptArgs =
cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
->getZExtValue();
const uint64_t GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
const uint64_t GCParamArgsEnd = StatepointCall.arg_size();
Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
"gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call",
Call);
Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
"gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call",
Call);
}
// Relocated value must be either a pointer type or vector-of-pointer type,
// but gc_relocate does not need to return the same pointer type as the
// relocated pointer. It can be casted to the correct type later if it's
// desired. However, they must have the same address space and 'vectorness'
GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
"gc.relocate: relocated value must be a gc pointer", Call);
auto ResultType = Call.getType();
auto DerivedType = Relocate.getDerivedPtr()->getType();
Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
"gc.relocate: vector relocates to vector and pointer to pointer",
Call);
Assert(
ResultType->getPointerAddressSpace() ==
DerivedType->getPointerAddressSpace(),
"gc.relocate: relocating a pointer shouldn't change its address space",
Call);
break;
}
case Intrinsic::eh_exceptioncode:
case Intrinsic::eh_exceptionpointer: {
Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
"eh.exceptionpointer argument must be a catchpad", Call);
break;
}
case Intrinsic::get_active_lane_mask: {
Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
"vector", Call);
auto *ElemTy = Call.getType()->getScalarType();
Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
"i1", Call);
break;
}
case Intrinsic::masked_load: {
Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
Call);
Value *Ptr = Call.getArgOperand(0);
ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
Value *Mask = Call.getArgOperand(2);
Value *PassThru = Call.getArgOperand(3);
Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
Call);
Assert(Alignment->getValue().isPowerOf2(),
"masked_load: alignment must be a power of 2", Call);
// DataTy is the overloaded type
Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
Assert(DataTy == Call.getType(),
"masked_load: return must match pointer type", Call);
Assert(PassThru->getType() == DataTy,
"masked_load: pass through and data type must match", Call);
Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
cast<VectorType>(DataTy)->getElementCount(),
"masked_load: vector mask must be same length as data", Call);
break;
}
case Intrinsic::masked_store: {
Value *Val = Call.getArgOperand(0);
Value *Ptr = Call.getArgOperand(1);
ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
Value *Mask = Call.getArgOperand(3);
Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
Call);
Assert(Alignment->getValue().isPowerOf2(),
"masked_store: alignment must be a power of 2", Call);
// DataTy is the overloaded type
Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
Assert(DataTy == Val->getType(),
"masked_store: storee must match pointer type", Call);
Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
cast<VectorType>(DataTy)->getElementCount(),
"masked_store: vector mask must be same length as data", Call);
break;
}
case Intrinsic::masked_gather: {
const APInt &Alignment =
cast<ConstantInt>(Call.getArgOperand(1))->getValue();
Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
"masked_gather: alignment must be 0 or a power of 2", Call);
break;
}
case Intrinsic::masked_scatter: {
const APInt &Alignment =
cast<ConstantInt>(Call.getArgOperand(2))->getValue();
Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
"masked_scatter: alignment must be 0 or a power of 2", Call);
break;
}
case Intrinsic::experimental_guard: {
Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
"experimental_guard must have exactly one "
"\"deopt\" operand bundle");
break;
}
case Intrinsic::experimental_deoptimize: {
Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
Call);
Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
"experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle");
Assert(Call.getType() == Call.getFunction()->getReturnType(),
"experimental_deoptimize return type must match caller return type");
if (isa<CallInst>(Call)) {
auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
Assert(RI,
"calls to experimental_deoptimize must be followed by a return");
if (!Call.getType()->isVoidTy() && RI)
Assert(RI->getReturnValue() == &Call,
"calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize");
}
break;
}
case Intrinsic::sadd_sat:
case Intrinsic::uadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::usub_sat: {
Value *Op1 = Call.getArgOperand(0);
Value *Op2 = Call.getArgOperand(1);
Assert(Op1->getType()->isIntOrIntVectorTy(),
"first operand of [us][add|sub]_sat must be an int type or vector "
"of ints");
Assert(Op2->getType()->isIntOrIntVectorTy(),
"second operand of [us][add|sub]_sat must be an int type or vector "
"of ints");
break;
}
case Intrinsic::smul_fix:
case Intrinsic::smul_fix_sat:
case Intrinsic::umul_fix:
case Intrinsic::umul_fix_sat:
case Intrinsic::sdiv_fix:
case Intrinsic::sdiv_fix_sat:
case Intrinsic::udiv_fix:
case Intrinsic::udiv_fix_sat: {
Value *Op1 = Call.getArgOperand(0);
Value *Op2 = Call.getArgOperand(1);
Assert(Op1->getType()->isIntOrIntVectorTy(),
"first operand of [us][mul|div]_fix[_sat] must be an int type or "
"vector of ints");
Assert(Op2->getType()->isIntOrIntVectorTy(),
"second operand of [us][mul|div]_fix[_sat] must be an int type or "
"vector of ints");
auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
Assert(Op3->getType()->getBitWidth() <= 32,
"third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
Assert(
Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
"the scale of s[mul|div]_fix[_sat] must be less than the width of "
"the operands");
} else {
Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
"the scale of u[mul|div]_fix[_sat] must be less than or equal "
"to the width of the operands");
}
break;
}
case Intrinsic::lround:
case Intrinsic::llround:
case Intrinsic::lrint:
case Intrinsic::llrint: {
Type *ValTy = Call.getArgOperand(0)->getType();
Type *ResultTy = Call.getType();
Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
"Intrinsic does not support vectors", &Call);
break;
}
case Intrinsic::bswap: {
Type *Ty = Call.getType();
unsigned Size = Ty->getScalarSizeInBits();
Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
break;
}
case Intrinsic::matrix_multiply:
case Intrinsic::matrix_transpose:
case Intrinsic::matrix_column_major_load:
case Intrinsic::matrix_column_major_store: {
Function *IF = Call.getCalledFunction();
ConstantInt *Stride = nullptr;
ConstantInt *NumRows;
ConstantInt *NumColumns;
VectorType *ResultTy;
Type *Op0ElemTy = nullptr;
Type *Op1ElemTy = nullptr;
switch (ID) {
case Intrinsic::matrix_multiply:
NumRows = cast<ConstantInt>(Call.getArgOperand(2));
NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
ResultTy = cast<VectorType>(Call.getType());
Op0ElemTy =
cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
Op1ElemTy =
cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
break;
case Intrinsic::matrix_transpose:
NumRows = cast<ConstantInt>(Call.getArgOperand(1));
NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
ResultTy = cast<VectorType>(Call.getType());
Op0ElemTy =
cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
break;
case Intrinsic::matrix_column_major_load:
Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
NumRows = cast<ConstantInt>(Call.getArgOperand(3));
NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
ResultTy = cast<VectorType>(Call.getType());
Op0ElemTy =
cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType();
break;
case Intrinsic::matrix_column_major_store:
Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
NumRows = cast<ConstantInt>(Call.getArgOperand(4));
NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
Op0ElemTy =
cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
Op1ElemTy =
cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType();
break;
default:
llvm_unreachable("unexpected intrinsic");
}
Assert(ResultTy->getElementType()->isIntegerTy() ||
ResultTy->getElementType()->isFloatingPointTy(),
"Result type must be an integer or floating-point type!", IF);
Assert(ResultTy->getElementType() == Op0ElemTy,
"Vector element type mismatch of the result and first operand "
"vector!", IF);
if (Op1ElemTy)
Assert(ResultTy->getElementType() == Op1ElemTy,
"Vector element type mismatch of the result and second operand "
"vector!", IF);
Assert(ResultTy->getNumElements() ==
NumRows->getZExtValue() * NumColumns->getZExtValue(),
"Result of a matrix operation does not fit in the returned vector!");
if (Stride)
Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
"Stride must be greater or equal than the number of rows!", IF);
break;
}
};
}
/// Carefully grab the subprogram from a local scope.
///
/// This carefully grabs the subprogram from a local scope, avoiding the
/// built-in assertions that would typically fire.
static DISubprogram *getSubprogram(Metadata *LocalScope) {
if (!LocalScope)
return nullptr;
if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
return SP;
if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
return getSubprogram(LB->getRawScope());
// Just return null; broken scope chains are checked elsewhere.
assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
return nullptr;
}
void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
unsigned NumOperands;
bool HasRoundingMD;
switch (FPI.getIntrinsicID()) {
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC: \
NumOperands = NARG; \
HasRoundingMD = ROUND_MODE; \
break;
#include "llvm/IR/ConstrainedOps.def"
default:
llvm_unreachable("Invalid constrained FP intrinsic!");
}
NumOperands += (1 + HasRoundingMD);
// Compare intrinsics carry an extra predicate metadata operand.
if (isa<ConstrainedFPCmpIntrinsic>(FPI))
NumOperands += 1;
Assert((FPI.getNumArgOperands() == NumOperands),
"invalid arguments for constrained FP intrinsic", &FPI);
switch (FPI.getIntrinsicID()) {
case Intrinsic::experimental_constrained_lrint:
case Intrinsic::experimental_constrained_llrint: {
Type *ValTy = FPI.getArgOperand(0)->getType();
Type *ResultTy = FPI.getType();
Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
"Intrinsic does not support vectors", &FPI);
}
break;
case Intrinsic::experimental_constrained_lround:
case Intrinsic::experimental_constrained_llround: {
Type *ValTy = FPI.getArgOperand(0)->getType();
Type *ResultTy = FPI.getType();
Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
"Intrinsic does not support vectors", &FPI);
break;
}
case Intrinsic::experimental_constrained_fcmp:
case Intrinsic::experimental_constrained_fcmps: {
auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
Assert(CmpInst::isFPPredicate(Pred),
"invalid predicate for constrained FP comparison intrinsic", &FPI);
break;
}
case Intrinsic::experimental_constrained_fptosi:
case Intrinsic::experimental_constrained_fptoui: {
Value *Operand = FPI.getArgOperand(0);
uint64_t NumSrcElem = 0;
Assert(Operand->getType()->isFPOrFPVectorTy(),
"Intrinsic first argument must be floating point", &FPI);
if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
NumSrcElem = OperandT->getNumElements();
}
Operand = &FPI;
Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
"Intrinsic first argument and result disagree on vector use", &FPI);
Assert(Operand->getType()->isIntOrIntVectorTy(),
"Intrinsic result must be an integer", &FPI);
if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
Assert(NumSrcElem == OperandT->getNumElements(),
"Intrinsic first argument and result vector lengths must be equal",
&FPI);
}
}
break;
case Intrinsic::experimental_constrained_sitofp:
case Intrinsic::experimental_constrained_uitofp: {
Value *Operand = FPI.getArgOperand(0);
uint64_t NumSrcElem = 0;
Assert(Operand->getType()->isIntOrIntVectorTy(),
"Intrinsic first argument must be integer", &FPI);
if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
NumSrcElem = OperandT->getNumElements();
}
Operand = &FPI;
Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
"Intrinsic first argument and result disagree on vector use", &FPI);
Assert(Operand->getType()->isFPOrFPVectorTy(),
"Intrinsic result must be a floating point", &FPI);
if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
Assert(NumSrcElem == OperandT->getNumElements(),
"Intrinsic first argument and result vector lengths must be equal",
&FPI);
}
} break;
case Intrinsic::experimental_constrained_fptrunc:
case Intrinsic::experimental_constrained_fpext: {
Value *Operand = FPI.getArgOperand(0);
Type *OperandTy = Operand->getType();
Value *Result = &FPI;
Type *ResultTy = Result->getType();
Assert(OperandTy->isFPOrFPVectorTy(),
"Intrinsic first argument must be FP or FP vector", &FPI);
Assert(ResultTy->isFPOrFPVectorTy(),
"Intrinsic result must be FP or FP vector", &FPI);
Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
"Intrinsic first argument and result disagree on vector use", &FPI);
if (OperandTy->isVectorTy()) {
auto *OperandVecTy = cast<VectorType>(OperandTy);
auto *ResultVecTy = cast<VectorType>(ResultTy);
Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
"Intrinsic first argument and result vector lengths must be equal",
&FPI);
}
if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
"Intrinsic first argument's type must be larger than result type",
&FPI);
} else {
Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
"Intrinsic first argument's type must be smaller than result type",
&FPI);
}
}
break;
default:
break;
}
// If a non-metadata argument is passed in a metadata slot then the
// error will be caught earlier when the incorrect argument doesn't
// match the specification in the intrinsic call table. Thus, no
// argument type check is needed here.
Assert(FPI.getExceptionBehavior().hasValue(),
"invalid exception behavior argument", &FPI);
if (HasRoundingMD) {
Assert(FPI.getRoundingMode().hasValue(),
"invalid rounding mode argument", &FPI);
}
}
void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
AssertDI(isa<ValueAsMetadata>(MD) ||
(isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
"invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
"invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
DII.getRawVariable());
AssertDI(isa<DIExpression>(DII.getRawExpression()),
"invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
DII.getRawExpression());
// Ignore broken !dbg attachments; they're checked elsewhere.
if (MDNode *N = DII.getDebugLoc().getAsMDNode())
if (!isa<DILocation>(N))
return;
BasicBlock *BB = DII.getParent();
Function *F = BB ? BB->getParent() : nullptr;
// The scopes for variables and !dbg attachments must agree.
DILocalVariable *Var = DII.getVariable();
DILocation *Loc = DII.getDebugLoc();
AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
&DII, BB, F);
DISubprogram *VarSP = getSubprogram(Var->getRawScope());
DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
if (!VarSP || !LocSP)
return; // Broken scope chains are checked elsewhere.
AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
" variable and !dbg attachment",
&DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
Loc->getScope()->getSubprogram());
// This check is redundant with one in visitLocalVariable().
AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
Var->getRawType());
verifyFnArgs(DII);
}
void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
AssertDI(isa<DILabel>(DLI.getRawLabel()),
"invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
DLI.getRawLabel());
// Ignore broken !dbg attachments; they're checked elsewhere.
if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
if (!isa<DILocation>(N))
return;
BasicBlock *BB = DLI.getParent();
Function *F = BB ? BB->getParent() : nullptr;
// The scopes for variables and !dbg attachments must agree.
DILabel *Label = DLI.getLabel();
DILocation *Loc = DLI.getDebugLoc();
Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
&DLI, BB, F);
DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
if (!LabelSP || !LocSP)
return;
AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
" label and !dbg attachment",
&DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
Loc->getScope()->getSubprogram());
}
void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
// We don't know whether this intrinsic verified correctly.
if (!V || !E || !E->isValid())
return;
// Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
auto Fragment = E->getFragmentInfo();
if (!Fragment)
return;
// The frontend helps out GDB by emitting the members of local anonymous
// unions as artificial local variables with shared storage. When SROA splits
// the storage for artificial local variables that are smaller than the entire
// union, the overhang piece will be outside of the allotted space for the
// variable and this check fails.
// FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
if (V->isArtificial())
return;
verifyFragmentExpression(*V, *Fragment, &I);
}
template <typename ValueOrMetadata>
void Verifier::verifyFragmentExpression(const DIVariable &V,
DIExpression::FragmentInfo Fragment,
ValueOrMetadata *Desc) {
// If there's no size, the type is broken, but that should be checked
// elsewhere.
auto VarSize = V.getSizeInBits();
if (!VarSize)
return;
unsigned FragSize = Fragment.SizeInBits;
unsigned FragOffset = Fragment.OffsetInBits;
AssertDI(FragSize + FragOffset <= *VarSize,
"fragment is larger than or outside of variable", Desc, &V);
AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
}
void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
// This function does not take the scope of noninlined function arguments into
// account. Don't run it if current function is nodebug, because it may
// contain inlined debug intrinsics.
if (!HasDebugInfo)
return;
// For performance reasons only check non-inlined ones.
if (I.getDebugLoc()->getInlinedAt())
return;
DILocalVariable *Var = I.getVariable();
AssertDI(Var, "dbg intrinsic without variable");
unsigned ArgNo = Var->getArg();
if (!ArgNo)
return;
// Verify there are no duplicate function argument debug info entries.
// These will cause hard-to-debug assertions in the DWARF backend.
if (DebugFnArgs.size() < ArgNo)
DebugFnArgs.resize(ArgNo, nullptr);
auto *Prev = DebugFnArgs[ArgNo - 1];
DebugFnArgs[ArgNo - 1] = Var;
AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
Prev, Var);
}
void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
// We don't know whether this intrinsic verified correctly.
if (!E || !E->isValid())
return;
AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
}
void Verifier::verifyCompileUnits() {
// When more than one Module is imported into the same context, such as during
// an LTO build before linking the modules, ODR type uniquing may cause types
// to point to a different CU. This check does not make sense in this case.
if (M.getContext().isODRUniquingDebugTypes())
return;
auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
SmallPtrSet<const Metadata *, 2> Listed;
if (CUs)
Listed.insert(CUs->op_begin(), CUs->op_end());
for (auto *CU : CUVisited)
AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
CUVisited.clear();
}
void Verifier::verifyDeoptimizeCallingConvs() {
if (DeoptimizeDeclarations.empty())
return;
const Function *First = DeoptimizeDeclarations[0];
for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
Assert(First->getCallingConv() == F->getCallingConv(),
"All llvm.experimental.deoptimize declarations must have the same "
"calling convention",
First, F);
}
}
void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
bool HasSource = F.getSource().hasValue();
if (!HasSourceDebugInfo.count(&U))
HasSourceDebugInfo[&U] = HasSource;
AssertDI(HasSource == HasSourceDebugInfo[&U],
"inconsistent use of embedded source");
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
Function &F = const_cast<Function &>(f);
// Don't use a raw_null_ostream. Printing IR is expensive.
Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
// Note that this function's return value is inverted from what you would
// expect of a function called "verify".
return !V.verify(F);
}
bool llvm::verifyModule(const Module &M, raw_ostream *OS,
bool *BrokenDebugInfo) {
// Don't use a raw_null_ostream. Printing IR is expensive.
Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
bool Broken = false;
for (const Function &F : M)
Broken |= !V.verify(F);
Broken |= !V.verify();
if (BrokenDebugInfo)
*BrokenDebugInfo = V.hasBrokenDebugInfo();
// Note that this function's return value is inverted from what you would
// expect of a function called "verify".
return Broken;
}
namespace {
struct VerifierLegacyPass : public FunctionPass {
static char ID;
std::unique_ptr<Verifier> V;
bool FatalErrors = true;
VerifierLegacyPass() : FunctionPass(ID) {
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
}
explicit VerifierLegacyPass(bool FatalErrors)
: FunctionPass(ID),
FatalErrors(FatalErrors) {
initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool doInitialization(Module &M) override {
V = std::make_unique<Verifier>(
&dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
return false;
}
bool runOnFunction(Function &F) override {
if (!V->verify(F) && FatalErrors) {
errs() << "in function " << F.getName() << '\n';
report_fatal_error("Broken function found, compilation aborted!");
}
return false;
}
bool doFinalization(Module &M) override {
bool HasErrors = false;
for (Function &F : M)
if (F.isDeclaration())
HasErrors |= !V->verify(F);
HasErrors |= !V->verify();
if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
report_fatal_error("Broken module found, compilation aborted!");
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
} // end anonymous namespace
/// Helper to issue failure from the TBAA verification
template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
if (Diagnostic)
return Diagnostic->CheckFailed(Args...);
}
#define AssertTBAA(C, ...) \
do { \
if (!(C)) { \
CheckFailed(__VA_ARGS__); \
return false; \
} \
} while (false)
/// Verify that \p BaseNode can be used as the "base type" in the struct-path
/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
/// struct-type node describing an aggregate data structure (like a struct).
TBAAVerifier::TBAABaseNodeSummary
TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
bool IsNewFormat) {
if (BaseNode->getNumOperands() < 2) {
CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
return {true, ~0u};
}
auto Itr = TBAABaseNodes.find(BaseNode);
if (Itr != TBAABaseNodes.end())
return Itr->second;
auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
(void)InsertResult;
assert(InsertResult.second && "We just checked!");
return Result;
}
TBAAVerifier::TBAABaseNodeSummary
TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
bool IsNewFormat) {
const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
if (BaseNode->getNumOperands() == 2) {
// Scalar nodes can only be accessed at offset 0.
return isValidScalarTBAANode(BaseNode)
? TBAAVerifier::TBAABaseNodeSummary({false, 0})
: InvalidNode;
}
if (IsNewFormat) {
if (BaseNode->getNumOperands() % 3 != 0) {
CheckFailed("Access tag nodes must have the number of operands that is a "
"multiple of 3!", BaseNode);
return InvalidNode;
}
} else {
if (BaseNode->getNumOperands() % 2 != 1) {
CheckFailed("Struct tag nodes must have an odd number of operands!",
BaseNode);
return InvalidNode;
}
}
// Check the type size field.
if (IsNewFormat) {
auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
BaseNode->getOperand(1));
if (!TypeSizeNode) {
CheckFailed("Type size nodes must be constants!", &I, BaseNode);
return InvalidNode;
}
}
// Check the type name field. In the new format it can be anything.
if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
CheckFailed("Struct tag nodes have a string as their first operand",
BaseNode);
return InvalidNode;
}
bool Failed = false;
Optional<APInt> PrevOffset;
unsigned BitWidth = ~0u;
// We've already checked that BaseNode is not a degenerate root node with one
// operand in \c verifyTBAABaseNode, so this loop should run at least once.
unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
Idx += NumOpsPerField) {
const MDOperand &FieldTy = BaseNode->getOperand(Idx);
const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
if (!isa<MDNode>(FieldTy)) {
CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
Failed = true;
continue;
}
auto *OffsetEntryCI =
mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
if (!OffsetEntryCI) {
CheckFailed("Offset entries must be constants!", &I, BaseNode);
Failed = true;
continue;
}
if (BitWidth == ~0u)
BitWidth = OffsetEntryCI->getBitWidth();
if (OffsetEntryCI->getBitWidth() != BitWidth) {
CheckFailed(
"Bitwidth between the offsets and struct type entries must match", &I,
BaseNode);
Failed = true;
continue;
}
// NB! As far as I can tell, we generate a non-strictly increasing offset
// sequence only from structs that have zero size bit fields. When
// recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
// pick the field lexically the latest in struct type metadata node. This
// mirrors the actual behavior of the alias analysis implementation.
bool IsAscending =
!PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
if (!IsAscending) {
CheckFailed("Offsets must be increasing!", &I, BaseNode);
Failed = true;
}
PrevOffset = OffsetEntryCI->getValue();
if (IsNewFormat) {
auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
BaseNode->getOperand(Idx + 2));
if (!MemberSizeNode) {
CheckFailed("Member size entries must be constants!", &I, BaseNode);
Failed = true;
continue;
}
}
}
return Failed ? InvalidNode
: TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
}
static bool IsRootTBAANode(const MDNode *MD) {
return MD->getNumOperands() < 2;
}
static bool IsScalarTBAANodeImpl(const MDNode *MD,
SmallPtrSetImpl<const MDNode *> &Visited) {
if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
return false;
if (!isa<MDString>(MD->getOperand(0)))
return false;
if (MD->getNumOperands() == 3) {
auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
return false;
}
auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
return Parent && Visited.insert(Parent).second &&
(IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
}
bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
auto ResultIt = TBAAScalarNodes.find(MD);
if (ResultIt != TBAAScalarNodes.end())
return ResultIt->second;
SmallPtrSet<const MDNode *, 4> Visited;
bool Result = IsScalarTBAANodeImpl(MD, Visited);
auto InsertResult = TBAAScalarNodes.insert({MD, Result});
(void)InsertResult;
assert(InsertResult.second && "Just checked!");
return Result;
}
/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
/// Offset in place to be the offset within the field node returned.
///
/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
const MDNode *BaseNode,
APInt &Offset,
bool IsNewFormat) {
assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
// Scalar nodes have only one possible "field" -- their parent in the access
// hierarchy. Offset must be zero at this point, but our caller is supposed
// to Assert that.
if (BaseNode->getNumOperands() == 2)
return cast<MDNode>(BaseNode->getOperand(1));
unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
Idx += NumOpsPerField) {
auto *OffsetEntryCI =
mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
if (OffsetEntryCI->getValue().ugt(Offset)) {
if (Idx == FirstFieldOpNo) {
CheckFailed("Could not find TBAA parent in struct type node", &I,
BaseNode, &Offset);
return nullptr;
}
unsigned PrevIdx = Idx - NumOpsPerField;
auto *PrevOffsetEntryCI =
mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
Offset -= PrevOffsetEntryCI->getValue();
return cast<MDNode>(BaseNode->getOperand(PrevIdx));
}
}
unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
BaseNode->getOperand(LastIdx + 1));
Offset -= LastOffsetEntryCI->getValue();
return cast<MDNode>(BaseNode->getOperand(LastIdx));
}
static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
if (!Type || Type->getNumOperands() < 3)
return false;
// In the new format type nodes shall have a reference to the parent type as
// its first operand.
MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
if (!Parent)
return false;
return true;
}
bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
isa<AtomicCmpXchgInst>(I),
"This instruction shall not have a TBAA access tag!", &I);
bool IsStructPathTBAA =
isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
AssertTBAA(
IsStructPathTBAA,
"Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
if (IsNewFormat) {
AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
"Access tag metadata must have either 4 or 5 operands", &I, MD);
} else {
AssertTBAA(MD->getNumOperands() < 5,
"Struct tag metadata must have either 3 or 4 operands", &I, MD);
}
// Check the access size field.
if (IsNewFormat) {
auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
MD->getOperand(3));
AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
}
// Check the immutability flag.
unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
MD->getOperand(ImmutabilityFlagOpNo));
AssertTBAA(IsImmutableCI,
"Immutability tag on struct tag metadata must be a constant",
&I, MD);
AssertTBAA(
IsImmutableCI->isZero() || IsImmutableCI->isOne(),
"Immutability part of the struct tag metadata must be either 0 or 1",
&I, MD);
}
AssertTBAA(BaseNode && AccessType,
"Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes",
&I, MD, BaseNode, AccessType);
if (!IsNewFormat) {
AssertTBAA(isValidScalarTBAANode(AccessType),
"Access type node must be a valid scalar type", &I, MD,
AccessType);
}
auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
APInt Offset = OffsetCI->getValue();
bool SeenAccessTypeInPath = false;
SmallPtrSet<MDNode *, 4> StructPath;
for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
IsNewFormat)) {
if (!StructPath.insert(BaseNode).second) {
CheckFailed("Cycle detected in struct path", &I, MD);
return false;
}
bool Invalid;
unsigned BaseNodeBitWidth;
std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
IsNewFormat);
// If the base node is invalid in itself, then we've already printed all the
// errors we wanted to print.
if (Invalid)
return false;
SeenAccessTypeInPath |= BaseNode == AccessType;
if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
&I, MD, &Offset);
AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
(BaseNodeBitWidth == 0 && Offset == 0) ||
(IsNewFormat && BaseNodeBitWidth == ~0u),
"Access bit-width not the same as description bit-width", &I, MD,
BaseNodeBitWidth, Offset.getBitWidth());
if (IsNewFormat && SeenAccessTypeInPath)
break;
}
AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
&I, MD);
return true;
}
char VerifierLegacyPass::ID = 0;
INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
return new VerifierLegacyPass(FatalErrors);
}
AnalysisKey VerifierAnalysis::Key;
VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
ModuleAnalysisManager &) {
Result Res;
Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
return Res;
}
VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
FunctionAnalysisManager &) {
return { llvm::verifyFunction(F, &dbgs()), false };
}
PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
auto Res = AM.getResult<VerifierAnalysis>(M);
if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
report_fatal_error("Broken module found, compilation aborted!");
return PreservedAnalyses::all();
}
PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
auto res = AM.getResult<VerifierAnalysis>(F);
if (res.IRBroken && FatalErrors)
report_fatal_error("Broken function found, compilation aborted!");
return PreservedAnalyses::all();
}