llvm-project/llvm/unittests/ExecutionEngine/MCJIT/MCJITTestBase.h

345 lines
13 KiB
C++

//===- MCJITTestBase.h - Common base class for MCJIT Unit tests -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements common functionality required by the MCJIT unit tests,
// as well as logic to skip tests on unsupported architectures and operating
// systems.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
#define LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
#include "MCJITTestAPICommon.h"
#include "llvm/Config/config.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/TypeBuilder.h"
#include "llvm/Support/CodeGen.h"
namespace llvm {
/// Helper class that can build very simple Modules
class TrivialModuleBuilder {
protected:
LLVMContext Context;
IRBuilder<> Builder;
std::string BuilderTriple;
TrivialModuleBuilder(const std::string &Triple)
: Builder(Context), BuilderTriple(Triple) {}
Module *createEmptyModule(StringRef Name = StringRef()) {
Module * M = new Module(Name, Context);
M->setTargetTriple(Triple::normalize(BuilderTriple));
return M;
}
template<typename FuncType>
Function *startFunction(Module *M, StringRef Name) {
Function *Result = Function::Create(
TypeBuilder<FuncType, false>::get(Context),
GlobalValue::ExternalLinkage, Name, M);
BasicBlock *BB = BasicBlock::Create(Context, Name, Result);
Builder.SetInsertPoint(BB);
return Result;
}
void endFunctionWithRet(Function *Func, Value *RetValue) {
Builder.CreateRet(RetValue);
}
// Inserts a simple function that invokes Callee and takes the same arguments:
// int Caller(...) { return Callee(...); }
template<typename Signature>
Function *insertSimpleCallFunction(Module *M, Function *Callee) {
Function *Result = startFunction<Signature>(M, "caller");
SmallVector<Value*, 1> CallArgs;
for (Argument &A : Result->args())
CallArgs.push_back(&A);
Value *ReturnCode = Builder.CreateCall(Callee, CallArgs);
Builder.CreateRet(ReturnCode);
return Result;
}
// Inserts a function named 'main' that returns a uint32_t:
// int32_t main() { return X; }
// where X is given by returnCode
Function *insertMainFunction(Module *M, uint32_t returnCode) {
Function *Result = startFunction<int32_t(void)>(M, "main");
Value *ReturnVal = ConstantInt::get(Context, APInt(32, returnCode));
endFunctionWithRet(Result, ReturnVal);
return Result;
}
// Inserts a function
// int32_t add(int32_t a, int32_t b) { return a + b; }
// in the current module and returns a pointer to it.
Function *insertAddFunction(Module *M, StringRef Name = "add") {
Function *Result = startFunction<int32_t(int32_t, int32_t)>(M, Name);
Function::arg_iterator args = Result->arg_begin();
Value *Arg1 = &*args;
Value *Arg2 = &*++args;
Value *AddResult = Builder.CreateAdd(Arg1, Arg2);
endFunctionWithRet(Result, AddResult);
return Result;
}
// Inserts a declaration to a function defined elsewhere
template <typename FuncType>
Function *insertExternalReferenceToFunction(Module *M, StringRef Name) {
Function *Result = Function::Create(
TypeBuilder<FuncType, false>::get(Context),
GlobalValue::ExternalLinkage, Name, M);
return Result;
}
// Inserts an declaration to a function defined elsewhere
Function *insertExternalReferenceToFunction(Module *M, StringRef Name,
FunctionType *FuncTy) {
Function *Result = Function::Create(FuncTy,
GlobalValue::ExternalLinkage,
Name, M);
return Result;
}
// Inserts an declaration to a function defined elsewhere
Function *insertExternalReferenceToFunction(Module *M, Function *Func) {
Function *Result = Function::Create(Func->getFunctionType(),
GlobalValue::ExternalLinkage,
Func->getName(), M);
return Result;
}
// Inserts a global variable of type int32
// FIXME: make this a template function to support any type
GlobalVariable *insertGlobalInt32(Module *M,
StringRef name,
int32_t InitialValue) {
Type *GlobalTy = TypeBuilder<types::i<32>, true>::get(Context);
Constant *IV = ConstantInt::get(Context, APInt(32, InitialValue));
GlobalVariable *Global = new GlobalVariable(*M,
GlobalTy,
false,
GlobalValue::ExternalLinkage,
IV,
name);
return Global;
}
// Inserts a function
// int32_t recursive_add(int32_t num) {
// if (num == 0) {
// return num;
// } else {
// int32_t recursive_param = num - 1;
// return num + Helper(recursive_param);
// }
// }
// NOTE: if Helper is left as the default parameter, Helper == recursive_add.
Function *insertAccumulateFunction(Module *M,
Function *Helper = nullptr,
StringRef Name = "accumulate") {
Function *Result = startFunction<int32_t(int32_t)>(M, Name);
if (!Helper)
Helper = Result;
BasicBlock *BaseCase = BasicBlock::Create(Context, "", Result);
BasicBlock *RecursiveCase = BasicBlock::Create(Context, "", Result);
// if (num == 0)
Value *Param = &*Result->arg_begin();
Value *Zero = ConstantInt::get(Context, APInt(32, 0));
Builder.CreateCondBr(Builder.CreateICmpEQ(Param, Zero),
BaseCase, RecursiveCase);
// return num;
Builder.SetInsertPoint(BaseCase);
Builder.CreateRet(Param);
// int32_t recursive_param = num - 1;
// return Helper(recursive_param);
Builder.SetInsertPoint(RecursiveCase);
Value *One = ConstantInt::get(Context, APInt(32, 1));
Value *RecursiveParam = Builder.CreateSub(Param, One);
Value *RecursiveReturn = Builder.CreateCall(Helper, RecursiveParam);
Value *Accumulator = Builder.CreateAdd(Param, RecursiveReturn);
Builder.CreateRet(Accumulator);
return Result;
}
// Populates Modules A and B:
// Module A { Extern FB1, Function FA which calls FB1 },
// Module B { Extern FA, Function FB1, Function FB2 which calls FA },
void createCrossModuleRecursiveCase(std::unique_ptr<Module> &A, Function *&FA,
std::unique_ptr<Module> &B,
Function *&FB1, Function *&FB2) {
// Define FB1 in B.
B.reset(createEmptyModule("B"));
FB1 = insertAccumulateFunction(B.get(), nullptr, "FB1");
// Declare FB1 in A (as an external).
A.reset(createEmptyModule("A"));
Function *FB1Extern = insertExternalReferenceToFunction(A.get(), FB1);
// Define FA in A (with a call to FB1).
FA = insertAccumulateFunction(A.get(), FB1Extern, "FA");
// Declare FA in B (as an external)
Function *FAExtern = insertExternalReferenceToFunction(B.get(), FA);
// Define FB2 in B (with a call to FA)
FB2 = insertAccumulateFunction(B.get(), FAExtern, "FB2");
}
// Module A { Function FA },
// Module B { Extern FA, Function FB which calls FA },
// Module C { Extern FB, Function FC which calls FB },
void
createThreeModuleChainedCallsCase(std::unique_ptr<Module> &A, Function *&FA,
std::unique_ptr<Module> &B, Function *&FB,
std::unique_ptr<Module> &C, Function *&FC) {
A.reset(createEmptyModule("A"));
FA = insertAddFunction(A.get());
B.reset(createEmptyModule("B"));
Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
C.reset(createEmptyModule("C"));
Function *FBExtern_in_C = insertExternalReferenceToFunction(C.get(), FB);
FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FBExtern_in_C);
}
// Module A { Function FA },
// Populates Modules A and B:
// Module B { Function FB }
void createTwoModuleCase(std::unique_ptr<Module> &A, Function *&FA,
std::unique_ptr<Module> &B, Function *&FB) {
A.reset(createEmptyModule("A"));
FA = insertAddFunction(A.get());
B.reset(createEmptyModule("B"));
FB = insertAddFunction(B.get());
}
// Module A { Function FA },
// Module B { Extern FA, Function FB which calls FA }
void createTwoModuleExternCase(std::unique_ptr<Module> &A, Function *&FA,
std::unique_ptr<Module> &B, Function *&FB) {
A.reset(createEmptyModule("A"));
FA = insertAddFunction(A.get());
B.reset(createEmptyModule("B"));
Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(),
FAExtern_in_B);
}
// Module A { Function FA },
// Module B { Extern FA, Function FB which calls FA },
// Module C { Extern FB, Function FC which calls FA },
void createThreeModuleCase(std::unique_ptr<Module> &A, Function *&FA,
std::unique_ptr<Module> &B, Function *&FB,
std::unique_ptr<Module> &C, Function *&FC) {
A.reset(createEmptyModule("A"));
FA = insertAddFunction(A.get());
B.reset(createEmptyModule("B"));
Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
FB = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(B.get(), FAExtern_in_B);
C.reset(createEmptyModule("C"));
Function *FAExtern_in_C = insertExternalReferenceToFunction(C.get(), FA);
FC = insertSimpleCallFunction<int32_t(int32_t, int32_t)>(C.get(), FAExtern_in_C);
}
};
class MCJITTestBase : public MCJITTestAPICommon, public TrivialModuleBuilder {
protected:
MCJITTestBase()
: TrivialModuleBuilder(HostTriple)
, OptLevel(CodeGenOpt::None)
, CodeModel(CodeModel::Default)
, MArch("")
, MM(new SectionMemoryManager)
{
// The architectures below are known to be compatible with MCJIT as they
// are copied from test/ExecutionEngine/MCJIT/lit.local.cfg and should be
// kept in sync.
SupportedArchs.push_back(Triple::aarch64);
SupportedArchs.push_back(Triple::arm);
SupportedArchs.push_back(Triple::mips);
SupportedArchs.push_back(Triple::mipsel);
SupportedArchs.push_back(Triple::mips64);
SupportedArchs.push_back(Triple::mips64el);
SupportedArchs.push_back(Triple::x86);
SupportedArchs.push_back(Triple::x86_64);
// Some architectures have sub-architectures in which tests will fail, like
// ARM. These two vectors will define if they do have sub-archs (to avoid
// extra work for those who don't), and if so, if they are listed to work
HasSubArchs.push_back(Triple::arm);
SupportedSubArchs.push_back("armv6");
SupportedSubArchs.push_back("armv7");
UnsupportedEnvironments.push_back(Triple::Cygnus);
}
void createJIT(std::unique_ptr<Module> M) {
// Due to the EngineBuilder constructor, it is required to have a Module
// in order to construct an ExecutionEngine (i.e. MCJIT)
assert(M != 0 && "a non-null Module must be provided to create MCJIT");
EngineBuilder EB(std::move(M));
std::string Error;
TheJIT.reset(EB.setEngineKind(EngineKind::JIT)
.setMCJITMemoryManager(std::move(MM))
.setErrorStr(&Error)
.setOptLevel(CodeGenOpt::None)
.setCodeModel(CodeModel::JITDefault)
.setMArch(MArch)
.setMCPU(sys::getHostCPUName())
//.setMAttrs(MAttrs)
.create());
// At this point, we cannot modify the module any more.
assert(TheJIT.get() != NULL && "error creating MCJIT with EngineBuilder");
}
CodeGenOpt::Level OptLevel;
CodeModel::Model CodeModel;
StringRef MArch;
SmallVector<std::string, 1> MAttrs;
std::unique_ptr<ExecutionEngine> TheJIT;
std::unique_ptr<RTDyldMemoryManager> MM;
std::unique_ptr<Module> M;
};
} // namespace llvm
#endif // LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H