forked from OSchip/llvm-project
639 lines
23 KiB
C++
639 lines
23 KiB
C++
//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass reassociates n-ary add expressions and eliminates the redundancy
|
|
// exposed by the reassociation.
|
|
//
|
|
// A motivating example:
|
|
//
|
|
// void foo(int a, int b) {
|
|
// bar(a + b);
|
|
// bar((a + 2) + b);
|
|
// }
|
|
//
|
|
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
|
|
// the above code to
|
|
//
|
|
// int t = a + b;
|
|
// bar(t);
|
|
// bar(t + 2);
|
|
//
|
|
// However, the Reassociate pass is unable to do that because it processes each
|
|
// instruction individually and believes (a + 2) + b is the best form according
|
|
// to its rank system.
|
|
//
|
|
// To address this limitation, NaryReassociate reassociates an expression in a
|
|
// form that reuses existing instructions. As a result, NaryReassociate can
|
|
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
|
|
// (a + b) is computed before.
|
|
//
|
|
// NaryReassociate works as follows. For every instruction in the form of (a +
|
|
// b) + c, it checks whether a + c or b + c is already computed by a dominating
|
|
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
|
|
// c) + a and removes the redundancy accordingly. To efficiently look up whether
|
|
// an expression is computed before, we store each instruction seen and its SCEV
|
|
// into an SCEV-to-instruction map.
|
|
//
|
|
// Although the algorithm pattern-matches only ternary additions, it
|
|
// automatically handles many >3-ary expressions by walking through the function
|
|
// in the depth-first order. For example, given
|
|
//
|
|
// (a + c) + d
|
|
// ((a + b) + c) + d
|
|
//
|
|
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
|
|
// ((a + c) + b) + d into ((a + c) + d) + b.
|
|
//
|
|
// Finally, the above dominator-based algorithm may need to be run multiple
|
|
// iterations before emitting optimal code. One source of this need is that we
|
|
// only split an operand when it is used only once. The above algorithm can
|
|
// eliminate an instruction and decrease the usage count of its operands. As a
|
|
// result, an instruction that previously had multiple uses may become a
|
|
// single-use instruction and thus eligible for split consideration. For
|
|
// example,
|
|
//
|
|
// ac = a + c
|
|
// ab = a + b
|
|
// abc = ab + c
|
|
// ab2 = ab + b
|
|
// ab2c = ab2 + c
|
|
//
|
|
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
|
|
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
|
|
// result, ab2 becomes dead and ab will be used only once in the second
|
|
// iteration.
|
|
//
|
|
// Limitations and TODO items:
|
|
//
|
|
// 1) We only considers n-ary adds and muls for now. This should be extended
|
|
// and generalized.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/NaryReassociate.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "nary-reassociate"
|
|
|
|
namespace {
|
|
|
|
class NaryReassociateLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
NaryReassociateLegacyPass() : FunctionPass(ID) {
|
|
initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool doInitialization(Module &M) override {
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
|
AU.addPreserved<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
private:
|
|
NaryReassociatePass Impl;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char NaryReassociateLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
|
|
"Nary reassociation", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
|
|
"Nary reassociation", false, false)
|
|
|
|
FunctionPass *llvm::createNaryReassociatePass() {
|
|
return new NaryReassociateLegacyPass();
|
|
}
|
|
|
|
bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
|
|
return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
|
|
}
|
|
|
|
PreservedAnalyses NaryReassociatePass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto *AC = &AM.getResult<AssumptionAnalysis>(F);
|
|
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
|
|
|
|
if (!runImpl(F, AC, DT, SE, TLI, TTI))
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<ScalarEvolutionAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
|
|
DominatorTree *DT_, ScalarEvolution *SE_,
|
|
TargetLibraryInfo *TLI_,
|
|
TargetTransformInfo *TTI_) {
|
|
AC = AC_;
|
|
DT = DT_;
|
|
SE = SE_;
|
|
TLI = TLI_;
|
|
TTI = TTI_;
|
|
DL = &F.getParent()->getDataLayout();
|
|
|
|
bool Changed = false, ChangedInThisIteration;
|
|
do {
|
|
ChangedInThisIteration = doOneIteration(F);
|
|
Changed |= ChangedInThisIteration;
|
|
} while (ChangedInThisIteration);
|
|
return Changed;
|
|
}
|
|
|
|
bool NaryReassociatePass::doOneIteration(Function &F) {
|
|
bool Changed = false;
|
|
SeenExprs.clear();
|
|
// Process the basic blocks in a depth first traversal of the dominator
|
|
// tree. This order ensures that all bases of a candidate are in Candidates
|
|
// when we process it.
|
|
SmallVector<WeakTrackingVH, 16> DeadInsts;
|
|
for (const auto Node : depth_first(DT)) {
|
|
BasicBlock *BB = Node->getBlock();
|
|
for (auto I = BB->begin(); I != BB->end(); ++I) {
|
|
Instruction *OrigI = &*I;
|
|
const SCEV *OrigSCEV = nullptr;
|
|
if (Instruction *NewI = tryReassociate(OrigI, OrigSCEV)) {
|
|
Changed = true;
|
|
OrigI->replaceAllUsesWith(NewI);
|
|
|
|
// Add 'OrigI' to the list of dead instructions.
|
|
DeadInsts.push_back(WeakTrackingVH(OrigI));
|
|
// Add the rewritten instruction to SeenExprs; the original
|
|
// instruction is deleted.
|
|
const SCEV *NewSCEV = SE->getSCEV(NewI);
|
|
SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI));
|
|
|
|
// Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
|
|
// is equivalent to I. However, ScalarEvolution::getSCEV may
|
|
// weaken nsw causing NewSCEV not to equal OldSCEV. For example,
|
|
// suppose we reassociate
|
|
// I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
|
|
// to
|
|
// NewI = &a[sext(i)] + sext(j).
|
|
//
|
|
// ScalarEvolution computes
|
|
// getSCEV(I) = a + 4 * sext(i + j)
|
|
// getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
|
|
// which are different SCEVs.
|
|
//
|
|
// To alleviate this issue of ScalarEvolution not always capturing
|
|
// equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
|
|
// map both SCEV before and after tryReassociate(I) to I.
|
|
//
|
|
// This improvement is exercised in @reassociate_gep_nsw in
|
|
// nary-gep.ll.
|
|
if (NewSCEV != OrigSCEV)
|
|
SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI));
|
|
} else if (OrigSCEV)
|
|
SeenExprs[OrigSCEV].push_back(WeakTrackingVH(OrigI));
|
|
}
|
|
}
|
|
// Delete all dead instructions from 'DeadInsts'.
|
|
// Please note ScalarEvolution is updated along the way.
|
|
RecursivelyDeleteTriviallyDeadInstructionsPermissive(
|
|
DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); });
|
|
|
|
return Changed;
|
|
}
|
|
|
|
template <typename PredT>
|
|
Instruction *
|
|
NaryReassociatePass::matchAndReassociateMinOrMax(Instruction *I,
|
|
const SCEV *&OrigSCEV) {
|
|
Value *LHS = nullptr;
|
|
Value *RHS = nullptr;
|
|
|
|
auto MinMaxMatcher =
|
|
MaxMin_match<ICmpInst, bind_ty<Value>, bind_ty<Value>, PredT>(
|
|
m_Value(LHS), m_Value(RHS));
|
|
if (match(I, MinMaxMatcher)) {
|
|
OrigSCEV = SE->getSCEV(I);
|
|
return dyn_cast_or_null<Instruction>(
|
|
tryReassociateMinOrMax(I, MinMaxMatcher, LHS, RHS));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *NaryReassociatePass::tryReassociate(Instruction * I,
|
|
const SCEV *&OrigSCEV) {
|
|
|
|
if (!SE->isSCEVable(I->getType()))
|
|
return nullptr;
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
case Instruction::Mul:
|
|
OrigSCEV = SE->getSCEV(I);
|
|
return tryReassociateBinaryOp(cast<BinaryOperator>(I));
|
|
case Instruction::GetElementPtr:
|
|
OrigSCEV = SE->getSCEV(I);
|
|
return tryReassociateGEP(cast<GetElementPtrInst>(I));
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Try to match signed/unsigned Min/Max.
|
|
Instruction *ResI = nullptr;
|
|
if ((ResI = matchAndReassociateMinOrMax<umin_pred_ty>(I, OrigSCEV)) ||
|
|
(ResI = matchAndReassociateMinOrMax<smin_pred_ty>(I, OrigSCEV)) ||
|
|
(ResI = matchAndReassociateMinOrMax<umax_pred_ty>(I, OrigSCEV)) ||
|
|
(ResI = matchAndReassociateMinOrMax<smax_pred_ty>(I, OrigSCEV)))
|
|
return ResI;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isGEPFoldable(GetElementPtrInst *GEP,
|
|
const TargetTransformInfo *TTI) {
|
|
SmallVector<const Value *, 4> Indices(GEP->indices());
|
|
return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
|
|
Indices) == TargetTransformInfo::TCC_Free;
|
|
}
|
|
|
|
Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
|
|
// Not worth reassociating GEP if it is foldable.
|
|
if (isGEPFoldable(GEP, TTI))
|
|
return nullptr;
|
|
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
|
if (GTI.isSequential()) {
|
|
if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
|
|
GTI.getIndexedType())) {
|
|
return NewGEP;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool NaryReassociatePass::requiresSignExtension(Value *Index,
|
|
GetElementPtrInst *GEP) {
|
|
unsigned PointerSizeInBits =
|
|
DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
|
|
return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
|
|
}
|
|
|
|
GetElementPtrInst *
|
|
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
|
unsigned I, Type *IndexedType) {
|
|
Value *IndexToSplit = GEP->getOperand(I + 1);
|
|
if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
|
|
IndexToSplit = SExt->getOperand(0);
|
|
} else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
|
|
// zext can be treated as sext if the source is non-negative.
|
|
if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
|
|
IndexToSplit = ZExt->getOperand(0);
|
|
}
|
|
|
|
if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
|
|
// If the I-th index needs sext and the underlying add is not equipped with
|
|
// nsw, we cannot split the add because
|
|
// sext(LHS + RHS) != sext(LHS) + sext(RHS).
|
|
if (requiresSignExtension(IndexToSplit, GEP) &&
|
|
computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
|
|
OverflowResult::NeverOverflows)
|
|
return nullptr;
|
|
|
|
Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
|
|
// IndexToSplit = LHS + RHS.
|
|
if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
|
|
return NewGEP;
|
|
// Symmetrically, try IndexToSplit = RHS + LHS.
|
|
if (LHS != RHS) {
|
|
if (auto *NewGEP =
|
|
tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
|
|
return NewGEP;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
GetElementPtrInst *
|
|
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
|
|
unsigned I, Value *LHS,
|
|
Value *RHS, Type *IndexedType) {
|
|
// Look for GEP's closest dominator that has the same SCEV as GEP except that
|
|
// the I-th index is replaced with LHS.
|
|
SmallVector<const SCEV *, 4> IndexExprs;
|
|
for (Use &Index : GEP->indices())
|
|
IndexExprs.push_back(SE->getSCEV(Index));
|
|
// Replace the I-th index with LHS.
|
|
IndexExprs[I] = SE->getSCEV(LHS);
|
|
if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
|
|
DL->getTypeSizeInBits(LHS->getType()).getFixedSize() <
|
|
DL->getTypeSizeInBits(GEP->getOperand(I)->getType()).getFixedSize()) {
|
|
// Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
|
|
// zext if the source operand is proved non-negative. We should do that
|
|
// consistently so that CandidateExpr more likely appears before. See
|
|
// @reassociate_gep_assume for an example of this canonicalization.
|
|
IndexExprs[I] =
|
|
SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
|
|
}
|
|
const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
|
|
IndexExprs);
|
|
|
|
Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
|
|
if (Candidate == nullptr)
|
|
return nullptr;
|
|
|
|
IRBuilder<> Builder(GEP);
|
|
// Candidate does not necessarily have the same pointer type as GEP. Use
|
|
// bitcast or pointer cast to make sure they have the same type, so that the
|
|
// later RAUW doesn't complain.
|
|
Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
|
|
assert(Candidate->getType() == GEP->getType());
|
|
|
|
// NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
|
|
uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
|
|
Type *ElementType = GEP->getResultElementType();
|
|
uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
|
|
// Another less rare case: because I is not necessarily the last index of the
|
|
// GEP, the size of the type at the I-th index (IndexedSize) is not
|
|
// necessarily divisible by ElementSize. For example,
|
|
//
|
|
// #pragma pack(1)
|
|
// struct S {
|
|
// int a[3];
|
|
// int64 b[8];
|
|
// };
|
|
// #pragma pack()
|
|
//
|
|
// sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
|
|
//
|
|
// TODO: bail out on this case for now. We could emit uglygep.
|
|
if (IndexedSize % ElementSize != 0)
|
|
return nullptr;
|
|
|
|
// NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
|
|
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
|
|
if (RHS->getType() != IntPtrTy)
|
|
RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
|
|
if (IndexedSize != ElementSize) {
|
|
RHS = Builder.CreateMul(
|
|
RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
|
|
}
|
|
GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
|
|
Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
|
|
NewGEP->setIsInBounds(GEP->isInBounds());
|
|
NewGEP->takeName(GEP);
|
|
return NewGEP;
|
|
}
|
|
|
|
Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
|
|
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
|
// There is no need to reassociate 0.
|
|
if (SE->getSCEV(I)->isZero())
|
|
return nullptr;
|
|
if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
|
|
return NewI;
|
|
if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
|
|
return NewI;
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
|
|
BinaryOperator *I) {
|
|
Value *A = nullptr, *B = nullptr;
|
|
// To be conservative, we reassociate I only when it is the only user of (A op
|
|
// B).
|
|
if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
|
|
// I = (A op B) op RHS
|
|
// = (A op RHS) op B or (B op RHS) op A
|
|
const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
|
|
const SCEV *RHSExpr = SE->getSCEV(RHS);
|
|
if (BExpr != RHSExpr) {
|
|
if (auto *NewI =
|
|
tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
|
|
return NewI;
|
|
}
|
|
if (AExpr != RHSExpr) {
|
|
if (auto *NewI =
|
|
tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
|
|
return NewI;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
|
|
Value *RHS,
|
|
BinaryOperator *I) {
|
|
// Look for the closest dominator LHS of I that computes LHSExpr, and replace
|
|
// I with LHS op RHS.
|
|
auto *LHS = findClosestMatchingDominator(LHSExpr, I);
|
|
if (LHS == nullptr)
|
|
return nullptr;
|
|
|
|
Instruction *NewI = nullptr;
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
|
|
break;
|
|
case Instruction::Mul:
|
|
NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected instruction.");
|
|
}
|
|
NewI->takeName(I);
|
|
return NewI;
|
|
}
|
|
|
|
bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
|
|
Value *&Op1, Value *&Op2) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
|
|
case Instruction::Mul:
|
|
return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
|
|
default:
|
|
llvm_unreachable("Unexpected instruction.");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
|
|
const SCEV *LHS,
|
|
const SCEV *RHS) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
return SE->getAddExpr(LHS, RHS);
|
|
case Instruction::Mul:
|
|
return SE->getMulExpr(LHS, RHS);
|
|
default:
|
|
llvm_unreachable("Unexpected instruction.");
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *
|
|
NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
|
|
Instruction *Dominatee) {
|
|
auto Pos = SeenExprs.find(CandidateExpr);
|
|
if (Pos == SeenExprs.end())
|
|
return nullptr;
|
|
|
|
auto &Candidates = Pos->second;
|
|
// Because we process the basic blocks in pre-order of the dominator tree, a
|
|
// candidate that doesn't dominate the current instruction won't dominate any
|
|
// future instruction either. Therefore, we pop it out of the stack. This
|
|
// optimization makes the algorithm O(n).
|
|
while (!Candidates.empty()) {
|
|
// Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
|
|
// removed
|
|
// during rewriting.
|
|
if (Value *Candidate = Candidates.back()) {
|
|
Instruction *CandidateInstruction = cast<Instruction>(Candidate);
|
|
if (DT->dominates(CandidateInstruction, Dominatee))
|
|
return CandidateInstruction;
|
|
}
|
|
Candidates.pop_back();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename MaxMinT> static SCEVTypes convertToSCEVype(MaxMinT &MM) {
|
|
if (std::is_same<smax_pred_ty, typename MaxMinT::PredType>::value)
|
|
return scSMaxExpr;
|
|
else if (std::is_same<umax_pred_ty, typename MaxMinT::PredType>::value)
|
|
return scUMaxExpr;
|
|
else if (std::is_same<smin_pred_ty, typename MaxMinT::PredType>::value)
|
|
return scSMinExpr;
|
|
else if (std::is_same<umin_pred_ty, typename MaxMinT::PredType>::value)
|
|
return scUMinExpr;
|
|
|
|
llvm_unreachable("Can't convert MinMax pattern to SCEV type");
|
|
return scUnknown;
|
|
}
|
|
|
|
template <typename MaxMinT>
|
|
Value *NaryReassociatePass::tryReassociateMinOrMax(Instruction *I,
|
|
MaxMinT MaxMinMatch,
|
|
Value *LHS, Value *RHS) {
|
|
Value *A = nullptr, *B = nullptr;
|
|
MaxMinT m_MaxMin(m_Value(A), m_Value(B));
|
|
for (unsigned int i = 0; i < 2; ++i) {
|
|
if (match(LHS, m_MaxMin)) {
|
|
const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
|
|
const SCEV *RHSExpr = SE->getSCEV(RHS);
|
|
for (unsigned int j = 0; j < 2; ++j) {
|
|
if (j == 0) {
|
|
if (BExpr == RHSExpr)
|
|
continue;
|
|
// Transform 'I = (A op B) op RHS' to 'I = (A op RHS) op B' on the
|
|
// first iteration.
|
|
std::swap(BExpr, RHSExpr);
|
|
} else {
|
|
if (AExpr == RHSExpr)
|
|
continue;
|
|
// Transform 'I = (A op RHS) op B' 'I = (B op RHS) op A' on the second
|
|
// iteration.
|
|
std::swap(AExpr, RHSExpr);
|
|
}
|
|
|
|
SCEVExpander Expander(*SE, *DL, "nary-reassociate");
|
|
SmallVector<const SCEV *, 2> Ops1{ BExpr, AExpr };
|
|
const SCEVTypes SCEVType = convertToSCEVype(m_MaxMin);
|
|
const SCEV *R1Expr = SE->getMinMaxExpr(SCEVType, Ops1);
|
|
|
|
Instruction *R1MinMax = findClosestMatchingDominator(R1Expr, I);
|
|
|
|
if (!R1MinMax)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "NARY: Found common sub-expr: " << *R1MinMax
|
|
<< "\n");
|
|
|
|
R1Expr = SE->getUnknown(R1MinMax);
|
|
SmallVector<const SCEV *, 2> Ops2{ RHSExpr, R1Expr };
|
|
const SCEV *R2Expr = SE->getMinMaxExpr(SCEVType, Ops2);
|
|
|
|
Value *NewMinMax = Expander.expandCodeFor(R2Expr, I->getType(), I);
|
|
NewMinMax->setName(Twine(I->getName()).concat(".nary"));
|
|
|
|
LLVM_DEBUG(dbgs() << "NARY: Deleting: " << *I << "\n"
|
|
<< "NARY: Inserting: " << *NewMinMax << "\n");
|
|
return NewMinMax;
|
|
}
|
|
}
|
|
std::swap(LHS, RHS);
|
|
}
|
|
return nullptr;
|
|
}
|