llvm-project/llvm/lib/IR/Constants.cpp

3313 lines
117 KiB
C++

//===-- Constants.cpp - Implement Constant nodes --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Constant* classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Constants.h"
#include "ConstantFold.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
using namespace PatternMatch;
//===----------------------------------------------------------------------===//
// Constant Class
//===----------------------------------------------------------------------===//
bool Constant::isNegativeZeroValue() const {
// Floating point values have an explicit -0.0 value.
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->isZero() && CFP->isNegative();
// Equivalent for a vector of -0.0's.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
if (CV->getElementAsAPFloat(0).isNegZero())
return true;
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
return true;
// We've already handled true FP case; any other FP vectors can't represent -0.0.
if (getType()->isFPOrFPVectorTy())
return false;
// Otherwise, just use +0.0.
return isNullValue();
}
// Return true iff this constant is positive zero (floating point), negative
// zero (floating point), or a null value.
bool Constant::isZeroValue() const {
// Floating point values have an explicit -0.0 value.
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->isZero();
// Equivalent for a vector of -0.0's.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
if (CV->getElementAsAPFloat(0).isZero())
return true;
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
if (SplatCFP && SplatCFP->isZero())
return true;
// Otherwise, just use +0.0.
return isNullValue();
}
bool Constant::isNullValue() const {
// 0 is null.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isZero();
// +0.0 is null.
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->isZero() && !CFP->isNegative();
// constant zero is zero for aggregates, cpnull is null for pointers, none for
// tokens.
return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
isa<ConstantTokenNone>(this);
}
bool Constant::isAllOnesValue() const {
// Check for -1 integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isMinusOne();
// Check for FP which are bitcasted from -1 integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
// Check for constant vectors which are splats of -1 values.
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isAllOnesValue();
// Check for constant vectors which are splats of -1 values.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
if (CV->isSplat()) {
if (CV->getElementType()->isFloatingPointTy())
return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
return CV->getElementAsAPInt(0).isAllOnesValue();
}
}
return false;
}
bool Constant::isOneValue() const {
// Check for 1 integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isOne();
// Check for FP which are bitcasted from 1 integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().bitcastToAPInt().isOneValue();
// Check for constant vectors which are splats of 1 values.
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isOneValue();
// Check for constant vectors which are splats of 1 values.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
if (CV->isSplat()) {
if (CV->getElementType()->isFloatingPointTy())
return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
return CV->getElementAsAPInt(0).isOneValue();
}
}
return false;
}
bool Constant::isNotOneValue() const {
// Check for 1 integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return !CI->isOneValue();
// Check for FP which are bitcasted from 1 integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return !CFP->getValueAPF().bitcastToAPInt().isOneValue();
// Check that vectors don't contain 1
if (auto *VTy = dyn_cast<VectorType>(this->getType())) {
unsigned NumElts = VTy->getNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = this->getAggregateElement(i);
if (!Elt || !Elt->isNotOneValue())
return false;
}
return true;
}
// It *may* contain 1, we can't tell.
return false;
}
bool Constant::isMinSignedValue() const {
// Check for INT_MIN integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->isMinValue(/*isSigned=*/true);
// Check for FP which are bitcasted from INT_MIN integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
// Check for constant vectors which are splats of INT_MIN values.
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
if (Constant *Splat = CV->getSplatValue())
return Splat->isMinSignedValue();
// Check for constant vectors which are splats of INT_MIN values.
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
if (CV->isSplat()) {
if (CV->getElementType()->isFloatingPointTy())
return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
return CV->getElementAsAPInt(0).isMinSignedValue();
}
}
return false;
}
bool Constant::isNotMinSignedValue() const {
// Check for INT_MIN integers
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return !CI->isMinValue(/*isSigned=*/true);
// Check for FP which are bitcasted from INT_MIN integers
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
// Check that vectors don't contain INT_MIN
if (auto *VTy = dyn_cast<VectorType>(this->getType())) {
unsigned NumElts = VTy->getNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = this->getAggregateElement(i);
if (!Elt || !Elt->isNotMinSignedValue())
return false;
}
return true;
}
// It *may* contain INT_MIN, we can't tell.
return false;
}
bool Constant::isFiniteNonZeroFP() const {
if (auto *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().isFiniteNonZero();
auto *VTy = dyn_cast<VectorType>(getType());
if (!VTy)
return false;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
return false;
}
return true;
}
bool Constant::isNormalFP() const {
if (auto *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().isNormal();
auto *VTy = dyn_cast<FixedVectorType>(getType());
if (!VTy)
return false;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
if (!CFP || !CFP->getValueAPF().isNormal())
return false;
}
return true;
}
bool Constant::hasExactInverseFP() const {
if (auto *CFP = dyn_cast<ConstantFP>(this))
return CFP->getValueAPF().getExactInverse(nullptr);
auto *VTy = dyn_cast<FixedVectorType>(getType());
if (!VTy)
return false;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
return false;
}
return true;
}
bool Constant::isNaN() const {
if (auto *CFP = dyn_cast<ConstantFP>(this))
return CFP->isNaN();
auto *VTy = dyn_cast<FixedVectorType>(getType());
if (!VTy)
return false;
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
if (!CFP || !CFP->isNaN())
return false;
}
return true;
}
bool Constant::isElementWiseEqual(Value *Y) const {
// Are they fully identical?
if (this == Y)
return true;
// The input value must be a vector constant with the same type.
auto *VTy = dyn_cast<VectorType>(getType());
if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
return false;
// TODO: Compare pointer constants?
if (!(VTy->getElementType()->isIntegerTy() ||
VTy->getElementType()->isFloatingPointTy()))
return false;
// They may still be identical element-wise (if they have `undef`s).
// Bitcast to integer to allow exact bitwise comparison for all types.
Type *IntTy = VectorType::getInteger(VTy);
Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
}
bool Constant::containsUndefElement() const {
if (auto *VTy = dyn_cast<VectorType>(getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
if (isa<UndefValue>(getAggregateElement(i)))
return true;
}
return false;
}
bool Constant::containsConstantExpression() const {
if (auto *VTy = dyn_cast<VectorType>(getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
if (isa<ConstantExpr>(getAggregateElement(i)))
return true;
}
return false;
}
/// Constructor to create a '0' constant of arbitrary type.
Constant *Constant::getNullValue(Type *Ty) {
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
return ConstantInt::get(Ty, 0);
case Type::HalfTyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEhalf()));
case Type::BFloatTyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::BFloat()));
case Type::FloatTyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEsingle()));
case Type::DoubleTyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEdouble()));
case Type::X86_FP80TyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::x87DoubleExtended()));
case Type::FP128TyID:
return ConstantFP::get(Ty->getContext(),
APFloat::getZero(APFloat::IEEEquad()));
case Type::PPC_FP128TyID:
return ConstantFP::get(Ty->getContext(),
APFloat(APFloat::PPCDoubleDouble(),
APInt::getNullValue(128)));
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
case Type::StructTyID:
case Type::ArrayTyID:
case Type::FixedVectorTyID:
case Type::ScalableVectorTyID:
return ConstantAggregateZero::get(Ty);
case Type::TokenTyID:
return ConstantTokenNone::get(Ty->getContext());
default:
// Function, Label, or Opaque type?
llvm_unreachable("Cannot create a null constant of that type!");
}
}
Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
Type *ScalarTy = Ty->getScalarType();
// Create the base integer constant.
Constant *C = ConstantInt::get(Ty->getContext(), V);
// Convert an integer to a pointer, if necessary.
if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
C = ConstantExpr::getIntToPtr(C, PTy);
// Broadcast a scalar to a vector, if necessary.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
C = ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
Constant *Constant::getAllOnesValue(Type *Ty) {
if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
return ConstantInt::get(Ty->getContext(),
APInt::getAllOnesValue(ITy->getBitWidth()));
if (Ty->isFloatingPointTy()) {
APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics(),
Ty->getPrimitiveSizeInBits());
return ConstantFP::get(Ty->getContext(), FL);
}
VectorType *VTy = cast<VectorType>(Ty);
return ConstantVector::getSplat(VTy->getElementCount(),
getAllOnesValue(VTy->getElementType()));
}
Constant *Constant::getAggregateElement(unsigned Elt) const {
if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
if (const UndefValue *UV = dyn_cast<UndefValue>(this))
return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
: nullptr;
return nullptr;
}
Constant *Constant::getAggregateElement(Constant *Elt) const {
assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
// Check if the constant fits into an uint64_t.
if (CI->getValue().getActiveBits() > 64)
return nullptr;
return getAggregateElement(CI->getZExtValue());
}
return nullptr;
}
void Constant::destroyConstant() {
/// First call destroyConstantImpl on the subclass. This gives the subclass
/// a chance to remove the constant from any maps/pools it's contained in.
switch (getValueID()) {
default:
llvm_unreachable("Not a constant!");
#define HANDLE_CONSTANT(Name) \
case Value::Name##Val: \
cast<Name>(this)->destroyConstantImpl(); \
break;
#include "llvm/IR/Value.def"
}
// When a Constant is destroyed, there may be lingering
// references to the constant by other constants in the constant pool. These
// constants are implicitly dependent on the module that is being deleted,
// but they don't know that. Because we only find out when the CPV is
// deleted, we must now notify all of our users (that should only be
// Constants) that they are, in fact, invalid now and should be deleted.
//
while (!use_empty()) {
Value *V = user_back();
#ifndef NDEBUG // Only in -g mode...
if (!isa<Constant>(V)) {
dbgs() << "While deleting: " << *this
<< "\n\nUse still stuck around after Def is destroyed: " << *V
<< "\n\n";
}
#endif
assert(isa<Constant>(V) && "References remain to Constant being destroyed");
cast<Constant>(V)->destroyConstant();
// The constant should remove itself from our use list...
assert((use_empty() || user_back() != V) && "Constant not removed!");
}
// Value has no outstanding references it is safe to delete it now...
deleteConstant(this);
}
void llvm::deleteConstant(Constant *C) {
switch (C->getValueID()) {
case Constant::ConstantIntVal:
delete static_cast<ConstantInt *>(C);
break;
case Constant::ConstantFPVal:
delete static_cast<ConstantFP *>(C);
break;
case Constant::ConstantAggregateZeroVal:
delete static_cast<ConstantAggregateZero *>(C);
break;
case Constant::ConstantArrayVal:
delete static_cast<ConstantArray *>(C);
break;
case Constant::ConstantStructVal:
delete static_cast<ConstantStruct *>(C);
break;
case Constant::ConstantVectorVal:
delete static_cast<ConstantVector *>(C);
break;
case Constant::ConstantPointerNullVal:
delete static_cast<ConstantPointerNull *>(C);
break;
case Constant::ConstantDataArrayVal:
delete static_cast<ConstantDataArray *>(C);
break;
case Constant::ConstantDataVectorVal:
delete static_cast<ConstantDataVector *>(C);
break;
case Constant::ConstantTokenNoneVal:
delete static_cast<ConstantTokenNone *>(C);
break;
case Constant::BlockAddressVal:
delete static_cast<BlockAddress *>(C);
break;
case Constant::UndefValueVal:
delete static_cast<UndefValue *>(C);
break;
case Constant::ConstantExprVal:
if (isa<UnaryConstantExpr>(C))
delete static_cast<UnaryConstantExpr *>(C);
else if (isa<BinaryConstantExpr>(C))
delete static_cast<BinaryConstantExpr *>(C);
else if (isa<SelectConstantExpr>(C))
delete static_cast<SelectConstantExpr *>(C);
else if (isa<ExtractElementConstantExpr>(C))
delete static_cast<ExtractElementConstantExpr *>(C);
else if (isa<InsertElementConstantExpr>(C))
delete static_cast<InsertElementConstantExpr *>(C);
else if (isa<ShuffleVectorConstantExpr>(C))
delete static_cast<ShuffleVectorConstantExpr *>(C);
else if (isa<ExtractValueConstantExpr>(C))
delete static_cast<ExtractValueConstantExpr *>(C);
else if (isa<InsertValueConstantExpr>(C))
delete static_cast<InsertValueConstantExpr *>(C);
else if (isa<GetElementPtrConstantExpr>(C))
delete static_cast<GetElementPtrConstantExpr *>(C);
else if (isa<CompareConstantExpr>(C))
delete static_cast<CompareConstantExpr *>(C);
else
llvm_unreachable("Unexpected constant expr");
break;
default:
llvm_unreachable("Unexpected constant");
}
}
static bool canTrapImpl(const Constant *C,
SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
// The only thing that could possibly trap are constant exprs.
const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE)
return false;
// ConstantExpr traps if any operands can trap.
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
return true;
}
}
// Otherwise, only specific operations can trap.
switch (CE->getOpcode()) {
default:
return false;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
// Div and rem can trap if the RHS is not known to be non-zero.
if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
return true;
return false;
}
}
bool Constant::canTrap() const {
SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
return canTrapImpl(this, NonTrappingOps);
}
/// Check if C contains a GlobalValue for which Predicate is true.
static bool
ConstHasGlobalValuePredicate(const Constant *C,
bool (*Predicate)(const GlobalValue *)) {
SmallPtrSet<const Constant *, 8> Visited;
SmallVector<const Constant *, 8> WorkList;
WorkList.push_back(C);
Visited.insert(C);
while (!WorkList.empty()) {
const Constant *WorkItem = WorkList.pop_back_val();
if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
if (Predicate(GV))
return true;
for (const Value *Op : WorkItem->operands()) {
const Constant *ConstOp = dyn_cast<Constant>(Op);
if (!ConstOp)
continue;
if (Visited.insert(ConstOp).second)
WorkList.push_back(ConstOp);
}
}
return false;
}
bool Constant::isThreadDependent() const {
auto DLLImportPredicate = [](const GlobalValue *GV) {
return GV->isThreadLocal();
};
return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
}
bool Constant::isDLLImportDependent() const {
auto DLLImportPredicate = [](const GlobalValue *GV) {
return GV->hasDLLImportStorageClass();
};
return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
}
bool Constant::isConstantUsed() const {
for (const User *U : users()) {
const Constant *UC = dyn_cast<Constant>(U);
if (!UC || isa<GlobalValue>(UC))
return true;
if (UC->isConstantUsed())
return true;
}
return false;
}
bool Constant::needsRelocation() const {
if (isa<GlobalValue>(this))
return true; // Global reference.
if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
return BA->getFunction()->needsRelocation();
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
if (CE->getOpcode() == Instruction::Sub) {
ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
RHS->getOpcode() == Instruction::PtrToInt) {
Constant *LHSOp0 = LHS->getOperand(0);
Constant *RHSOp0 = RHS->getOperand(0);
// While raw uses of blockaddress need to be relocated, differences
// between two of them don't when they are for labels in the same
// function. This is a common idiom when creating a table for the
// indirect goto extension, so we handle it efficiently here.
if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
cast<BlockAddress>(LHSOp0)->getFunction() ==
cast<BlockAddress>(RHSOp0)->getFunction())
return false;
// Relative pointers do not need to be dynamically relocated.
if (auto *LHSGV = dyn_cast<GlobalValue>(LHSOp0->stripPointerCasts()))
if (auto *RHSGV = dyn_cast<GlobalValue>(RHSOp0->stripPointerCasts()))
if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
return false;
}
}
}
bool Result = false;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
Result |= cast<Constant>(getOperand(i))->needsRelocation();
return Result;
}
/// If the specified constantexpr is dead, remove it. This involves recursively
/// eliminating any dead users of the constantexpr.
static bool removeDeadUsersOfConstant(const Constant *C) {
if (isa<GlobalValue>(C)) return false; // Cannot remove this
while (!C->use_empty()) {
const Constant *User = dyn_cast<Constant>(C->user_back());
if (!User) return false; // Non-constant usage;
if (!removeDeadUsersOfConstant(User))
return false; // Constant wasn't dead
}
const_cast<Constant*>(C)->destroyConstant();
return true;
}
void Constant::removeDeadConstantUsers() const {
Value::const_user_iterator I = user_begin(), E = user_end();
Value::const_user_iterator LastNonDeadUser = E;
while (I != E) {
const Constant *User = dyn_cast<Constant>(*I);
if (!User) {
LastNonDeadUser = I;
++I;
continue;
}
if (!removeDeadUsersOfConstant(User)) {
// If the constant wasn't dead, remember that this was the last live use
// and move on to the next constant.
LastNonDeadUser = I;
++I;
continue;
}
// If the constant was dead, then the iterator is invalidated.
if (LastNonDeadUser == E)
I = user_begin();
else
I = std::next(LastNonDeadUser);
}
}
Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
assert(C && Replacement && "Expected non-nullptr constant arguments");
Type *Ty = C->getType();
if (match(C, m_Undef())) {
assert(Ty == Replacement->getType() && "Expected matching types");
return Replacement;
}
// Don't know how to deal with this constant.
auto *VTy = dyn_cast<FixedVectorType>(Ty);
if (!VTy)
return C;
unsigned NumElts = VTy->getNumElements();
SmallVector<Constant *, 32> NewC(NumElts);
for (unsigned i = 0; i != NumElts; ++i) {
Constant *EltC = C->getAggregateElement(i);
assert((!EltC || EltC->getType() == Replacement->getType()) &&
"Expected matching types");
NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
}
return ConstantVector::get(NewC);
}
//===----------------------------------------------------------------------===//
// ConstantInt
//===----------------------------------------------------------------------===//
ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
: ConstantData(Ty, ConstantIntVal), Val(V) {
assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
}
ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (!pImpl->TheTrueVal)
pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
return pImpl->TheTrueVal;
}
ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (!pImpl->TheFalseVal)
pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
return pImpl->TheFalseVal;
}
Constant *ConstantInt::getTrue(Type *Ty) {
assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
if (auto *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
return TrueC;
}
Constant *ConstantInt::getFalse(Type *Ty) {
assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
if (auto *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
return FalseC;
}
// Get a ConstantInt from an APInt.
ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
// get an existing value or the insertion position
LLVMContextImpl *pImpl = Context.pImpl;
std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
if (!Slot) {
// Get the corresponding integer type for the bit width of the value.
IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
Slot.reset(new ConstantInt(ITy, V));
}
assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
return Slot.get();
}
Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
}
ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
return get(Ty, V, true);
}
Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
return get(Ty, V, true);
}
Constant *ConstantInt::get(Type *Ty, const APInt& V) {
ConstantInt *C = get(Ty->getContext(), V);
assert(C->getType() == Ty->getScalarType() &&
"ConstantInt type doesn't match the type implied by its value!");
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
}
/// Remove the constant from the constant table.
void ConstantInt::destroyConstantImpl() {
llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
}
//===----------------------------------------------------------------------===//
// ConstantFP
//===----------------------------------------------------------------------===//
static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
if (Ty->isHalfTy())
return &APFloat::IEEEhalf();
if (Ty->isBFloatTy())
return &APFloat::BFloat();
if (Ty->isFloatTy())
return &APFloat::IEEEsingle();
if (Ty->isDoubleTy())
return &APFloat::IEEEdouble();
if (Ty->isX86_FP80Ty())
return &APFloat::x87DoubleExtended();
else if (Ty->isFP128Ty())
return &APFloat::IEEEquad();
assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
return &APFloat::PPCDoubleDouble();
}
Constant *ConstantFP::get(Type *Ty, double V) {
LLVMContext &Context = Ty->getContext();
APFloat FV(V);
bool ignored;
FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
APFloat::rmNearestTiesToEven, &ignored);
Constant *C = get(Context, FV);
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
ConstantFP *C = get(Ty->getContext(), V);
assert(C->getType() == Ty->getScalarType() &&
"ConstantFP type doesn't match the type implied by its value!");
// For vectors, broadcast the value.
if (auto *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
Constant *ConstantFP::get(Type *Ty, StringRef Str) {
LLVMContext &Context = Ty->getContext();
APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
Constant *C = get(Context, FV);
// For vectors, broadcast the value.
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
Constant *C = get(Ty->getContext(), NaN);
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
Constant *C = get(Ty->getContext(), NaN);
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
Constant *C = get(Ty->getContext(), NaN);
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
Constant *ConstantFP::getNegativeZero(Type *Ty) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
Constant *C = get(Ty->getContext(), NegZero);
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
if (Ty->isFPOrFPVectorTy())
return getNegativeZero(Ty);
return Constant::getNullValue(Ty);
}
// ConstantFP accessors.
ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
LLVMContextImpl* pImpl = Context.pImpl;
std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
if (!Slot) {
Type *Ty;
if (&V.getSemantics() == &APFloat::IEEEhalf())
Ty = Type::getHalfTy(Context);
else if (&V.getSemantics() == &APFloat::BFloat())
Ty = Type::getBFloatTy(Context);
else if (&V.getSemantics() == &APFloat::IEEEsingle())
Ty = Type::getFloatTy(Context);
else if (&V.getSemantics() == &APFloat::IEEEdouble())
Ty = Type::getDoubleTy(Context);
else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
Ty = Type::getX86_FP80Ty(Context);
else if (&V.getSemantics() == &APFloat::IEEEquad())
Ty = Type::getFP128Ty(Context);
else {
assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
"Unknown FP format");
Ty = Type::getPPC_FP128Ty(Context);
}
Slot.reset(new ConstantFP(Ty, V));
}
return Slot.get();
}
Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return ConstantVector::getSplat(VTy->getElementCount(), C);
return C;
}
ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
: ConstantData(Ty, ConstantFPVal), Val(V) {
assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
"FP type Mismatch");
}
bool ConstantFP::isExactlyValue(const APFloat &V) const {
return Val.bitwiseIsEqual(V);
}
/// Remove the constant from the constant table.
void ConstantFP::destroyConstantImpl() {
llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
}
//===----------------------------------------------------------------------===//
// ConstantAggregateZero Implementation
//===----------------------------------------------------------------------===//
Constant *ConstantAggregateZero::getSequentialElement() const {
if (auto *AT = dyn_cast<ArrayType>(getType()))
return Constant::getNullValue(AT->getElementType());
return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
}
Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
return Constant::getNullValue(getType()->getStructElementType(Elt));
}
Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
return getSequentialElement();
return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}
Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
return getSequentialElement();
return getStructElement(Idx);
}
unsigned ConstantAggregateZero::getNumElements() const {
Type *Ty = getType();
if (auto *AT = dyn_cast<ArrayType>(Ty))
return AT->getNumElements();
if (auto *VT = dyn_cast<VectorType>(Ty))
return VT->getNumElements();
return Ty->getStructNumElements();
}
//===----------------------------------------------------------------------===//
// UndefValue Implementation
//===----------------------------------------------------------------------===//
UndefValue *UndefValue::getSequentialElement() const {
if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
return UndefValue::get(ATy->getElementType());
return UndefValue::get(cast<VectorType>(getType())->getElementType());
}
UndefValue *UndefValue::getStructElement(unsigned Elt) const {
return UndefValue::get(getType()->getStructElementType(Elt));
}
UndefValue *UndefValue::getElementValue(Constant *C) const {
if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
return getSequentialElement();
return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}
UndefValue *UndefValue::getElementValue(unsigned Idx) const {
if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
return getSequentialElement();
return getStructElement(Idx);
}
unsigned UndefValue::getNumElements() const {
Type *Ty = getType();
if (auto *AT = dyn_cast<ArrayType>(Ty))
return AT->getNumElements();
if (auto *VT = dyn_cast<VectorType>(Ty))
return VT->getNumElements();
return Ty->getStructNumElements();
}
//===----------------------------------------------------------------------===//
// ConstantXXX Classes
//===----------------------------------------------------------------------===//
template <typename ItTy, typename EltTy>
static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
for (; Start != End; ++Start)
if (*Start != Elt)
return false;
return true;
}
template <typename SequentialTy, typename ElementTy>
static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
assert(!V.empty() && "Cannot get empty int sequence.");
SmallVector<ElementTy, 16> Elts;
for (Constant *C : V)
if (auto *CI = dyn_cast<ConstantInt>(C))
Elts.push_back(CI->getZExtValue());
else
return nullptr;
return SequentialTy::get(V[0]->getContext(), Elts);
}
template <typename SequentialTy, typename ElementTy>
static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
assert(!V.empty() && "Cannot get empty FP sequence.");
SmallVector<ElementTy, 16> Elts;
for (Constant *C : V)
if (auto *CFP = dyn_cast<ConstantFP>(C))
Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
else
return nullptr;
return SequentialTy::getFP(V[0]->getType(), Elts);
}
template <typename SequenceTy>
static Constant *getSequenceIfElementsMatch(Constant *C,
ArrayRef<Constant *> V) {
// We speculatively build the elements here even if it turns out that there is
// a constantexpr or something else weird, since it is so uncommon for that to
// happen.
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getType()->isIntegerTy(8))
return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
else if (CI->getType()->isIntegerTy(16))
return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
else if (CI->getType()->isIntegerTy(32))
return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
else if (CI->getType()->isIntegerTy(64))
return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
else if (CFP->getType()->isFloatTy())
return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
else if (CFP->getType()->isDoubleTy())
return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
}
return nullptr;
}
ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
ArrayRef<Constant *> V)
: Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
V.size()) {
llvm::copy(V, op_begin());
// Check that types match, unless this is an opaque struct.
if (auto *ST = dyn_cast<StructType>(T)) {
if (ST->isOpaque())
return;
for (unsigned I = 0, E = V.size(); I != E; ++I)
assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
"Initializer for struct element doesn't match!");
}
}
ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
: ConstantAggregate(T, ConstantArrayVal, V) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer for constant array");
}
Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
if (Constant *C = getImpl(Ty, V))
return C;
return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
}
Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
// Empty arrays are canonicalized to ConstantAggregateZero.
if (V.empty())
return ConstantAggregateZero::get(Ty);
for (unsigned i = 0, e = V.size(); i != e; ++i) {
assert(V[i]->getType() == Ty->getElementType() &&
"Wrong type in array element initializer");
}
// If this is an all-zero array, return a ConstantAggregateZero object. If
// all undef, return an UndefValue, if "all simple", then return a
// ConstantDataArray.
Constant *C = V[0];
if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
return UndefValue::get(Ty);
if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
return ConstantAggregateZero::get(Ty);
// Check to see if all of the elements are ConstantFP or ConstantInt and if
// the element type is compatible with ConstantDataVector. If so, use it.
if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
// Otherwise, we really do want to create a ConstantArray.
return nullptr;
}
StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
ArrayRef<Constant*> V,
bool Packed) {
unsigned VecSize = V.size();
SmallVector<Type*, 16> EltTypes(VecSize);
for (unsigned i = 0; i != VecSize; ++i)
EltTypes[i] = V[i]->getType();
return StructType::get(Context, EltTypes, Packed);
}
StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
bool Packed) {
assert(!V.empty() &&
"ConstantStruct::getTypeForElements cannot be called on empty list");
return getTypeForElements(V[0]->getContext(), V, Packed);
}
ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
: ConstantAggregate(T, ConstantStructVal, V) {
assert((T->isOpaque() || V.size() == T->getNumElements()) &&
"Invalid initializer for constant struct");
}
// ConstantStruct accessors.
Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
"Incorrect # elements specified to ConstantStruct::get");
// Create a ConstantAggregateZero value if all elements are zeros.
bool isZero = true;
bool isUndef = false;
if (!V.empty()) {
isUndef = isa<UndefValue>(V[0]);
isZero = V[0]->isNullValue();
if (isUndef || isZero) {
for (unsigned i = 0, e = V.size(); i != e; ++i) {
if (!V[i]->isNullValue())
isZero = false;
if (!isa<UndefValue>(V[i]))
isUndef = false;
}
}
}
if (isZero)
return ConstantAggregateZero::get(ST);
if (isUndef)
return UndefValue::get(ST);
return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
}
ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
: ConstantAggregate(T, ConstantVectorVal, V) {
assert(V.size() == T->getNumElements() &&
"Invalid initializer for constant vector");
}
// ConstantVector accessors.
Constant *ConstantVector::get(ArrayRef<Constant*> V) {
if (Constant *C = getImpl(V))
return C;
auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
}
Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
assert(!V.empty() && "Vectors can't be empty");
auto *T = FixedVectorType::get(V.front()->getType(), V.size());
// If this is an all-undef or all-zero vector, return a
// ConstantAggregateZero or UndefValue.
Constant *C = V[0];
bool isZero = C->isNullValue();
bool isUndef = isa<UndefValue>(C);
if (isZero || isUndef) {
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
isZero = isUndef = false;
break;
}
}
if (isZero)
return ConstantAggregateZero::get(T);
if (isUndef)
return UndefValue::get(T);
// Check to see if all of the elements are ConstantFP or ConstantInt and if
// the element type is compatible with ConstantDataVector. If so, use it.
if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
// Otherwise, the element type isn't compatible with ConstantDataVector, or
// the operand list contains a ConstantExpr or something else strange.
return nullptr;
}
Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
if (!EC.Scalable) {
// If this splat is compatible with ConstantDataVector, use it instead of
// ConstantVector.
if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
ConstantDataSequential::isElementTypeCompatible(V->getType()))
return ConstantDataVector::getSplat(EC.Min, V);
SmallVector<Constant *, 32> Elts(EC.Min, V);
return get(Elts);
}
Type *VTy = VectorType::get(V->getType(), EC);
if (V->isNullValue())
return ConstantAggregateZero::get(VTy);
else if (isa<UndefValue>(V))
return UndefValue::get(VTy);
Type *I32Ty = Type::getInt32Ty(VTy->getContext());
// Move scalar into vector.
Constant *UndefV = UndefValue::get(VTy);
V = ConstantExpr::getInsertElement(UndefV, V, ConstantInt::get(I32Ty, 0));
// Build shuffle mask to perform the splat.
SmallVector<int, 8> Zeros(EC.Min, 0);
// Splat.
return ConstantExpr::getShuffleVector(V, UndefV, Zeros);
}
ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
LLVMContextImpl *pImpl = Context.pImpl;
if (!pImpl->TheNoneToken)
pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
return pImpl->TheNoneToken.get();
}
/// Remove the constant from the constant table.
void ConstantTokenNone::destroyConstantImpl() {
llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
}
// Utility function for determining if a ConstantExpr is a CastOp or not. This
// can't be inline because we don't want to #include Instruction.h into
// Constant.h
bool ConstantExpr::isCast() const {
return Instruction::isCast(getOpcode());
}
bool ConstantExpr::isCompare() const {
return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
}
bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
if (getOpcode() != Instruction::GetElementPtr) return false;
gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
User::const_op_iterator OI = std::next(this->op_begin());
// The remaining indices may be compile-time known integers within the bounds
// of the corresponding notional static array types.
for (; GEPI != E; ++GEPI, ++OI) {
if (isa<UndefValue>(*OI))
continue;
auto *CI = dyn_cast<ConstantInt>(*OI);
if (!CI || (GEPI.isBoundedSequential() &&
(CI->getValue().getActiveBits() > 64 ||
CI->getZExtValue() >= GEPI.getSequentialNumElements())))
return false;
}
// All the indices checked out.
return true;
}
bool ConstantExpr::hasIndices() const {
return getOpcode() == Instruction::ExtractValue ||
getOpcode() == Instruction::InsertValue;
}
ArrayRef<unsigned> ConstantExpr::getIndices() const {
if (const ExtractValueConstantExpr *EVCE =
dyn_cast<ExtractValueConstantExpr>(this))
return EVCE->Indices;
return cast<InsertValueConstantExpr>(this)->Indices;
}
unsigned ConstantExpr::getPredicate() const {
return cast<CompareConstantExpr>(this)->predicate;
}
ArrayRef<int> ConstantExpr::getShuffleMask() const {
return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
}
Constant *ConstantExpr::getShuffleMaskForBitcode() const {
return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
}
Constant *
ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
assert(Op->getType() == getOperand(OpNo)->getType() &&
"Replacing operand with value of different type!");
if (getOperand(OpNo) == Op)
return const_cast<ConstantExpr*>(this);
SmallVector<Constant*, 8> NewOps;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
NewOps.push_back(i == OpNo ? Op : getOperand(i));
return getWithOperands(NewOps);
}
Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
bool OnlyIfReduced, Type *SrcTy) const {
assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
// If no operands changed return self.
if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
return const_cast<ConstantExpr*>(this);
Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
OnlyIfReducedTy);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
case Instruction::InsertValue:
return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
OnlyIfReducedTy);
case Instruction::ExtractValue:
return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
OnlyIfReducedTy);
case Instruction::GetElementPtr: {
auto *GEPO = cast<GEPOperator>(this);
assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
return ConstantExpr::getGetElementPtr(
SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
}
case Instruction::ICmp:
case Instruction::FCmp:
return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
OnlyIfReducedTy);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
OnlyIfReducedTy);
}
}
//===----------------------------------------------------------------------===//
// isValueValidForType implementations
bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
if (Ty->isIntegerTy(1))
return Val == 0 || Val == 1;
return isUIntN(NumBits, Val);
}
bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
unsigned NumBits = Ty->getIntegerBitWidth();
if (Ty->isIntegerTy(1))
return Val == 0 || Val == 1 || Val == -1;
return isIntN(NumBits, Val);
}
bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
bool losesInfo;
switch (Ty->getTypeID()) {
default:
return false; // These can't be represented as floating point!
// FIXME rounding mode needs to be more flexible
case Type::HalfTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEhalf())
return true;
Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::BFloatTyID: {
if (&Val2.getSemantics() == &APFloat::BFloat())
return true;
Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::FloatTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEsingle())
return true;
Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::DoubleTyID: {
if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
&Val2.getSemantics() == &APFloat::BFloat() ||
&Val2.getSemantics() == &APFloat::IEEEsingle() ||
&Val2.getSemantics() == &APFloat::IEEEdouble())
return true;
Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
return !losesInfo;
}
case Type::X86_FP80TyID:
return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
&Val2.getSemantics() == &APFloat::BFloat() ||
&Val2.getSemantics() == &APFloat::IEEEsingle() ||
&Val2.getSemantics() == &APFloat::IEEEdouble() ||
&Val2.getSemantics() == &APFloat::x87DoubleExtended();
case Type::FP128TyID:
return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
&Val2.getSemantics() == &APFloat::BFloat() ||
&Val2.getSemantics() == &APFloat::IEEEsingle() ||
&Val2.getSemantics() == &APFloat::IEEEdouble() ||
&Val2.getSemantics() == &APFloat::IEEEquad();
case Type::PPC_FP128TyID:
return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
&Val2.getSemantics() == &APFloat::BFloat() ||
&Val2.getSemantics() == &APFloat::IEEEsingle() ||
&Val2.getSemantics() == &APFloat::IEEEdouble() ||
&Val2.getSemantics() == &APFloat::PPCDoubleDouble();
}
}
//===----------------------------------------------------------------------===//
// Factory Function Implementation
ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
"Cannot create an aggregate zero of non-aggregate type!");
std::unique_ptr<ConstantAggregateZero> &Entry =
Ty->getContext().pImpl->CAZConstants[Ty];
if (!Entry)
Entry.reset(new ConstantAggregateZero(Ty));
return Entry.get();
}
/// Remove the constant from the constant table.
void ConstantAggregateZero::destroyConstantImpl() {
getContext().pImpl->CAZConstants.erase(getType());
}
/// Remove the constant from the constant table.
void ConstantArray::destroyConstantImpl() {
getType()->getContext().pImpl->ArrayConstants.remove(this);
}
//---- ConstantStruct::get() implementation...
//
/// Remove the constant from the constant table.
void ConstantStruct::destroyConstantImpl() {
getType()->getContext().pImpl->StructConstants.remove(this);
}
/// Remove the constant from the constant table.
void ConstantVector::destroyConstantImpl() {
getType()->getContext().pImpl->VectorConstants.remove(this);
}
Constant *Constant::getSplatValue(bool AllowUndefs) const {
assert(this->getType()->isVectorTy() && "Only valid for vectors!");
if (isa<ConstantAggregateZero>(this))
return getNullValue(cast<VectorType>(getType())->getElementType());
if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
return CV->getSplatValue();
if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
return CV->getSplatValue(AllowUndefs);
// Check if this is a constant expression splat of the form returned by
// ConstantVector::getSplat()
const auto *Shuf = dyn_cast<ConstantExpr>(this);
if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
isa<UndefValue>(Shuf->getOperand(1))) {
const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
isa<UndefValue>(IElt->getOperand(0))) {
ArrayRef<int> Mask = Shuf->getShuffleMask();
Constant *SplatVal = IElt->getOperand(1);
ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
if (Index && Index->getValue() == 0 &&
std::all_of(Mask.begin(), Mask.end(), [](int I) { return I == 0; }))
return SplatVal;
}
}
return nullptr;
}
Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
// Check out first element.
Constant *Elt = getOperand(0);
// Then make sure all remaining elements point to the same value.
for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
Constant *OpC = getOperand(I);
if (OpC == Elt)
continue;
// Strict mode: any mismatch is not a splat.
if (!AllowUndefs)
return nullptr;
// Allow undefs mode: ignore undefined elements.
if (isa<UndefValue>(OpC))
continue;
// If we do not have a defined element yet, use the current operand.
if (isa<UndefValue>(Elt))
Elt = OpC;
if (OpC != Elt)
return nullptr;
}
return Elt;
}
const APInt &Constant::getUniqueInteger() const {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
return CI->getValue();
assert(this->getSplatValue() && "Doesn't contain a unique integer!");
const Constant *C = this->getAggregateElement(0U);
assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
return cast<ConstantInt>(C)->getValue();
}
//---- ConstantPointerNull::get() implementation.
//
ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
std::unique_ptr<ConstantPointerNull> &Entry =
Ty->getContext().pImpl->CPNConstants[Ty];
if (!Entry)
Entry.reset(new ConstantPointerNull(Ty));
return Entry.get();
}
/// Remove the constant from the constant table.
void ConstantPointerNull::destroyConstantImpl() {
getContext().pImpl->CPNConstants.erase(getType());
}
UndefValue *UndefValue::get(Type *Ty) {
std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
if (!Entry)
Entry.reset(new UndefValue(Ty));
return Entry.get();
}
/// Remove the constant from the constant table.
void UndefValue::destroyConstantImpl() {
// Free the constant and any dangling references to it.
getContext().pImpl->UVConstants.erase(getType());
}
BlockAddress *BlockAddress::get(BasicBlock *BB) {
assert(BB->getParent() && "Block must have a parent");
return get(BB->getParent(), BB);
}
BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
BlockAddress *&BA =
F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
if (!BA)
BA = new BlockAddress(F, BB);
assert(BA->getFunction() == F && "Basic block moved between functions");
return BA;
}
BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
&Op<0>(), 2) {
setOperand(0, F);
setOperand(1, BB);
BB->AdjustBlockAddressRefCount(1);
}
BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
if (!BB->hasAddressTaken())
return nullptr;
const Function *F = BB->getParent();
assert(F && "Block must have a parent");
BlockAddress *BA =
F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
assert(BA && "Refcount and block address map disagree!");
return BA;
}
/// Remove the constant from the constant table.
void BlockAddress::destroyConstantImpl() {
getFunction()->getType()->getContext().pImpl
->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
getBasicBlock()->AdjustBlockAddressRefCount(-1);
}
Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
// This could be replacing either the Basic Block or the Function. In either
// case, we have to remove the map entry.
Function *NewF = getFunction();
BasicBlock *NewBB = getBasicBlock();
if (From == NewF)
NewF = cast<Function>(To->stripPointerCasts());
else {
assert(From == NewBB && "From does not match any operand");
NewBB = cast<BasicBlock>(To);
}
// See if the 'new' entry already exists, if not, just update this in place
// and return early.
BlockAddress *&NewBA =
getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
if (NewBA)
return NewBA;
getBasicBlock()->AdjustBlockAddressRefCount(-1);
// Remove the old entry, this can't cause the map to rehash (just a
// tombstone will get added).
getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
getBasicBlock()));
NewBA = this;
setOperand(0, NewF);
setOperand(1, NewBB);
getBasicBlock()->AdjustBlockAddressRefCount(1);
// If we just want to keep the existing value, then return null.
// Callers know that this means we shouldn't delete this value.
return nullptr;
}
//---- ConstantExpr::get() implementations.
//
/// This is a utility function to handle folding of casts and lookup of the
/// cast in the ExprConstants map. It is used by the various get* methods below.
static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
bool OnlyIfReduced = false) {
assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
// Fold a few common cases
if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
return FC;
if (OnlyIfReduced)
return nullptr;
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// Look up the constant in the table first to ensure uniqueness.
ConstantExprKeyType Key(opc, C);
return pImpl->ExprConstants.getOrCreate(Ty, Key);
}
Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
bool OnlyIfReduced) {
Instruction::CastOps opc = Instruction::CastOps(oc);
assert(Instruction::isCast(opc) && "opcode out of range");
assert(C && Ty && "Null arguments to getCast");
assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
switch (opc) {
default:
llvm_unreachable("Invalid cast opcode");
case Instruction::Trunc:
return getTrunc(C, Ty, OnlyIfReduced);
case Instruction::ZExt:
return getZExt(C, Ty, OnlyIfReduced);
case Instruction::SExt:
return getSExt(C, Ty, OnlyIfReduced);
case Instruction::FPTrunc:
return getFPTrunc(C, Ty, OnlyIfReduced);
case Instruction::FPExt:
return getFPExtend(C, Ty, OnlyIfReduced);
case Instruction::UIToFP:
return getUIToFP(C, Ty, OnlyIfReduced);
case Instruction::SIToFP:
return getSIToFP(C, Ty, OnlyIfReduced);
case Instruction::FPToUI:
return getFPToUI(C, Ty, OnlyIfReduced);
case Instruction::FPToSI:
return getFPToSI(C, Ty, OnlyIfReduced);
case Instruction::PtrToInt:
return getPtrToInt(C, Ty, OnlyIfReduced);
case Instruction::IntToPtr:
return getIntToPtr(C, Ty, OnlyIfReduced);
case Instruction::BitCast:
return getBitCast(C, Ty, OnlyIfReduced);
case Instruction::AddrSpaceCast:
return getAddrSpaceCast(C, Ty, OnlyIfReduced);
}
}
Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getZExt(C, Ty);
}
Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getSExt(C, Ty);
}
Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return getBitCast(C, Ty);
return getTrunc(C, Ty);
}
Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
"Invalid cast");
if (Ty->isIntOrIntVectorTy())
return getPtrToInt(S, Ty);
unsigned SrcAS = S->getType()->getPointerAddressSpace();
if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
return getAddrSpaceCast(S, Ty);
return getBitCast(S, Ty);
}
Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
Type *Ty) {
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
return getAddrSpaceCast(S, Ty);
return getBitCast(S, Ty);
}
Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
assert(C->getType()->isIntOrIntVectorTy() &&
Ty->isIntOrIntVectorTy() && "Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::Trunc :
(isSigned ? Instruction::SExt : Instruction::ZExt)));
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
if (SrcBits == DstBits)
return C; // Avoid a useless cast
Instruction::CastOps opcode =
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
return getCast(opcode, C, Ty);
}
Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = isa<VectorType>(C->getType());
bool toVec = isa<VectorType>(Ty);
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"SrcTy must be larger than DestTy for Trunc!");
return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = isa<VectorType>(C->getType());
bool toVec = isa<VectorType>(Ty);
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for SExt!");
return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = isa<VectorType>(C->getType());
bool toVec = isa<VectorType>(Ty);
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"SrcTy must be smaller than DestTy for ZExt!");
return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = isa<VectorType>(C->getType());
bool toVec = isa<VectorType>(Ty);
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
"This is an illegal floating point truncation!");
return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = isa<VectorType>(C->getType());
bool toVec = isa<VectorType>(Ty);
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
"This is an illegal floating point extension!");
return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = isa<VectorType>(C->getType());
bool toVec = isa<VectorType>(Ty);
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
"This is an illegal uint to floating point cast!");
return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = isa<VectorType>(C->getType());
bool toVec = isa<VectorType>(Ty);
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
"This is an illegal sint to floating point cast!");
return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = isa<VectorType>(C->getType());
bool toVec = isa<VectorType>(Ty);
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
"This is an illegal floating point to uint cast!");
return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
#ifndef NDEBUG
bool fromVec = isa<VectorType>(C->getType());
bool toVec = isa<VectorType>(Ty);
#endif
assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
"This is an illegal floating point to sint cast!");
return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
}
Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
bool OnlyIfReduced) {
assert(C->getType()->isPtrOrPtrVectorTy() &&
"PtrToInt source must be pointer or pointer vector");
assert(DstTy->isIntOrIntVectorTy() &&
"PtrToInt destination must be integer or integer vector");
assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
if (isa<VectorType>(C->getType()))
assert(cast<VectorType>(C->getType())->getNumElements() ==
cast<VectorType>(DstTy)->getNumElements() &&
"Invalid cast between a different number of vector elements");
return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
}
Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
bool OnlyIfReduced) {
assert(C->getType()->isIntOrIntVectorTy() &&
"IntToPtr source must be integer or integer vector");
assert(DstTy->isPtrOrPtrVectorTy() &&
"IntToPtr destination must be a pointer or pointer vector");
assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
if (isa<VectorType>(C->getType()))
assert(cast<VectorType>(C->getType())->getNumElements() ==
cast<VectorType>(DstTy)->getNumElements() &&
"Invalid cast between a different number of vector elements");
return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
}
Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
bool OnlyIfReduced) {
assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
"Invalid constantexpr bitcast!");
// It is common to ask for a bitcast of a value to its own type, handle this
// speedily.
if (C->getType() == DstTy) return C;
return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
}
Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
bool OnlyIfReduced) {
assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
"Invalid constantexpr addrspacecast!");
// Canonicalize addrspacecasts between different pointer types by first
// bitcasting the pointer type and then converting the address space.
PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
Type *DstElemTy = DstScalarTy->getElementType();
if (SrcScalarTy->getElementType() != DstElemTy) {
Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
// Handle vectors of pointers.
MidTy = FixedVectorType::get(MidTy, VT->getNumElements());
}
C = getBitCast(C, MidTy);
}
return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
Type *OnlyIfReducedTy) {
// Check the operands for consistency first.
assert(Instruction::isUnaryOp(Opcode) &&
"Invalid opcode in unary constant expression");
#ifndef NDEBUG
switch (Opcode) {
case Instruction::FNeg:
assert(C->getType()->isFPOrFPVectorTy() &&
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
default:
break;
}
#endif
if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
return FC;
if (OnlyIfReducedTy == C->getType())
return nullptr;
Constant *ArgVec[] = { C };
ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
}
Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
unsigned Flags, Type *OnlyIfReducedTy) {
// Check the operands for consistency first.
assert(Instruction::isBinaryOp(Opcode) &&
"Invalid opcode in binary constant expression");
assert(C1->getType() == C2->getType() &&
"Operand types in binary constant expression should match");
#ifndef NDEBUG
switch (Opcode) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create an integer operation on a non-integer type!");
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
assert(C1->getType()->isFPOrFPVectorTy() &&
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create a logical operation on a non-integral type!");
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
assert(C1->getType()->isIntOrIntVectorTy() &&
"Tried to create a shift operation on a non-integer type!");
break;
default:
break;
}
#endif
if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
return FC;
if (OnlyIfReducedTy == C1->getType())
return nullptr;
Constant *ArgVec[] = { C1, C2 };
ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
LLVMContextImpl *pImpl = C1->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
}
Constant *ConstantExpr::getSizeOf(Type* Ty) {
// sizeof is implemented as: (i64) gep (Ty*)null, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
Constant *GEP = getGetElementPtr(
Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant *ConstantExpr::getAlignOf(Type* Ty) {
// alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
// Note that a non-inbounds gep is used, as null isn't within any object.
Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
Constant *Indices[2] = { Zero, One };
Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
FieldNo));
}
Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
// offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
// Note that a non-inbounds gep is used, as null isn't within any object.
Constant *GEPIdx[] = {
ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
FieldNo
};
Constant *GEP = getGetElementPtr(
Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
return getPtrToInt(GEP,
Type::getInt64Ty(Ty->getContext()));
}
Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
Constant *C2, bool OnlyIfReduced) {
assert(C1->getType() == C2->getType() && "Op types should be identical!");
switch (Predicate) {
default: llvm_unreachable("Invalid CmpInst predicate");
case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
case CmpInst::FCMP_TRUE:
return getFCmp(Predicate, C1, C2, OnlyIfReduced);
case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
return getICmp(Predicate, C1, C2, OnlyIfReduced);
}
}
Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
Type *OnlyIfReducedTy) {
assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
return SC; // Fold common cases
if (OnlyIfReducedTy == V1->getType())
return nullptr;
Constant *ArgVec[] = { C, V1, V2 };
ConstantExprKeyType Key(Instruction::Select, ArgVec);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
}
Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
ArrayRef<Value *> Idxs, bool InBounds,
Optional<unsigned> InRangeIndex,
Type *OnlyIfReducedTy) {
if (!Ty)
Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
else
assert(Ty ==
cast<PointerType>(C->getType()->getScalarType())->getElementType());
if (Constant *FC =
ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
return FC; // Fold a few common cases.
// Get the result type of the getelementptr!
Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
assert(DestTy && "GEP indices invalid!");
unsigned AS = C->getType()->getPointerAddressSpace();
Type *ReqTy = DestTy->getPointerTo(AS);
ElementCount EltCount = {0, false};
if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
EltCount = VecTy->getElementCount();
else
for (auto Idx : Idxs)
if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType()))
EltCount = VecTy->getElementCount();
if (EltCount.Min != 0)
ReqTy = VectorType::get(ReqTy, EltCount);
if (OnlyIfReducedTy == ReqTy)
return nullptr;
// Look up the constant in the table first to ensure uniqueness
std::vector<Constant*> ArgVec;
ArgVec.reserve(1 + Idxs.size());
ArgVec.push_back(C);
auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
for (; GTI != GTE; ++GTI) {
auto *Idx = cast<Constant>(GTI.getOperand());
assert(
(!isa<VectorType>(Idx->getType()) ||
cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
"getelementptr index type missmatch");
if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
Idx = Idx->getSplatValue();
} else if (GTI.isSequential() && EltCount.Min != 0 &&
!Idx->getType()->isVectorTy()) {
Idx = ConstantVector::getSplat(EltCount, Idx);
}
ArgVec.push_back(Idx);
}
unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
if (InRangeIndex && *InRangeIndex < 63)
SubClassOptionalData |= (*InRangeIndex + 1) << 1;
const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
SubClassOptionalData, None, None, Ty);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
Constant *RHS, bool OnlyIfReduced) {
assert(LHS->getType() == RHS->getType());
assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
"Invalid ICmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
if (OnlyIfReduced)
return nullptr;
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { LHS, RHS };
// Get the key type with both the opcode and predicate
const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
ResultTy = VectorType::get(ResultTy, VT->getElementCount());
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}
Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
Constant *RHS, bool OnlyIfReduced) {
assert(LHS->getType() == RHS->getType());
assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
"Invalid FCmp Predicate");
if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
return FC; // Fold a few common cases...
if (OnlyIfReduced)
return nullptr;
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { LHS, RHS };
// Get the key type with both the opcode and predicate
const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
ResultTy = VectorType::get(ResultTy, VT->getElementCount());
LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
}
Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
Type *OnlyIfReducedTy) {
assert(Val->getType()->isVectorTy() &&
"Tried to create extractelement operation on non-vector type!");
assert(Idx->getType()->isIntegerTy() &&
"Extractelement index must be an integer type!");
if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
return FC; // Fold a few common cases.
Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
if (OnlyIfReducedTy == ReqTy)
return nullptr;
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { Val, Idx };
const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
Constant *Idx, Type *OnlyIfReducedTy) {
assert(Val->getType()->isVectorTy() &&
"Tried to create insertelement operation on non-vector type!");
assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
"Insertelement types must match!");
assert(Idx->getType()->isIntegerTy() &&
"Insertelement index must be i32 type!");
if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
return FC; // Fold a few common cases.
if (OnlyIfReducedTy == Val->getType())
return nullptr;
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { Val, Elt, Idx };
const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
}
Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
ArrayRef<int> Mask,
Type *OnlyIfReducedTy) {
assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector constant expr operands!");
if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
return FC; // Fold a few common cases.
unsigned NElts = Mask.size();
auto V1VTy = cast<VectorType>(V1->getType());
Type *EltTy = V1VTy->getElementType();
bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
if (OnlyIfReducedTy == ShufTy)
return nullptr;
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = {V1, V2};
ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask);
LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
}
Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
ArrayRef<unsigned> Idxs,
Type *OnlyIfReducedTy) {
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant insertvalue expression");
assert(ExtractValueInst::getIndexedType(Agg->getType(),
Idxs) == Val->getType() &&
"insertvalue indices invalid!");
Type *ReqTy = Val->getType();
if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
return FC;
if (OnlyIfReducedTy == ReqTy)
return nullptr;
Constant *ArgVec[] = { Agg, Val };
const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
Type *OnlyIfReducedTy) {
assert(Agg->getType()->isFirstClassType() &&
"Tried to create extractelement operation on non-first-class type!");
Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
(void)ReqTy;
assert(ReqTy && "extractvalue indices invalid!");
assert(Agg->getType()->isFirstClassType() &&
"Non-first-class type for constant extractvalue expression");
if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
return FC;
if (OnlyIfReducedTy == ReqTy)
return nullptr;
Constant *ArgVec[] = { Agg };
const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
}
Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
assert(C->getType()->isIntOrIntVectorTy() &&
"Cannot NEG a nonintegral value!");
return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
C, HasNUW, HasNSW);
}
Constant *ConstantExpr::getFNeg(Constant *C) {
assert(C->getType()->isFPOrFPVectorTy() &&
"Cannot FNEG a non-floating-point value!");
return get(Instruction::FNeg, C);
}
Constant *ConstantExpr::getNot(Constant *C) {
assert(C->getType()->isIntOrIntVectorTy() &&
"Cannot NOT a nonintegral value!");
return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
}
Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Add, C1, C2, Flags);
}
Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
return get(Instruction::FAdd, C1, C2);
}
Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Sub, C1, C2, Flags);
}
Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
return get(Instruction::FSub, C1, C2);
}
Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Mul, C1, C2, Flags);
}
Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
return get(Instruction::FMul, C1, C2);
}
Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::UDiv, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::SDiv, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
return get(Instruction::FDiv, C1, C2);
}
Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
return get(Instruction::URem, C1, C2);
}
Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
return get(Instruction::SRem, C1, C2);
}
Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
return get(Instruction::FRem, C1, C2);
}
Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
return get(Instruction::And, C1, C2);
}
Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
return get(Instruction::Or, C1, C2);
}
Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
return get(Instruction::Xor, C1, C2);
}
Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
bool HasNUW, bool HasNSW) {
unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
(HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
return get(Instruction::Shl, C1, C2, Flags);
}
Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::LShr, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
return get(Instruction::AShr, C1, C2,
isExact ? PossiblyExactOperator::IsExact : 0);
}
Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
bool AllowRHSConstant) {
assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
// Commutative opcodes: it does not matter if AllowRHSConstant is set.
if (Instruction::isCommutative(Opcode)) {
switch (Opcode) {
case Instruction::Add: // X + 0 = X
case Instruction::Or: // X | 0 = X
case Instruction::Xor: // X ^ 0 = X
return Constant::getNullValue(Ty);
case Instruction::Mul: // X * 1 = X
return ConstantInt::get(Ty, 1);
case Instruction::And: // X & -1 = X
return Constant::getAllOnesValue(Ty);
case Instruction::FAdd: // X + -0.0 = X
// TODO: If the fadd has 'nsz', should we return +0.0?
return ConstantFP::getNegativeZero(Ty);
case Instruction::FMul: // X * 1.0 = X
return ConstantFP::get(Ty, 1.0);
default:
llvm_unreachable("Every commutative binop has an identity constant");
}
}
// Non-commutative opcodes: AllowRHSConstant must be set.
if (!AllowRHSConstant)
return nullptr;
switch (Opcode) {
case Instruction::Sub: // X - 0 = X
case Instruction::Shl: // X << 0 = X
case Instruction::LShr: // X >>u 0 = X
case Instruction::AShr: // X >> 0 = X
case Instruction::FSub: // X - 0.0 = X
return Constant::getNullValue(Ty);
case Instruction::SDiv: // X / 1 = X
case Instruction::UDiv: // X /u 1 = X
return ConstantInt::get(Ty, 1);
case Instruction::FDiv: // X / 1.0 = X
return ConstantFP::get(Ty, 1.0);
default:
return nullptr;
}
}
Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
switch (Opcode) {
default:
// Doesn't have an absorber.
return nullptr;
case Instruction::Or:
return Constant::getAllOnesValue(Ty);
case Instruction::And:
case Instruction::Mul:
return Constant::getNullValue(Ty);
}
}
/// Remove the constant from the constant table.
void ConstantExpr::destroyConstantImpl() {
getType()->getContext().pImpl->ExprConstants.remove(this);
}
const char *ConstantExpr::getOpcodeName() const {
return Instruction::getOpcodeName(getOpcode());
}
GetElementPtrConstantExpr::GetElementPtrConstantExpr(
Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
: ConstantExpr(DestTy, Instruction::GetElementPtr,
OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
(IdxList.size() + 1),
IdxList.size() + 1),
SrcElementTy(SrcElementTy),
ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
Op<0>() = C;
Use *OperandList = getOperandList();
for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
OperandList[i+1] = IdxList[i];
}
Type *GetElementPtrConstantExpr::getSourceElementType() const {
return SrcElementTy;
}
Type *GetElementPtrConstantExpr::getResultElementType() const {
return ResElementTy;
}
//===----------------------------------------------------------------------===//
// ConstantData* implementations
Type *ConstantDataSequential::getElementType() const {
if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
return ATy->getElementType();
return cast<VectorType>(getType())->getElementType();
}
StringRef ConstantDataSequential::getRawDataValues() const {
return StringRef(DataElements, getNumElements()*getElementByteSize());
}
bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
return true;
if (auto *IT = dyn_cast<IntegerType>(Ty)) {
switch (IT->getBitWidth()) {
case 8:
case 16:
case 32:
case 64:
return true;
default: break;
}
}
return false;
}
unsigned ConstantDataSequential::getNumElements() const {
if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
return AT->getNumElements();
return cast<VectorType>(getType())->getNumElements();
}
uint64_t ConstantDataSequential::getElementByteSize() const {
return getElementType()->getPrimitiveSizeInBits()/8;
}
/// Return the start of the specified element.
const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
assert(Elt < getNumElements() && "Invalid Elt");
return DataElements+Elt*getElementByteSize();
}
/// Return true if the array is empty or all zeros.
static bool isAllZeros(StringRef Arr) {
for (char I : Arr)
if (I != 0)
return false;
return true;
}
/// This is the underlying implementation of all of the
/// ConstantDataSequential::get methods. They all thunk down to here, providing
/// the correct element type. We take the bytes in as a StringRef because
/// we *want* an underlying "char*" to avoid TBAA type punning violations.
Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
#ifndef NDEBUG
if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
assert(isElementTypeCompatible(ATy->getElementType()));
else
assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
#endif
// If the elements are all zero or there are no elements, return a CAZ, which
// is more dense and canonical.
if (isAllZeros(Elements))
return ConstantAggregateZero::get(Ty);
// Do a lookup to see if we have already formed one of these.
auto &Slot =
*Ty->getContext()
.pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
.first;
// The bucket can point to a linked list of different CDS's that have the same
// body but different types. For example, 0,0,0,1 could be a 4 element array
// of i8, or a 1-element array of i32. They'll both end up in the same
/// StringMap bucket, linked up by their Next pointers. Walk the list.
ConstantDataSequential **Entry = &Slot.second;
for (ConstantDataSequential *Node = *Entry; Node;
Entry = &Node->Next, Node = *Entry)
if (Node->getType() == Ty)
return Node;
// Okay, we didn't get a hit. Create a node of the right class, link it in,
// and return it.
if (isa<ArrayType>(Ty))
return *Entry = new ConstantDataArray(Ty, Slot.first().data());
assert(isa<VectorType>(Ty));
return *Entry = new ConstantDataVector(Ty, Slot.first().data());
}
void ConstantDataSequential::destroyConstantImpl() {
// Remove the constant from the StringMap.
StringMap<ConstantDataSequential*> &CDSConstants =
getType()->getContext().pImpl->CDSConstants;
StringMap<ConstantDataSequential*>::iterator Slot =
CDSConstants.find(getRawDataValues());
assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
ConstantDataSequential **Entry = &Slot->getValue();
// Remove the entry from the hash table.
if (!(*Entry)->Next) {
// If there is only one value in the bucket (common case) it must be this
// entry, and removing the entry should remove the bucket completely.
assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
getContext().pImpl->CDSConstants.erase(Slot);
} else {
// Otherwise, there are multiple entries linked off the bucket, unlink the
// node we care about but keep the bucket around.
for (ConstantDataSequential *Node = *Entry; ;
Entry = &Node->Next, Node = *Entry) {
assert(Node && "Didn't find entry in its uniquing hash table!");
// If we found our entry, unlink it from the list and we're done.
if (Node == this) {
*Entry = Node->Next;
break;
}
}
}
// If we were part of a list, make sure that we don't delete the list that is
// still owned by the uniquing map.
Next = nullptr;
}
/// getFP() constructors - Return a constant of array type with a float
/// element type taken from argument `ElementType', and count taken from
/// argument `Elts'. The amount of bits of the contained type must match the
/// number of bits of the type contained in the passed in ArrayRef.
/// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
/// that this can return a ConstantAggregateZero object.
Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
"Element type is not a 16-bit float type");
Type *Ty = ArrayType::get(ElementType, Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 2), Ty);
}
Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
Type *Ty = ArrayType::get(ElementType, Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 4), Ty);
}
Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
assert(ElementType->isDoubleTy() &&
"Element type is not a 64-bit float type");
Type *Ty = ArrayType::get(ElementType, Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 8), Ty);
}
Constant *ConstantDataArray::getString(LLVMContext &Context,
StringRef Str, bool AddNull) {
if (!AddNull) {
const uint8_t *Data = Str.bytes_begin();
return get(Context, makeArrayRef(Data, Str.size()));
}
SmallVector<uint8_t, 64> ElementVals;
ElementVals.append(Str.begin(), Str.end());
ElementVals.push_back(0);
return get(Context, ElementVals);
}
/// get() constructors - Return a constant with vector type with an element
/// count and element type matching the ArrayRef passed in. Note that this
/// can return a ConstantAggregateZero object.
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 1), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 2), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 4), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 8), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 4), Ty);
}
Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 8), Ty);
}
/// getFP() constructors - Return a constant of vector type with a float
/// element type taken from argument `ElementType', and count taken from
/// argument `Elts'. The amount of bits of the contained type must match the
/// number of bits of the type contained in the passed in ArrayRef.
/// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
/// that this can return a ConstantAggregateZero object.
Constant *ConstantDataVector::getFP(Type *ElementType,
ArrayRef<uint16_t> Elts) {
assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
"Element type is not a 16-bit float type");
auto *Ty = FixedVectorType::get(ElementType, Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 2), Ty);
}
Constant *ConstantDataVector::getFP(Type *ElementType,
ArrayRef<uint32_t> Elts) {
assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
auto *Ty = FixedVectorType::get(ElementType, Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 4), Ty);
}
Constant *ConstantDataVector::getFP(Type *ElementType,
ArrayRef<uint64_t> Elts) {
assert(ElementType->isDoubleTy() &&
"Element type is not a 64-bit float type");
auto *Ty = FixedVectorType::get(ElementType, Elts.size());
const char *Data = reinterpret_cast<const char *>(Elts.data());
return getImpl(StringRef(Data, Elts.size() * 8), Ty);
}
Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
assert(isElementTypeCompatible(V->getType()) &&
"Element type not compatible with ConstantData");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getType()->isIntegerTy(8)) {
SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
if (CI->getType()->isIntegerTy(16)) {
SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
if (CI->getType()->isIntegerTy(32)) {
SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
return get(V->getContext(), Elts);
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType()->isHalfTy()) {
SmallVector<uint16_t, 16> Elts(
NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
return getFP(V->getType(), Elts);
}
if (CFP->getType()->isBFloatTy()) {
SmallVector<uint16_t, 16> Elts(
NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
return getFP(V->getType(), Elts);
}
if (CFP->getType()->isFloatTy()) {
SmallVector<uint32_t, 16> Elts(
NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
return getFP(V->getType(), Elts);
}
if (CFP->getType()->isDoubleTy()) {
SmallVector<uint64_t, 16> Elts(
NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
return getFP(V->getType(), Elts);
}
}
return ConstantVector::getSplat({NumElts, false}, V);
}
uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
assert(isa<IntegerType>(getElementType()) &&
"Accessor can only be used when element is an integer");
const char *EltPtr = getElementPointer(Elt);
// The data is stored in host byte order, make sure to cast back to the right
// type to load with the right endianness.
switch (getElementType()->getIntegerBitWidth()) {
default: llvm_unreachable("Invalid bitwidth for CDS");
case 8:
return *reinterpret_cast<const uint8_t *>(EltPtr);
case 16:
return *reinterpret_cast<const uint16_t *>(EltPtr);
case 32:
return *reinterpret_cast<const uint32_t *>(EltPtr);
case 64:
return *reinterpret_cast<const uint64_t *>(EltPtr);
}
}
APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
assert(isa<IntegerType>(getElementType()) &&
"Accessor can only be used when element is an integer");
const char *EltPtr = getElementPointer(Elt);
// The data is stored in host byte order, make sure to cast back to the right
// type to load with the right endianness.
switch (getElementType()->getIntegerBitWidth()) {
default: llvm_unreachable("Invalid bitwidth for CDS");
case 8: {
auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
return APInt(8, EltVal);
}
case 16: {
auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
return APInt(16, EltVal);
}
case 32: {
auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
return APInt(32, EltVal);
}
case 64: {
auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
return APInt(64, EltVal);
}
}
}
APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
const char *EltPtr = getElementPointer(Elt);
switch (getElementType()->getTypeID()) {
default:
llvm_unreachable("Accessor can only be used when element is float/double!");
case Type::HalfTyID: {
auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
}
case Type::BFloatTyID: {
auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
return APFloat(APFloat::BFloat(), APInt(16, EltVal));
}
case Type::FloatTyID: {
auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
}
case Type::DoubleTyID: {
auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
}
}
}
float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
assert(getElementType()->isFloatTy() &&
"Accessor can only be used when element is a 'float'");
return *reinterpret_cast<const float *>(getElementPointer(Elt));
}
double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
assert(getElementType()->isDoubleTy() &&
"Accessor can only be used when element is a 'float'");
return *reinterpret_cast<const double *>(getElementPointer(Elt));
}
Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
getElementType()->isFloatTy() || getElementType()->isDoubleTy())
return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
}
bool ConstantDataSequential::isString(unsigned CharSize) const {
return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
}
bool ConstantDataSequential::isCString() const {
if (!isString())
return false;
StringRef Str = getAsString();
// The last value must be nul.
if (Str.back() != 0) return false;
// Other elements must be non-nul.
return Str.drop_back().find(0) == StringRef::npos;
}
bool ConstantDataVector::isSplatData() const {
const char *Base = getRawDataValues().data();
// Compare elements 1+ to the 0'th element.
unsigned EltSize = getElementByteSize();
for (unsigned i = 1, e = getNumElements(); i != e; ++i)
if (memcmp(Base, Base+i*EltSize, EltSize))
return false;
return true;
}
bool ConstantDataVector::isSplat() const {
if (!IsSplatSet) {
IsSplatSet = true;
IsSplat = isSplatData();
}
return IsSplat;
}
Constant *ConstantDataVector::getSplatValue() const {
// If they're all the same, return the 0th one as a representative.
return isSplat() ? getElementAsConstant(0) : nullptr;
}
//===----------------------------------------------------------------------===//
// handleOperandChange implementations
/// Update this constant array to change uses of
/// 'From' to be uses of 'To'. This must update the uniquing data structures
/// etc.
///
/// Note that we intentionally replace all uses of From with To here. Consider
/// a large array that uses 'From' 1000 times. By handling this case all here,
/// ConstantArray::handleOperandChange is only invoked once, and that
/// single invocation handles all 1000 uses. Handling them one at a time would
/// work, but would be really slow because it would have to unique each updated
/// array instance.
///
void Constant::handleOperandChange(Value *From, Value *To) {
Value *Replacement = nullptr;
switch (getValueID()) {
default:
llvm_unreachable("Not a constant!");
#define HANDLE_CONSTANT(Name) \
case Value::Name##Val: \
Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
break;
#include "llvm/IR/Value.def"
}
// If handleOperandChangeImpl returned nullptr, then it handled
// replacing itself and we don't want to delete or replace anything else here.
if (!Replacement)
return;
// I do need to replace this with an existing value.
assert(Replacement != this && "I didn't contain From!");
// Everyone using this now uses the replacement.
replaceAllUsesWith(Replacement);
// Delete the old constant!
destroyConstant();
}
Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
SmallVector<Constant*, 8> Values;
Values.reserve(getNumOperands()); // Build replacement array.
// Fill values with the modified operands of the constant array. Also,
// compute whether this turns into an all-zeros array.
unsigned NumUpdated = 0;
// Keep track of whether all the values in the array are "ToC".
bool AllSame = true;
Use *OperandList = getOperandList();
unsigned OperandNo = 0;
for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
OperandNo = (O - OperandList);
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
AllSame &= Val == ToC;
}
if (AllSame && ToC->isNullValue())
return ConstantAggregateZero::get(getType());
if (AllSame && isa<UndefValue>(ToC))
return UndefValue::get(getType());
// Check for any other type of constant-folding.
if (Constant *C = getImpl(getType(), Values))
return C;
// Update to the new value.
return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
Values, this, From, ToC, NumUpdated, OperandNo);
}
Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
Use *OperandList = getOperandList();
SmallVector<Constant*, 8> Values;
Values.reserve(getNumOperands()); // Build replacement struct.
// Fill values with the modified operands of the constant struct. Also,
// compute whether this turns into an all-zeros struct.
unsigned NumUpdated = 0;
bool AllSame = true;
unsigned OperandNo = 0;
for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
OperandNo = (O - OperandList);
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
AllSame &= Val == ToC;
}
if (AllSame && ToC->isNullValue())
return ConstantAggregateZero::get(getType());
if (AllSame && isa<UndefValue>(ToC))
return UndefValue::get(getType());
// Update to the new value.
return getContext().pImpl->StructConstants.replaceOperandsInPlace(
Values, this, From, ToC, NumUpdated, OperandNo);
}
Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
SmallVector<Constant*, 8> Values;
Values.reserve(getNumOperands()); // Build replacement array...
unsigned NumUpdated = 0;
unsigned OperandNo = 0;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
if (Val == From) {
OperandNo = i;
++NumUpdated;
Val = ToC;
}
Values.push_back(Val);
}
if (Constant *C = getImpl(Values))
return C;
// Update to the new value.
return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
Values, this, From, ToC, NumUpdated, OperandNo);
}
Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
Constant *To = cast<Constant>(ToV);
SmallVector<Constant*, 8> NewOps;
unsigned NumUpdated = 0;
unsigned OperandNo = 0;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Op = getOperand(i);
if (Op == From) {
OperandNo = i;
++NumUpdated;
Op = To;
}
NewOps.push_back(Op);
}
assert(NumUpdated && "I didn't contain From!");
if (Constant *C = getWithOperands(NewOps, getType(), true))
return C;
// Update to the new value.
return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
NewOps, this, From, To, NumUpdated, OperandNo);
}
Instruction *ConstantExpr::getAsInstruction() const {
SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
ArrayRef<Value*> Ops(ValueOperands);
switch (getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
return CastInst::Create((Instruction::CastOps)getOpcode(),
Ops[0], getType());
case Instruction::Select:
return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertElement:
return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ExtractElementInst::Create(Ops[0], Ops[1]);
case Instruction::InsertValue:
return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
case Instruction::ExtractValue:
return ExtractValueInst::Create(Ops[0], getIndices());
case Instruction::ShuffleVector:
return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask());
case Instruction::GetElementPtr: {
const auto *GO = cast<GEPOperator>(this);
if (GO->isInBounds())
return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
Ops[0], Ops.slice(1));
return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
Ops.slice(1));
}
case Instruction::ICmp:
case Instruction::FCmp:
return CmpInst::Create((Instruction::OtherOps)getOpcode(),
(CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
case Instruction::FNeg:
return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]);
default:
assert(getNumOperands() == 2 && "Must be binary operator?");
BinaryOperator *BO =
BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
Ops[0], Ops[1]);
if (isa<OverflowingBinaryOperator>(BO)) {
BO->setHasNoUnsignedWrap(SubclassOptionalData &
OverflowingBinaryOperator::NoUnsignedWrap);
BO->setHasNoSignedWrap(SubclassOptionalData &
OverflowingBinaryOperator::NoSignedWrap);
}
if (isa<PossiblyExactOperator>(BO))
BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
return BO;
}
}