forked from OSchip/llvm-project
473 lines
15 KiB
C++
473 lines
15 KiB
C++
//===- ExecutionDomainFix.cpp - Fix execution domain issues ----*- C++ -*--===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/ExecutionDomainFix.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "execution-deps-fix"
|
|
|
|
iterator_range<SmallVectorImpl<int>::const_iterator>
|
|
ExecutionDomainFix::regIndices(unsigned Reg) const {
|
|
assert(Reg < AliasMap.size() && "Invalid register");
|
|
const auto &Entry = AliasMap[Reg];
|
|
return make_range(Entry.begin(), Entry.end());
|
|
}
|
|
|
|
DomainValue *ExecutionDomainFix::alloc(int domain) {
|
|
DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue
|
|
: Avail.pop_back_val();
|
|
if (domain >= 0)
|
|
dv->addDomain(domain);
|
|
assert(dv->Refs == 0 && "Reference count wasn't cleared");
|
|
assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
|
|
return dv;
|
|
}
|
|
|
|
void ExecutionDomainFix::release(DomainValue *DV) {
|
|
while (DV) {
|
|
assert(DV->Refs && "Bad DomainValue");
|
|
if (--DV->Refs)
|
|
return;
|
|
|
|
// There are no more DV references. Collapse any contained instructions.
|
|
if (DV->AvailableDomains && !DV->isCollapsed())
|
|
collapse(DV, DV->getFirstDomain());
|
|
|
|
DomainValue *Next = DV->Next;
|
|
DV->clear();
|
|
Avail.push_back(DV);
|
|
// Also release the next DomainValue in the chain.
|
|
DV = Next;
|
|
}
|
|
}
|
|
|
|
DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) {
|
|
DomainValue *DV = DVRef;
|
|
if (!DV || !DV->Next)
|
|
return DV;
|
|
|
|
// DV has a chain. Find the end.
|
|
do
|
|
DV = DV->Next;
|
|
while (DV->Next);
|
|
|
|
// Update DVRef to point to DV.
|
|
retain(DV);
|
|
release(DVRef);
|
|
DVRef = DV;
|
|
return DV;
|
|
}
|
|
|
|
void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) {
|
|
assert(unsigned(rx) < NumRegs && "Invalid index");
|
|
assert(!LiveRegs.empty() && "Must enter basic block first.");
|
|
|
|
if (LiveRegs[rx] == dv)
|
|
return;
|
|
if (LiveRegs[rx])
|
|
release(LiveRegs[rx]);
|
|
LiveRegs[rx] = retain(dv);
|
|
}
|
|
|
|
void ExecutionDomainFix::kill(int rx) {
|
|
assert(unsigned(rx) < NumRegs && "Invalid index");
|
|
assert(!LiveRegs.empty() && "Must enter basic block first.");
|
|
if (!LiveRegs[rx])
|
|
return;
|
|
|
|
release(LiveRegs[rx]);
|
|
LiveRegs[rx] = nullptr;
|
|
}
|
|
|
|
void ExecutionDomainFix::force(int rx, unsigned domain) {
|
|
assert(unsigned(rx) < NumRegs && "Invalid index");
|
|
assert(!LiveRegs.empty() && "Must enter basic block first.");
|
|
if (DomainValue *dv = LiveRegs[rx]) {
|
|
if (dv->isCollapsed())
|
|
dv->addDomain(domain);
|
|
else if (dv->hasDomain(domain))
|
|
collapse(dv, domain);
|
|
else {
|
|
// This is an incompatible open DomainValue. Collapse it to whatever and
|
|
// force the new value into domain. This costs a domain crossing.
|
|
collapse(dv, dv->getFirstDomain());
|
|
assert(LiveRegs[rx] && "Not live after collapse?");
|
|
LiveRegs[rx]->addDomain(domain);
|
|
}
|
|
} else {
|
|
// Set up basic collapsed DomainValue.
|
|
setLiveReg(rx, alloc(domain));
|
|
}
|
|
}
|
|
|
|
void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) {
|
|
assert(dv->hasDomain(domain) && "Cannot collapse");
|
|
|
|
// Collapse all the instructions.
|
|
while (!dv->Instrs.empty())
|
|
TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
|
|
dv->setSingleDomain(domain);
|
|
|
|
// If there are multiple users, give them new, unique DomainValues.
|
|
if (!LiveRegs.empty() && dv->Refs > 1)
|
|
for (unsigned rx = 0; rx != NumRegs; ++rx)
|
|
if (LiveRegs[rx] == dv)
|
|
setLiveReg(rx, alloc(domain));
|
|
}
|
|
|
|
bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) {
|
|
assert(!A->isCollapsed() && "Cannot merge into collapsed");
|
|
assert(!B->isCollapsed() && "Cannot merge from collapsed");
|
|
if (A == B)
|
|
return true;
|
|
// Restrict to the domains that A and B have in common.
|
|
unsigned common = A->getCommonDomains(B->AvailableDomains);
|
|
if (!common)
|
|
return false;
|
|
A->AvailableDomains = common;
|
|
A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
|
|
|
|
// Clear the old DomainValue so we won't try to swizzle instructions twice.
|
|
B->clear();
|
|
// All uses of B are referred to A.
|
|
B->Next = retain(A);
|
|
|
|
for (unsigned rx = 0; rx != NumRegs; ++rx) {
|
|
assert(!LiveRegs.empty() && "no space allocated for live registers");
|
|
if (LiveRegs[rx] == B)
|
|
setLiveReg(rx, A);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ExecutionDomainFix::enterBasicBlock(
|
|
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
|
|
|
|
MachineBasicBlock *MBB = TraversedMBB.MBB;
|
|
|
|
// Set up LiveRegs to represent registers entering MBB.
|
|
// Set default domain values to 'no domain' (nullptr)
|
|
if (LiveRegs.empty())
|
|
LiveRegs.assign(NumRegs, nullptr);
|
|
|
|
// This is the entry block.
|
|
if (MBB->pred_empty()) {
|
|
LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
|
|
return;
|
|
}
|
|
|
|
// Try to coalesce live-out registers from predecessors.
|
|
for (MachineBasicBlock *pred : MBB->predecessors()) {
|
|
assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
|
|
"Should have pre-allocated MBBInfos for all MBBs");
|
|
LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
|
|
// Incoming is null if this is a backedge from a BB
|
|
// we haven't processed yet
|
|
if (Incoming.empty())
|
|
continue;
|
|
|
|
for (unsigned rx = 0; rx != NumRegs; ++rx) {
|
|
DomainValue *pdv = resolve(Incoming[rx]);
|
|
if (!pdv)
|
|
continue;
|
|
if (!LiveRegs[rx]) {
|
|
setLiveReg(rx, pdv);
|
|
continue;
|
|
}
|
|
|
|
// We have a live DomainValue from more than one predecessor.
|
|
if (LiveRegs[rx]->isCollapsed()) {
|
|
// We are already collapsed, but predecessor is not. Force it.
|
|
unsigned Domain = LiveRegs[rx]->getFirstDomain();
|
|
if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
|
|
collapse(pdv, Domain);
|
|
continue;
|
|
}
|
|
|
|
// Currently open, merge in predecessor.
|
|
if (!pdv->isCollapsed())
|
|
merge(LiveRegs[rx], pdv);
|
|
else
|
|
force(rx, pdv->getFirstDomain());
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << printMBBReference(*MBB)
|
|
<< (!TraversedMBB.IsDone ? ": incomplete\n"
|
|
: ": all preds known\n"));
|
|
}
|
|
|
|
void ExecutionDomainFix::leaveBasicBlock(
|
|
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
|
|
assert(!LiveRegs.empty() && "Must enter basic block first.");
|
|
unsigned MBBNumber = TraversedMBB.MBB->getNumber();
|
|
assert(MBBNumber < MBBOutRegsInfos.size() &&
|
|
"Unexpected basic block number.");
|
|
// Save register clearances at end of MBB - used by enterBasicBlock().
|
|
for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) {
|
|
release(OldLiveReg);
|
|
}
|
|
MBBOutRegsInfos[MBBNumber] = LiveRegs;
|
|
LiveRegs.clear();
|
|
}
|
|
|
|
bool ExecutionDomainFix::visitInstr(MachineInstr *MI) {
|
|
// Update instructions with explicit execution domains.
|
|
std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
|
|
if (DomP.first) {
|
|
if (DomP.second)
|
|
visitSoftInstr(MI, DomP.second);
|
|
else
|
|
visitHardInstr(MI, DomP.first);
|
|
}
|
|
|
|
return !DomP.first;
|
|
}
|
|
|
|
void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) {
|
|
assert(!MI->isDebugInstr() && "Won't process debug values");
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
for (unsigned i = 0,
|
|
e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
|
|
i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (MO.isUse())
|
|
continue;
|
|
for (int rx : regIndices(MO.getReg())) {
|
|
// This instruction explicitly defines rx.
|
|
LLVM_DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI);
|
|
|
|
// Kill off domains redefined by generic instructions.
|
|
if (Kill)
|
|
kill(rx);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
|
|
// Collapse all uses.
|
|
for (unsigned i = mi->getDesc().getNumDefs(),
|
|
e = mi->getDesc().getNumOperands();
|
|
i != e; ++i) {
|
|
MachineOperand &mo = mi->getOperand(i);
|
|
if (!mo.isReg())
|
|
continue;
|
|
for (int rx : regIndices(mo.getReg())) {
|
|
force(rx, domain);
|
|
}
|
|
}
|
|
|
|
// Kill all defs and force them.
|
|
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
|
|
MachineOperand &mo = mi->getOperand(i);
|
|
if (!mo.isReg())
|
|
continue;
|
|
for (int rx : regIndices(mo.getReg())) {
|
|
kill(rx);
|
|
force(rx, domain);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
|
|
// Bitmask of available domains for this instruction after taking collapsed
|
|
// operands into account.
|
|
unsigned available = mask;
|
|
|
|
// Scan the explicit use operands for incoming domains.
|
|
SmallVector<int, 4> used;
|
|
if (!LiveRegs.empty())
|
|
for (unsigned i = mi->getDesc().getNumDefs(),
|
|
e = mi->getDesc().getNumOperands();
|
|
i != e; ++i) {
|
|
MachineOperand &mo = mi->getOperand(i);
|
|
if (!mo.isReg())
|
|
continue;
|
|
for (int rx : regIndices(mo.getReg())) {
|
|
DomainValue *dv = LiveRegs[rx];
|
|
if (dv == nullptr)
|
|
continue;
|
|
// Bitmask of domains that dv and available have in common.
|
|
unsigned common = dv->getCommonDomains(available);
|
|
// Is it possible to use this collapsed register for free?
|
|
if (dv->isCollapsed()) {
|
|
// Restrict available domains to the ones in common with the operand.
|
|
// If there are no common domains, we must pay the cross-domain
|
|
// penalty for this operand.
|
|
if (common)
|
|
available = common;
|
|
} else if (common)
|
|
// Open DomainValue is compatible, save it for merging.
|
|
used.push_back(rx);
|
|
else
|
|
// Open DomainValue is not compatible with instruction. It is useless
|
|
// now.
|
|
kill(rx);
|
|
}
|
|
}
|
|
|
|
// If the collapsed operands force a single domain, propagate the collapse.
|
|
if (isPowerOf2_32(available)) {
|
|
unsigned domain = countTrailingZeros(available);
|
|
TII->setExecutionDomain(*mi, domain);
|
|
visitHardInstr(mi, domain);
|
|
return;
|
|
}
|
|
|
|
// Kill off any remaining uses that don't match available, and build a list of
|
|
// incoming DomainValues that we want to merge.
|
|
SmallVector<int, 4> Regs;
|
|
for (int rx : used) {
|
|
assert(!LiveRegs.empty() && "no space allocated for live registers");
|
|
DomainValue *&LR = LiveRegs[rx];
|
|
// This useless DomainValue could have been missed above.
|
|
if (!LR->getCommonDomains(available)) {
|
|
kill(rx);
|
|
continue;
|
|
}
|
|
// Sorted insertion.
|
|
// Enables giving priority to the latest domains during merging.
|
|
auto I = std::upper_bound(
|
|
Regs.begin(), Regs.end(), rx, [&](int LHS, const int RHS) {
|
|
return RDA->getReachingDef(mi, RC->getRegister(LHS)) <
|
|
RDA->getReachingDef(mi, RC->getRegister(RHS));
|
|
});
|
|
Regs.insert(I, rx);
|
|
}
|
|
|
|
// doms are now sorted in order of appearance. Try to merge them all, giving
|
|
// priority to the latest ones.
|
|
DomainValue *dv = nullptr;
|
|
while (!Regs.empty()) {
|
|
if (!dv) {
|
|
dv = LiveRegs[Regs.pop_back_val()];
|
|
// Force the first dv to match the current instruction.
|
|
dv->AvailableDomains = dv->getCommonDomains(available);
|
|
assert(dv->AvailableDomains && "Domain should have been filtered");
|
|
continue;
|
|
}
|
|
|
|
DomainValue *Latest = LiveRegs[Regs.pop_back_val()];
|
|
// Skip already merged values.
|
|
if (Latest == dv || Latest->Next)
|
|
continue;
|
|
if (merge(dv, Latest))
|
|
continue;
|
|
|
|
// If latest didn't merge, it is useless now. Kill all registers using it.
|
|
for (int i : used) {
|
|
assert(!LiveRegs.empty() && "no space allocated for live registers");
|
|
if (LiveRegs[i] == Latest)
|
|
kill(i);
|
|
}
|
|
}
|
|
|
|
// dv is the DomainValue we are going to use for this instruction.
|
|
if (!dv) {
|
|
dv = alloc();
|
|
dv->AvailableDomains = available;
|
|
}
|
|
dv->Instrs.push_back(mi);
|
|
|
|
// Finally set all defs and non-collapsed uses to dv. We must iterate through
|
|
// all the operators, including imp-def ones.
|
|
for (MachineOperand &mo : mi->operands()) {
|
|
if (!mo.isReg())
|
|
continue;
|
|
for (int rx : regIndices(mo.getReg())) {
|
|
if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) {
|
|
kill(rx);
|
|
setLiveReg(rx, dv);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExecutionDomainFix::processBasicBlock(
|
|
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
|
|
enterBasicBlock(TraversedMBB);
|
|
// If this block is not done, it makes little sense to make any decisions
|
|
// based on clearance information. We need to make a second pass anyway,
|
|
// and by then we'll have better information, so we can avoid doing the work
|
|
// to try and break dependencies now.
|
|
for (MachineInstr &MI : *TraversedMBB.MBB) {
|
|
if (!MI.isDebugInstr()) {
|
|
bool Kill = false;
|
|
if (TraversedMBB.PrimaryPass)
|
|
Kill = visitInstr(&MI);
|
|
processDefs(&MI, Kill);
|
|
}
|
|
}
|
|
leaveBasicBlock(TraversedMBB);
|
|
}
|
|
|
|
bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) {
|
|
if (skipFunction(mf.getFunction()))
|
|
return false;
|
|
MF = &mf;
|
|
TII = MF->getSubtarget().getInstrInfo();
|
|
TRI = MF->getSubtarget().getRegisterInfo();
|
|
LiveRegs.clear();
|
|
assert(NumRegs == RC->getNumRegs() && "Bad regclass");
|
|
|
|
LLVM_DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: "
|
|
<< TRI->getRegClassName(RC) << " **********\n");
|
|
|
|
// If no relevant registers are used in the function, we can skip it
|
|
// completely.
|
|
bool anyregs = false;
|
|
const MachineRegisterInfo &MRI = mf.getRegInfo();
|
|
for (unsigned Reg : *RC) {
|
|
if (MRI.isPhysRegUsed(Reg)) {
|
|
anyregs = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!anyregs)
|
|
return false;
|
|
|
|
RDA = &getAnalysis<ReachingDefAnalysis>();
|
|
|
|
// Initialize the AliasMap on the first use.
|
|
if (AliasMap.empty()) {
|
|
// Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
|
|
// therefore the LiveRegs array.
|
|
AliasMap.resize(TRI->getNumRegs());
|
|
for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
|
|
for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid();
|
|
++AI)
|
|
AliasMap[*AI].push_back(i);
|
|
}
|
|
|
|
// Initialize the MBBOutRegsInfos
|
|
MBBOutRegsInfos.resize(mf.getNumBlockIDs());
|
|
|
|
// Traverse the basic blocks.
|
|
LoopTraversal Traversal;
|
|
LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
|
|
for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
|
|
processBasicBlock(TraversedMBB);
|
|
}
|
|
|
|
for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) {
|
|
for (DomainValue *OutLiveReg : OutLiveRegs) {
|
|
if (OutLiveReg)
|
|
release(OutLiveReg);
|
|
}
|
|
}
|
|
MBBOutRegsInfos.clear();
|
|
Avail.clear();
|
|
Allocator.DestroyAll();
|
|
|
|
return false;
|
|
}
|