llvm-project/llvm/tools/llvm-objcopy/Object.h

790 lines
23 KiB
C++

//===- Object.h -------------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_OBJCOPY_OBJECT_H
#define LLVM_TOOLS_OBJCOPY_OBJECT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/JamCRC.h"
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <set>
#include <vector>
namespace llvm {
enum class DebugCompressionType;
namespace objcopy {
class Buffer;
class SectionBase;
class Section;
class OwnedDataSection;
class StringTableSection;
class SymbolTableSection;
class RelocationSection;
class DynamicRelocationSection;
class GnuDebugLinkSection;
class GroupSection;
class SectionIndexSection;
class CompressedSection;
class Segment;
class Object;
struct Symbol;
class SectionTableRef {
MutableArrayRef<std::unique_ptr<SectionBase>> Sections;
public:
using iterator = pointee_iterator<std::unique_ptr<SectionBase> *>;
explicit SectionTableRef(MutableArrayRef<std::unique_ptr<SectionBase>> Secs)
: Sections(Secs) {}
SectionTableRef(const SectionTableRef &) = default;
iterator begin() { return iterator(Sections.data()); }
iterator end() { return iterator(Sections.data() + Sections.size()); }
SectionBase *getSection(uint32_t Index, Twine ErrMsg);
template <class T>
T *getSectionOfType(uint32_t Index, Twine IndexErrMsg, Twine TypeErrMsg);
};
enum ElfType { ELFT_ELF32LE, ELFT_ELF64LE, ELFT_ELF32BE, ELFT_ELF64BE };
// This type keeps track of the machine info for various architectures. This
// lets us map architecture names to ELF types and the e_machine value of the
// ELF file.
struct MachineInfo {
uint16_t EMachine;
bool Is64Bit;
bool IsLittleEndian;
};
class SectionVisitor {
public:
virtual ~SectionVisitor();
virtual void visit(const Section &Sec) = 0;
virtual void visit(const OwnedDataSection &Sec) = 0;
virtual void visit(const StringTableSection &Sec) = 0;
virtual void visit(const SymbolTableSection &Sec) = 0;
virtual void visit(const RelocationSection &Sec) = 0;
virtual void visit(const DynamicRelocationSection &Sec) = 0;
virtual void visit(const GnuDebugLinkSection &Sec) = 0;
virtual void visit(const GroupSection &Sec) = 0;
virtual void visit(const SectionIndexSection &Sec) = 0;
virtual void visit(const CompressedSection &Sec) = 0;
};
class SectionWriter : public SectionVisitor {
protected:
Buffer &Out;
public:
virtual ~SectionWriter(){};
void visit(const Section &Sec) override;
void visit(const OwnedDataSection &Sec) override;
void visit(const StringTableSection &Sec) override;
void visit(const DynamicRelocationSection &Sec) override;
virtual void visit(const SymbolTableSection &Sec) override = 0;
virtual void visit(const RelocationSection &Sec) override = 0;
virtual void visit(const GnuDebugLinkSection &Sec) override = 0;
virtual void visit(const GroupSection &Sec) override = 0;
virtual void visit(const SectionIndexSection &Sec) override = 0;
virtual void visit(const CompressedSection &Sec) override = 0;
explicit SectionWriter(Buffer &Buf) : Out(Buf) {}
};
template <class ELFT> class ELFSectionWriter : public SectionWriter {
private:
using Elf_Word = typename ELFT::Word;
using Elf_Rel = typename ELFT::Rel;
using Elf_Rela = typename ELFT::Rela;
using Elf_Sym = typename ELFT::Sym;
public:
virtual ~ELFSectionWriter() {}
void visit(const SymbolTableSection &Sec) override;
void visit(const RelocationSection &Sec) override;
void visit(const GnuDebugLinkSection &Sec) override;
void visit(const GroupSection &Sec) override;
void visit(const SectionIndexSection &Sec) override;
void visit(const CompressedSection &Sec) override;
explicit ELFSectionWriter(Buffer &Buf) : SectionWriter(Buf) {}
};
#define MAKE_SEC_WRITER_FRIEND \
friend class SectionWriter; \
template <class ELFT> friend class ELFSectionWriter;
class BinarySectionWriter : public SectionWriter {
public:
virtual ~BinarySectionWriter() {}
void visit(const SymbolTableSection &Sec) override;
void visit(const RelocationSection &Sec) override;
void visit(const GnuDebugLinkSection &Sec) override;
void visit(const GroupSection &Sec) override;
void visit(const SectionIndexSection &Sec) override;
void visit(const CompressedSection &Sec) override;
explicit BinarySectionWriter(Buffer &Buf) : SectionWriter(Buf) {}
};
// The class Buffer abstracts out the common interface of FileOutputBuffer and
// WritableMemoryBuffer so that the hierarchy of Writers depends on this
// abstract interface and doesn't depend on a particular implementation.
// TODO: refactor the buffer classes in LLVM to enable us to use them here
// directly.
class Buffer {
StringRef Name;
public:
virtual ~Buffer();
virtual void allocate(size_t Size) = 0;
virtual uint8_t *getBufferStart() = 0;
virtual Error commit() = 0;
explicit Buffer(StringRef Name) : Name(Name) {}
StringRef getName() const { return Name; }
};
class FileBuffer : public Buffer {
std::unique_ptr<FileOutputBuffer> Buf;
public:
void allocate(size_t Size) override;
uint8_t *getBufferStart() override;
Error commit() override;
explicit FileBuffer(StringRef FileName) : Buffer(FileName) {}
};
class MemBuffer : public Buffer {
std::unique_ptr<WritableMemoryBuffer> Buf;
public:
void allocate(size_t Size) override;
uint8_t *getBufferStart() override;
Error commit() override;
explicit MemBuffer(StringRef Name) : Buffer(Name) {}
std::unique_ptr<WritableMemoryBuffer> releaseMemoryBuffer();
};
class Writer {
protected:
Object &Obj;
Buffer &Buf;
public:
virtual ~Writer();
virtual void finalize() = 0;
virtual void write() = 0;
Writer(Object &O, Buffer &B) : Obj(O), Buf(B) {}
};
template <class ELFT> class ELFWriter : public Writer {
private:
using Elf_Addr = typename ELFT::Addr;
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Phdr = typename ELFT::Phdr;
using Elf_Ehdr = typename ELFT::Ehdr;
void initEhdrSegment();
void writeEhdr();
void writePhdr(const Segment &Seg);
void writeShdr(const SectionBase &Sec);
void writePhdrs();
void writeShdrs();
void writeSectionData();
void assignOffsets();
std::unique_ptr<ELFSectionWriter<ELFT>> SecWriter;
size_t totalSize() const;
public:
virtual ~ELFWriter() {}
bool WriteSectionHeaders = true;
void finalize() override;
void write() override;
ELFWriter(Object &Obj, Buffer &Buf, bool WSH)
: Writer(Obj, Buf), WriteSectionHeaders(WSH) {}
};
class BinaryWriter : public Writer {
private:
std::unique_ptr<BinarySectionWriter> SecWriter;
uint64_t TotalSize;
public:
~BinaryWriter() {}
void finalize() override;
void write() override;
BinaryWriter(Object &Obj, Buffer &Buf) : Writer(Obj, Buf) {}
};
class SectionBase {
public:
std::string Name;
Segment *ParentSegment = nullptr;
uint64_t HeaderOffset;
uint64_t OriginalOffset = std::numeric_limits<uint64_t>::max();
uint32_t Index;
bool HasSymbol = false;
uint64_t Addr = 0;
uint64_t Align = 1;
uint32_t EntrySize = 0;
uint64_t Flags = 0;
uint64_t Info = 0;
uint64_t Link = ELF::SHN_UNDEF;
uint64_t NameIndex = 0;
uint64_t Offset = 0;
uint64_t Size = 0;
uint64_t Type = ELF::SHT_NULL;
ArrayRef<uint8_t> OriginalData;
SectionBase() = default;
SectionBase(const SectionBase &) = default;
virtual ~SectionBase() = default;
virtual void initialize(SectionTableRef SecTable);
virtual void finalize();
virtual void removeSectionReferences(const SectionBase *Sec);
virtual void removeSymbols(function_ref<bool(const Symbol &)> ToRemove);
virtual void accept(SectionVisitor &Visitor) const = 0;
virtual void markSymbols();
};
class Segment {
private:
struct SectionCompare {
bool operator()(const SectionBase *Lhs, const SectionBase *Rhs) const {
// Some sections might have the same address if one of them is empty. To
// fix this we can use the lexicographic ordering on ->Addr and the
// address of the actully stored section.
if (Lhs->OriginalOffset == Rhs->OriginalOffset)
return Lhs < Rhs;
return Lhs->OriginalOffset < Rhs->OriginalOffset;
}
};
std::set<const SectionBase *, SectionCompare> Sections;
ArrayRef<uint8_t> Contents;
public:
uint64_t Align;
uint64_t FileSize;
uint32_t Flags;
uint32_t Index;
uint64_t MemSize;
uint64_t Offset;
uint64_t PAddr;
uint64_t Type;
uint64_t VAddr;
uint64_t OriginalOffset;
Segment *ParentSegment = nullptr;
explicit Segment(ArrayRef<uint8_t> Data) : Contents(Data) {}
Segment() {}
const SectionBase *firstSection() const {
if (!Sections.empty())
return *Sections.begin();
return nullptr;
}
void removeSection(const SectionBase *Sec) { Sections.erase(Sec); }
void addSection(const SectionBase *Sec) { Sections.insert(Sec); }
};
class Section : public SectionBase {
MAKE_SEC_WRITER_FRIEND
ArrayRef<uint8_t> Contents;
SectionBase *LinkSection = nullptr;
public:
explicit Section(ArrayRef<uint8_t> Data) : Contents(Data) {}
void accept(SectionVisitor &Visitor) const override;
void removeSectionReferences(const SectionBase *Sec) override;
void initialize(SectionTableRef SecTable) override;
void finalize() override;
};
class OwnedDataSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
std::vector<uint8_t> Data;
public:
OwnedDataSection(StringRef SecName, ArrayRef<uint8_t> Data)
: Data(std::begin(Data), std::end(Data)) {
Name = SecName.str();
Type = ELF::SHT_PROGBITS;
Size = Data.size();
OriginalOffset = std::numeric_limits<uint64_t>::max();
}
void accept(SectionVisitor &Sec) const override;
};
class CompressedSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
DebugCompressionType CompressionType;
uint64_t DecompressedSize;
uint64_t DecompressedAlign;
SmallVector<char, 128> CompressedData;
public:
CompressedSection(const SectionBase &Sec,
DebugCompressionType CompressionType);
void accept(SectionVisitor &Visitor) const override;
};
// There are two types of string tables that can exist, dynamic and not dynamic.
// In the dynamic case the string table is allocated. Changing a dynamic string
// table would mean altering virtual addresses and thus the memory image. So
// dynamic string tables should not have an interface to modify them or
// reconstruct them. This type lets us reconstruct a string table. To avoid
// this class being used for dynamic string tables (which has happened) the
// classof method checks that the particular instance is not allocated. This
// then agrees with the makeSection method used to construct most sections.
class StringTableSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
StringTableBuilder StrTabBuilder;
public:
StringTableSection() : StrTabBuilder(StringTableBuilder::ELF) {
Type = ELF::SHT_STRTAB;
}
void addString(StringRef Name);
uint32_t findIndex(StringRef Name) const;
void finalize() override;
void accept(SectionVisitor &Visitor) const override;
static bool classof(const SectionBase *S) {
if (S->Flags & ELF::SHF_ALLOC)
return false;
return S->Type == ELF::SHT_STRTAB;
}
};
// Symbols have a st_shndx field that normally stores an index but occasionally
// stores a different special value. This enum keeps track of what the st_shndx
// field means. Most of the values are just copies of the special SHN_* values.
// SYMBOL_SIMPLE_INDEX means that the st_shndx is just an index of a section.
enum SymbolShndxType {
SYMBOL_SIMPLE_INDEX = 0,
SYMBOL_ABS = ELF::SHN_ABS,
SYMBOL_COMMON = ELF::SHN_COMMON,
SYMBOL_HEXAGON_SCOMMON = ELF::SHN_HEXAGON_SCOMMON,
SYMBOL_HEXAGON_SCOMMON_2 = ELF::SHN_HEXAGON_SCOMMON_2,
SYMBOL_HEXAGON_SCOMMON_4 = ELF::SHN_HEXAGON_SCOMMON_4,
SYMBOL_HEXAGON_SCOMMON_8 = ELF::SHN_HEXAGON_SCOMMON_8,
SYMBOL_XINDEX = ELF::SHN_XINDEX,
};
struct Symbol {
uint8_t Binding;
SectionBase *DefinedIn = nullptr;
SymbolShndxType ShndxType;
uint32_t Index;
std::string Name;
uint32_t NameIndex;
uint64_t Size;
uint8_t Type;
uint64_t Value;
uint8_t Visibility;
bool Referenced = false;
uint16_t getShndx() const;
};
class SectionIndexSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
private:
std::vector<uint32_t> Indexes;
SymbolTableSection *Symbols = nullptr;
public:
virtual ~SectionIndexSection() {}
void addIndex(uint32_t Index) {
Indexes.push_back(Index);
Size += 4;
}
void setSymTab(SymbolTableSection *SymTab) { Symbols = SymTab; }
void initialize(SectionTableRef SecTable) override;
void finalize() override;
void accept(SectionVisitor &Visitor) const override;
SectionIndexSection() {
Name = ".symtab_shndx";
Align = 4;
EntrySize = 4;
Type = ELF::SHT_SYMTAB_SHNDX;
}
};
class SymbolTableSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
void setStrTab(StringTableSection *StrTab) { SymbolNames = StrTab; }
void assignIndices();
protected:
std::vector<std::unique_ptr<Symbol>> Symbols;
StringTableSection *SymbolNames = nullptr;
SectionIndexSection *SectionIndexTable = nullptr;
using SymPtr = std::unique_ptr<Symbol>;
public:
SymbolTableSection() { Type = ELF::SHT_SYMTAB; }
void addSymbol(Twine Name, uint8_t Bind, uint8_t Type, SectionBase *DefinedIn,
uint64_t Value, uint8_t Visibility, uint16_t Shndx,
uint64_t Size);
void prepareForLayout();
// An 'empty' symbol table still contains a null symbol.
bool empty() const { return Symbols.size() == 1; }
void setShndxTable(SectionIndexSection *ShndxTable) {
SectionIndexTable = ShndxTable;
}
const SectionIndexSection *getShndxTable() const { return SectionIndexTable; }
const SectionBase *getStrTab() const { return SymbolNames; }
const Symbol *getSymbolByIndex(uint32_t Index) const;
Symbol *getSymbolByIndex(uint32_t Index);
void updateSymbols(function_ref<void(Symbol &)> Callable);
void removeSectionReferences(const SectionBase *Sec) override;
void initialize(SectionTableRef SecTable) override;
void finalize() override;
void accept(SectionVisitor &Visitor) const override;
void removeSymbols(function_ref<bool(const Symbol &)> ToRemove) override;
static bool classof(const SectionBase *S) {
return S->Type == ELF::SHT_SYMTAB;
}
};
struct Relocation {
Symbol *RelocSymbol = nullptr;
uint64_t Offset;
uint64_t Addend;
uint32_t Type;
};
// All relocation sections denote relocations to apply to another section.
// However, some relocation sections use a dynamic symbol table and others use
// a regular symbol table. Because the types of the two symbol tables differ in
// our system (because they should behave differently) we can't uniformly
// represent all relocations with the same base class if we expose an interface
// that mentions the symbol table type. So we split the two base types into two
// different classes, one which handles the section the relocation is applied to
// and another which handles the symbol table type. The symbol table type is
// taken as a type parameter to the class (see RelocSectionWithSymtabBase).
class RelocationSectionBase : public SectionBase {
protected:
SectionBase *SecToApplyRel = nullptr;
public:
const SectionBase *getSection() const { return SecToApplyRel; }
void setSection(SectionBase *Sec) { SecToApplyRel = Sec; }
static bool classof(const SectionBase *S) {
return S->Type == ELF::SHT_REL || S->Type == ELF::SHT_RELA;
}
};
// Takes the symbol table type to use as a parameter so that we can deduplicate
// that code between the two symbol table types.
template <class SymTabType>
class RelocSectionWithSymtabBase : public RelocationSectionBase {
SymTabType *Symbols = nullptr;
void setSymTab(SymTabType *SymTab) { Symbols = SymTab; }
protected:
RelocSectionWithSymtabBase() = default;
public:
void removeSectionReferences(const SectionBase *Sec) override;
void initialize(SectionTableRef SecTable) override;
void finalize() override;
};
class RelocationSection
: public RelocSectionWithSymtabBase<SymbolTableSection> {
MAKE_SEC_WRITER_FRIEND
std::vector<Relocation> Relocations;
public:
void addRelocation(Relocation Rel) { Relocations.push_back(Rel); }
void accept(SectionVisitor &Visitor) const override;
void removeSymbols(function_ref<bool(const Symbol &)> ToRemove) override;
void markSymbols() override;
static bool classof(const SectionBase *S) {
if (S->Flags & ELF::SHF_ALLOC)
return false;
return S->Type == ELF::SHT_REL || S->Type == ELF::SHT_RELA;
}
};
// TODO: The way stripping and groups interact is complicated
// and still needs to be worked on.
class GroupSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
const SymbolTableSection *SymTab = nullptr;
Symbol *Sym = nullptr;
ELF::Elf32_Word FlagWord;
SmallVector<SectionBase *, 3> GroupMembers;
public:
// TODO: Contents is present in several classes of the hierarchy.
// This needs to be refactored to avoid duplication.
ArrayRef<uint8_t> Contents;
explicit GroupSection(ArrayRef<uint8_t> Data) : Contents(Data) {}
void setSymTab(const SymbolTableSection *SymTabSec) { SymTab = SymTabSec; }
void setSymbol(Symbol *S) { Sym = S; }
void setFlagWord(ELF::Elf32_Word W) { FlagWord = W; }
void addMember(SectionBase *Sec) { GroupMembers.push_back(Sec); }
void initialize(SectionTableRef SecTable) override{};
void accept(SectionVisitor &) const override;
void finalize() override;
void removeSymbols(function_ref<bool(const Symbol &)> ToRemove) override;
void markSymbols() override;
static bool classof(const SectionBase *S) {
return S->Type == ELF::SHT_GROUP;
}
};
class DynamicSymbolTableSection : public Section {
public:
explicit DynamicSymbolTableSection(ArrayRef<uint8_t> Data) : Section(Data) {}
static bool classof(const SectionBase *S) {
return S->Type == ELF::SHT_DYNSYM;
}
};
class DynamicSection : public Section {
public:
explicit DynamicSection(ArrayRef<uint8_t> Data) : Section(Data) {}
static bool classof(const SectionBase *S) {
return S->Type == ELF::SHT_DYNAMIC;
}
};
class DynamicRelocationSection
: public RelocSectionWithSymtabBase<DynamicSymbolTableSection> {
MAKE_SEC_WRITER_FRIEND
private:
ArrayRef<uint8_t> Contents;
public:
explicit DynamicRelocationSection(ArrayRef<uint8_t> Data) : Contents(Data) {}
void accept(SectionVisitor &) const override;
static bool classof(const SectionBase *S) {
if (!(S->Flags & ELF::SHF_ALLOC))
return false;
return S->Type == ELF::SHT_REL || S->Type == ELF::SHT_RELA;
}
};
class GnuDebugLinkSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
private:
StringRef FileName;
uint32_t CRC32;
void init(StringRef File, StringRef Data);
public:
// If we add this section from an external source we can use this ctor.
explicit GnuDebugLinkSection(StringRef File);
void accept(SectionVisitor &Visitor) const override;
};
class Reader {
public:
virtual ~Reader();
virtual std::unique_ptr<Object> create() const = 0;
};
using object::Binary;
using object::ELFFile;
using object::ELFObjectFile;
using object::OwningBinary;
template <class ELFT> class BinaryELFBuilder {
using Elf_Sym = typename ELFT::Sym;
uint16_t EMachine;
MemoryBuffer *MemBuf;
std::unique_ptr<Object> Obj;
void initFileHeader();
void initHeaderSegment();
StringTableSection *addStrTab();
SymbolTableSection *addSymTab(StringTableSection *StrTab);
void addData(SymbolTableSection *SymTab);
void initSections();
public:
BinaryELFBuilder(uint16_t EM, MemoryBuffer *MB)
: EMachine(EM), MemBuf(MB), Obj(llvm::make_unique<Object>()) {}
std::unique_ptr<Object> build();
};
template <class ELFT> class ELFBuilder {
private:
using Elf_Addr = typename ELFT::Addr;
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Word = typename ELFT::Word;
const ELFFile<ELFT> &ElfFile;
Object &Obj;
void setParentSegment(Segment &Child);
void readProgramHeaders();
void initGroupSection(GroupSection *GroupSec);
void initSymbolTable(SymbolTableSection *SymTab);
void readSectionHeaders();
SectionBase &makeSection(const Elf_Shdr &Shdr);
public:
ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj)
: ElfFile(*ElfObj.getELFFile()), Obj(Obj) {}
void build();
};
class BinaryReader : public Reader {
const MachineInfo &MInfo;
MemoryBuffer *MemBuf;
public:
BinaryReader(const MachineInfo &MI, MemoryBuffer *MB)
: MInfo(MI), MemBuf(MB) {}
std::unique_ptr<Object> create() const override;
};
class ELFReader : public Reader {
Binary *Bin;
public:
std::unique_ptr<Object> create() const override;
explicit ELFReader(Binary *B) : Bin(B) {}
};
class Object {
private:
using SecPtr = std::unique_ptr<SectionBase>;
using SegPtr = std::unique_ptr<Segment>;
std::vector<SecPtr> Sections;
std::vector<SegPtr> Segments;
public:
template <class T>
using Range = iterator_range<
pointee_iterator<typename std::vector<std::unique_ptr<T>>::iterator>>;
template <class T>
using ConstRange = iterator_range<pointee_iterator<
typename std::vector<std::unique_ptr<T>>::const_iterator>>;
// It is often the case that the ELF header and the program header table are
// not present in any segment. This could be a problem during file layout,
// because other segments may get assigned an offset where either of the
// two should reside, which will effectively corrupt the resulting binary.
// Other than that we use these segments to track program header offsets
// when they may not follow the ELF header.
Segment ElfHdrSegment;
Segment ProgramHdrSegment;
uint64_t Entry;
uint64_t SHOffset;
uint32_t Type;
uint32_t Machine;
uint32_t Version;
uint32_t Flags;
StringTableSection *SectionNames = nullptr;
SymbolTableSection *SymbolTable = nullptr;
SectionIndexSection *SectionIndexTable = nullptr;
void sortSections();
SectionTableRef sections() { return SectionTableRef(Sections); }
ConstRange<SectionBase> sections() const {
return make_pointee_range(Sections);
}
Range<Segment> segments() { return make_pointee_range(Segments); }
ConstRange<Segment> segments() const { return make_pointee_range(Segments); }
void removeSections(std::function<bool(const SectionBase &)> ToRemove);
void removeSymbols(function_ref<bool(const Symbol &)> ToRemove);
template <class T, class... Ts> T &addSection(Ts &&... Args) {
auto Sec = llvm::make_unique<T>(std::forward<Ts>(Args)...);
auto Ptr = Sec.get();
Sections.emplace_back(std::move(Sec));
Ptr->Index = Sections.size();
return *Ptr;
}
Segment &addSegment(ArrayRef<uint8_t> Data) {
Segments.emplace_back(llvm::make_unique<Segment>(Data));
return *Segments.back();
}
};
} // end namespace objcopy
} // end namespace llvm
#endif // LLVM_TOOLS_OBJCOPY_OBJECT_H