llvm-project/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp

940 lines
36 KiB
C++

//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass deletes dead arguments from internal functions. Dead argument
// elimination removes arguments which are directly dead, as well as arguments
// only passed into function calls as dead arguments of other functions. This
// pass also deletes dead return values in a similar way.
//
// This pass is often useful as a cleanup pass to run after aggressive
// interprocedural passes, which add possibly-dead arguments or return values.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "deadargelim"
#include "llvm/Transforms/IPO.h"
#include "llvm/CallingConv.h"
#include "llvm/Constant.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include <map>
#include <set>
using namespace llvm;
STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
namespace {
/// DAE - The dead argument elimination pass.
///
class DAE : public ModulePass {
public:
/// Struct that represents (part of) either a return value or a function
/// argument. Used so that arguments and return values can be used
/// interchangably.
struct RetOrArg {
RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
IsArg(IsArg) {}
const Function *F;
unsigned Idx;
bool IsArg;
/// Make RetOrArg comparable, so we can put it into a map.
bool operator<(const RetOrArg &O) const {
if (F != O.F)
return F < O.F;
else if (Idx != O.Idx)
return Idx < O.Idx;
else
return IsArg < O.IsArg;
}
/// Make RetOrArg comparable, so we can easily iterate the multimap.
bool operator==(const RetOrArg &O) const {
return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
}
std::string getDescription() const {
return std::string((IsArg ? "Argument #" : "Return value #"))
+ utostr(Idx) + " of function " + F->getNameStr();
}
};
/// Liveness enum - During our initial pass over the program, we determine
/// that things are either alive or maybe alive. We don't mark anything
/// explicitly dead (even if we know they are), since anything not alive
/// with no registered uses (in Uses) will never be marked alive and will
/// thus become dead in the end.
enum Liveness { Live, MaybeLive };
/// Convenience wrapper
RetOrArg CreateRet(const Function *F, unsigned Idx) {
return RetOrArg(F, Idx, false);
}
/// Convenience wrapper
RetOrArg CreateArg(const Function *F, unsigned Idx) {
return RetOrArg(F, Idx, true);
}
typedef std::multimap<RetOrArg, RetOrArg> UseMap;
/// This maps a return value or argument to any MaybeLive return values or
/// arguments it uses. This allows the MaybeLive values to be marked live
/// when any of its users is marked live.
/// For example (indices are left out for clarity):
/// - Uses[ret F] = ret G
/// This means that F calls G, and F returns the value returned by G.
/// - Uses[arg F] = ret G
/// This means that some function calls G and passes its result as an
/// argument to F.
/// - Uses[ret F] = arg F
/// This means that F returns one of its own arguments.
/// - Uses[arg F] = arg G
/// This means that G calls F and passes one of its own (G's) arguments
/// directly to F.
UseMap Uses;
typedef std::set<RetOrArg> LiveSet;
typedef std::set<const Function*> LiveFuncSet;
/// This set contains all values that have been determined to be live.
LiveSet LiveValues;
/// This set contains all values that are cannot be changed in any way.
LiveFuncSet LiveFunctions;
typedef SmallVector<RetOrArg, 5> UseVector;
protected:
// DAH uses this to specify a different ID.
explicit DAE(char &ID) : ModulePass(ID) {}
public:
static char ID; // Pass identification, replacement for typeid
DAE() : ModulePass(ID) {}
bool runOnModule(Module &M);
virtual bool ShouldHackArguments() const { return false; }
private:
Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
unsigned RetValNum = 0);
Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
void SurveyFunction(const Function &F);
void MarkValue(const RetOrArg &RA, Liveness L,
const UseVector &MaybeLiveUses);
void MarkLive(const RetOrArg &RA);
void MarkLive(const Function &F);
void PropagateLiveness(const RetOrArg &RA);
bool RemoveDeadStuffFromFunction(Function *F);
bool DeleteDeadVarargs(Function &Fn);
};
}
char DAE::ID = 0;
INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false);
namespace {
/// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
/// deletes arguments to functions which are external. This is only for use
/// by bugpoint.
struct DAH : public DAE {
static char ID;
DAH() : DAE(ID) {}
virtual bool ShouldHackArguments() const { return true; }
};
}
char DAH::ID = 0;
INITIALIZE_PASS(DAH, "deadarghaX0r",
"Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
false, false);
/// createDeadArgEliminationPass - This pass removes arguments from functions
/// which are not used by the body of the function.
///
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
/// llvm.vastart is never called, the varargs list is dead for the function.
bool DAE::DeleteDeadVarargs(Function &Fn) {
assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
// Ensure that the function is only directly called.
if (Fn.hasAddressTaken())
return false;
// Okay, we know we can transform this function if safe. Scan its body
// looking for calls to llvm.vastart.
for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == Intrinsic::vastart)
return false;
}
}
}
// If we get here, there are no calls to llvm.vastart in the function body,
// remove the "..." and adjust all the calls.
// Start by computing a new prototype for the function, which is the same as
// the old function, but doesn't have isVarArg set.
const FunctionType *FTy = Fn.getFunctionType();
std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
Params, false);
unsigned NumArgs = Params.size();
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, Fn.getLinkage());
NF->copyAttributesFrom(&Fn);
Fn.getParent()->getFunctionList().insert(&Fn, NF);
NF->takeName(&Fn);
// Loop over all of the callers of the function, transforming the call sites
// to pass in a smaller number of arguments into the new function.
//
std::vector<Value*> Args;
while (!Fn.use_empty()) {
CallSite CS(Fn.use_back());
Instruction *Call = CS.getInstruction();
// Pass all the same arguments.
Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
// Drop any attributes that were on the vararg arguments.
AttrListPtr PAL = CS.getAttributes();
if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
SmallVector<AttributeWithIndex, 8> AttributesVec;
for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
AttributesVec.push_back(PAL.getSlot(i));
if (Attributes FnAttrs = PAL.getFnAttributes())
AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
}
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args.begin(), Args.end(), "", Call);
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
cast<InvokeInst>(New)->setAttributes(PAL);
} else {
New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
cast<CallInst>(New)->setAttributes(PAL);
if (cast<CallInst>(Call)->isTailCall())
cast<CallInst>(New)->setTailCall();
}
New->setDebugLoc(Call->getDebugLoc());
Args.clear();
if (!Call->use_empty())
Call->replaceAllUsesWith(New);
New->takeName(Call);
// Finally, remove the old call from the program, reducing the use-count of
// F.
Call->eraseFromParent();
}
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
// Loop over the argument list, transfering uses of the old arguments over to
// the new arguments, also transfering over the names as well. While we're at
// it, remove the dead arguments from the DeadArguments list.
//
for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
I2 = NF->arg_begin(); I != E; ++I, ++I2) {
// Move the name and users over to the new version.
I->replaceAllUsesWith(I2);
I2->takeName(I);
}
// Finally, nuke the old function.
Fn.eraseFromParent();
return true;
}
/// Convenience function that returns the number of return values. It returns 0
/// for void functions and 1 for functions not returning a struct. It returns
/// the number of struct elements for functions returning a struct.
static unsigned NumRetVals(const Function *F) {
if (F->getReturnType()->isVoidTy())
return 0;
else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
return STy->getNumElements();
else
return 1;
}
/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
/// liveness of Use.
DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
// We're live if our use or its Function is already marked as live.
if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
return Live;
// We're maybe live otherwise, but remember that we must become live if
// Use becomes live.
MaybeLiveUses.push_back(Use);
return MaybeLive;
}
/// SurveyUse - This looks at a single use of an argument or return value
/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
/// if it causes the used value to become MaybeLive.
///
/// RetValNum is the return value number to use when this use is used in a
/// return instruction. This is used in the recursion, you should always leave
/// it at 0.
DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
UseVector &MaybeLiveUses, unsigned RetValNum) {
const User *V = *U;
if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
// The value is returned from a function. It's only live when the
// function's return value is live. We use RetValNum here, for the case
// that U is really a use of an insertvalue instruction that uses the
// orginal Use.
RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
// We might be live, depending on the liveness of Use.
return MarkIfNotLive(Use, MaybeLiveUses);
}
if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
&& IV->hasIndices())
// The use we are examining is inserted into an aggregate. Our liveness
// depends on all uses of that aggregate, but if it is used as a return
// value, only index at which we were inserted counts.
RetValNum = *IV->idx_begin();
// Note that if we are used as the aggregate operand to the insertvalue,
// we don't change RetValNum, but do survey all our uses.
Liveness Result = MaybeLive;
for (Value::const_use_iterator I = IV->use_begin(),
E = V->use_end(); I != E; ++I) {
Result = SurveyUse(I, MaybeLiveUses, RetValNum);
if (Result == Live)
break;
}
return Result;
}
if (ImmutableCallSite CS = V) {
const Function *F = CS.getCalledFunction();
if (F) {
// Used in a direct call.
// Find the argument number. We know for sure that this use is an
// argument, since if it was the function argument this would be an
// indirect call and the we know can't be looking at a value of the
// label type (for the invoke instruction).
unsigned ArgNo = CS.getArgumentNo(U);
if (ArgNo >= F->getFunctionType()->getNumParams())
// The value is passed in through a vararg! Must be live.
return Live;
assert(CS.getArgument(ArgNo)
== CS->getOperand(U.getOperandNo())
&& "Argument is not where we expected it");
// Value passed to a normal call. It's only live when the corresponding
// argument to the called function turns out live.
RetOrArg Use = CreateArg(F, ArgNo);
return MarkIfNotLive(Use, MaybeLiveUses);
}
}
// Used in any other way? Value must be live.
return Live;
}
/// SurveyUses - This looks at all the uses of the given value
/// Returns the Liveness deduced from the uses of this value.
///
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
/// the result is Live, MaybeLiveUses might be modified but its content should
/// be ignored (since it might not be complete).
DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
// Assume it's dead (which will only hold if there are no uses at all..).
Liveness Result = MaybeLive;
// Check each use.
for (Value::const_use_iterator I = V->use_begin(),
E = V->use_end(); I != E; ++I) {
Result = SurveyUse(I, MaybeLiveUses);
if (Result == Live)
break;
}
return Result;
}
// SurveyFunction - This performs the initial survey of the specified function,
// checking out whether or not it uses any of its incoming arguments or whether
// any callers use the return value. This fills in the LiveValues set and Uses
// map.
//
// We consider arguments of non-internal functions to be intrinsically alive as
// well as arguments to functions which have their "address taken".
//
void DAE::SurveyFunction(const Function &F) {
unsigned RetCount = NumRetVals(&F);
// Assume all return values are dead
typedef SmallVector<Liveness, 5> RetVals;
RetVals RetValLiveness(RetCount, MaybeLive);
typedef SmallVector<UseVector, 5> RetUses;
// These vectors map each return value to the uses that make it MaybeLive, so
// we can add those to the Uses map if the return value really turns out to be
// MaybeLive. Initialized to a list of RetCount empty lists.
RetUses MaybeLiveRetUses(RetCount);
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
!= F.getFunctionType()->getReturnType()) {
// We don't support old style multiple return values.
MarkLive(F);
return;
}
if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
MarkLive(F);
return;
}
DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
// Keep track of the number of live retvals, so we can skip checks once all
// of them turn out to be live.
unsigned NumLiveRetVals = 0;
const Type *STy = dyn_cast<StructType>(F.getReturnType());
// Loop all uses of the function.
for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
I != E; ++I) {
// If the function is PASSED IN as an argument, its address has been
// taken.
ImmutableCallSite CS(*I);
if (!CS || !CS.isCallee(I)) {
MarkLive(F);
return;
}
// If this use is anything other than a call site, the function is alive.
const Instruction *TheCall = CS.getInstruction();
if (!TheCall) { // Not a direct call site?
MarkLive(F);
return;
}
// If we end up here, we are looking at a direct call to our function.
// Now, check how our return value(s) is/are used in this caller. Don't
// bother checking return values if all of them are live already.
if (NumLiveRetVals != RetCount) {
if (STy) {
// Check all uses of the return value.
for (Value::const_use_iterator I = TheCall->use_begin(),
E = TheCall->use_end(); I != E; ++I) {
const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
if (Ext && Ext->hasIndices()) {
// This use uses a part of our return value, survey the uses of
// that part and store the results for this index only.
unsigned Idx = *Ext->idx_begin();
if (RetValLiveness[Idx] != Live) {
RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
if (RetValLiveness[Idx] == Live)
NumLiveRetVals++;
}
} else {
// Used by something else than extractvalue. Mark all return
// values as live.
for (unsigned i = 0; i != RetCount; ++i )
RetValLiveness[i] = Live;
NumLiveRetVals = RetCount;
break;
}
}
} else {
// Single return value
RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
if (RetValLiveness[0] == Live)
NumLiveRetVals = RetCount;
}
}
}
// Now we've inspected all callers, record the liveness of our return values.
for (unsigned i = 0; i != RetCount; ++i)
MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
// Now, check all of our arguments.
unsigned i = 0;
UseVector MaybeLiveArgUses;
for (Function::const_arg_iterator AI = F.arg_begin(),
E = F.arg_end(); AI != E; ++AI, ++i) {
// See what the effect of this use is (recording any uses that cause
// MaybeLive in MaybeLiveArgUses).
Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
// Mark the result.
MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
// Clear the vector again for the next iteration.
MaybeLiveArgUses.clear();
}
}
/// MarkValue - This function marks the liveness of RA depending on L. If L is
/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
/// such that RA will be marked live if any use in MaybeLiveUses gets marked
/// live later on.
void DAE::MarkValue(const RetOrArg &RA, Liveness L,
const UseVector &MaybeLiveUses) {
switch (L) {
case Live: MarkLive(RA); break;
case MaybeLive:
{
// Note any uses of this value, so this return value can be
// marked live whenever one of the uses becomes live.
for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
UE = MaybeLiveUses.end(); UI != UE; ++UI)
Uses.insert(std::make_pair(*UI, RA));
break;
}
}
}
/// MarkLive - Mark the given Function as alive, meaning that it cannot be
/// changed in any way. Additionally,
/// mark any values that are used as this function's parameters or by its return
/// values (according to Uses) live as well.
void DAE::MarkLive(const Function &F) {
DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
// Mark the function as live.
LiveFunctions.insert(&F);
// Mark all arguments as live.
for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
PropagateLiveness(CreateArg(&F, i));
// Mark all return values as live.
for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
PropagateLiveness(CreateRet(&F, i));
}
/// MarkLive - Mark the given return value or argument as live. Additionally,
/// mark any values that are used by this value (according to Uses) live as
/// well.
void DAE::MarkLive(const RetOrArg &RA) {
if (LiveFunctions.count(RA.F))
return; // Function was already marked Live.
if (!LiveValues.insert(RA).second)
return; // We were already marked Live.
DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
PropagateLiveness(RA);
}
/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
/// to any other values it uses (according to Uses).
void DAE::PropagateLiveness(const RetOrArg &RA) {
// We don't use upper_bound (or equal_range) here, because our recursive call
// to ourselves is likely to cause the upper_bound (which is the first value
// not belonging to RA) to become erased and the iterator invalidated.
UseMap::iterator Begin = Uses.lower_bound(RA);
UseMap::iterator E = Uses.end();
UseMap::iterator I;
for (I = Begin; I != E && I->first == RA; ++I)
MarkLive(I->second);
// Erase RA from the Uses map (from the lower bound to wherever we ended up
// after the loop).
Uses.erase(Begin, I);
}
// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
// that are not in LiveValues. Transform the function and all of the callees of
// the function to not have these arguments and return values.
//
bool DAE::RemoveDeadStuffFromFunction(Function *F) {
// Don't modify fully live functions
if (LiveFunctions.count(F))
return false;
// Start by computing a new prototype for the function, which is the same as
// the old function, but has fewer arguments and a different return type.
const FunctionType *FTy = F->getFunctionType();
std::vector<const Type*> Params;
// Set up to build a new list of parameter attributes.
SmallVector<AttributeWithIndex, 8> AttributesVec;
const AttrListPtr &PAL = F->getAttributes();
// The existing function return attributes.
Attributes RAttrs = PAL.getRetAttributes();
Attributes FnAttrs = PAL.getFnAttributes();
// Find out the new return value.
const Type *RetTy = FTy->getReturnType();
const Type *NRetTy = NULL;
unsigned RetCount = NumRetVals(F);
// -1 means unused, other numbers are the new index
SmallVector<int, 5> NewRetIdxs(RetCount, -1);
std::vector<const Type*> RetTypes;
if (RetTy->isVoidTy()) {
NRetTy = RetTy;
} else {
const StructType *STy = dyn_cast<StructType>(RetTy);
if (STy)
// Look at each of the original return values individually.
for (unsigned i = 0; i != RetCount; ++i) {
RetOrArg Ret = CreateRet(F, i);
if (LiveValues.erase(Ret)) {
RetTypes.push_back(STy->getElementType(i));
NewRetIdxs[i] = RetTypes.size() - 1;
} else {
++NumRetValsEliminated;
DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
<< F->getName() << "\n");
}
}
else
// We used to return a single value.
if (LiveValues.erase(CreateRet(F, 0))) {
RetTypes.push_back(RetTy);
NewRetIdxs[0] = 0;
} else {
DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
<< "\n");
++NumRetValsEliminated;
}
if (RetTypes.size() > 1)
// More than one return type? Return a struct with them. Also, if we used
// to return a struct and didn't change the number of return values,
// return a struct again. This prevents changing {something} into
// something and {} into void.
// Make the new struct packed if we used to return a packed struct
// already.
NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
else if (RetTypes.size() == 1)
// One return type? Just a simple value then, but only if we didn't use to
// return a struct with that simple value before.
NRetTy = RetTypes.front();
else if (RetTypes.size() == 0)
// No return types? Make it void, but only if we didn't use to return {}.
NRetTy = Type::getVoidTy(F->getContext());
}
assert(NRetTy && "No new return type found?");
// Remove any incompatible attributes, but only if we removed all return
// values. Otherwise, ensure that we don't have any conflicting attributes
// here. Currently, this should not be possible, but special handling might be
// required when new return value attributes are added.
if (NRetTy->isVoidTy())
RAttrs &= ~Attribute::typeIncompatible(NRetTy);
else
assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
&& "Return attributes no longer compatible?");
if (RAttrs)
AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
// Remember which arguments are still alive.
SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
// Construct the new parameter list from non-dead arguments. Also construct
// a new set of parameter attributes to correspond. Skip the first parameter
// attribute, since that belongs to the return value.
unsigned i = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I, ++i) {
RetOrArg Arg = CreateArg(F, i);
if (LiveValues.erase(Arg)) {
Params.push_back(I->getType());
ArgAlive[i] = true;
// Get the original parameter attributes (skipping the first one, that is
// for the return value.
if (Attributes Attrs = PAL.getParamAttributes(i + 1))
AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
} else {
++NumArgumentsEliminated;
DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
<< ") from " << F->getName() << "\n");
}
}
if (FnAttrs != Attribute::None)
AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
// Reconstruct the AttributesList based on the vector we constructed.
AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(),
AttributesVec.end());
// Create the new function type based on the recomputed parameters.
FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
// No change?
if (NFTy == FTy)
return false;
// Create the new function body and insert it into the module...
Function *NF = Function::Create(NFTy, F->getLinkage());
NF->copyAttributesFrom(F);
NF->setAttributes(NewPAL);
// Insert the new function before the old function, so we won't be processing
// it again.
F->getParent()->getFunctionList().insert(F, NF);
NF->takeName(F);
// Loop over all of the callers of the function, transforming the call sites
// to pass in a smaller number of arguments into the new function.
//
std::vector<Value*> Args;
while (!F->use_empty()) {
CallSite CS(F->use_back());
Instruction *Call = CS.getInstruction();
AttributesVec.clear();
const AttrListPtr &CallPAL = CS.getAttributes();
// The call return attributes.
Attributes RAttrs = CallPAL.getRetAttributes();
Attributes FnAttrs = CallPAL.getFnAttributes();
// Adjust in case the function was changed to return void.
RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
if (RAttrs)
AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
// Declare these outside of the loops, so we can reuse them for the second
// loop, which loops the varargs.
CallSite::arg_iterator I = CS.arg_begin();
unsigned i = 0;
// Loop over those operands, corresponding to the normal arguments to the
// original function, and add those that are still alive.
for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
if (ArgAlive[i]) {
Args.push_back(*I);
// Get original parameter attributes, but skip return attributes.
if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
// Push any varargs arguments on the list. Don't forget their attributes.
for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
Args.push_back(*I);
if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
if (FnAttrs != Attribute::None)
AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
// Reconstruct the AttributesList based on the vector we constructed.
AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
AttributesVec.end());
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args.begin(), Args.end(), "", Call);
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
cast<InvokeInst>(New)->setAttributes(NewCallPAL);
} else {
New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
cast<CallInst>(New)->setAttributes(NewCallPAL);
if (cast<CallInst>(Call)->isTailCall())
cast<CallInst>(New)->setTailCall();
}
New->setDebugLoc(Call->getDebugLoc());
Args.clear();
if (!Call->use_empty()) {
if (New->getType() == Call->getType()) {
// Return type not changed? Just replace users then.
Call->replaceAllUsesWith(New);
New->takeName(Call);
} else if (New->getType()->isVoidTy()) {
// Our return value has uses, but they will get removed later on.
// Replace by null for now.
Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
} else {
assert(RetTy->isStructTy() &&
"Return type changed, but not into a void. The old return type"
" must have been a struct!");
Instruction *InsertPt = Call;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
BasicBlock::iterator IP = II->getNormalDest()->begin();
while (isa<PHINode>(IP)) ++IP;
InsertPt = IP;
}
// We used to return a struct. Instead of doing smart stuff with all the
// uses of this struct, we will just rebuild it using
// extract/insertvalue chaining and let instcombine clean that up.
//
// Start out building up our return value from undef
Value *RetVal = UndefValue::get(RetTy);
for (unsigned i = 0; i != RetCount; ++i)
if (NewRetIdxs[i] != -1) {
Value *V;
if (RetTypes.size() > 1)
// We are still returning a struct, so extract the value from our
// return value
V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
InsertPt);
else
// We are now returning a single element, so just insert that
V = New;
// Insert the value at the old position
RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
}
// Now, replace all uses of the old call instruction with the return
// struct we built
Call->replaceAllUsesWith(RetVal);
New->takeName(Call);
}
}
// Finally, remove the old call from the program, reducing the use-count of
// F.
Call->eraseFromParent();
}
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
// Loop over the argument list, transfering uses of the old arguments over to
// the new arguments, also transfering over the names as well.
i = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
I2 = NF->arg_begin(); I != E; ++I, ++i)
if (ArgAlive[i]) {
// If this is a live argument, move the name and users over to the new
// version.
I->replaceAllUsesWith(I2);
I2->takeName(I);
++I2;
} else {
// If this argument is dead, replace any uses of it with null constants
// (these are guaranteed to become unused later on).
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
}
// If we change the return value of the function we must rewrite any return
// instructions. Check this now.
if (F->getReturnType() != NF->getReturnType())
for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
Value *RetVal;
if (NFTy->getReturnType()->isVoidTy()) {
RetVal = 0;
} else {
assert (RetTy->isStructTy());
// The original return value was a struct, insert
// extractvalue/insertvalue chains to extract only the values we need
// to return and insert them into our new result.
// This does generate messy code, but we'll let it to instcombine to
// clean that up.
Value *OldRet = RI->getOperand(0);
// Start out building up our return value from undef
RetVal = UndefValue::get(NRetTy);
for (unsigned i = 0; i != RetCount; ++i)
if (NewRetIdxs[i] != -1) {
ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
"oldret", RI);
if (RetTypes.size() > 1) {
// We're still returning a struct, so reinsert the value into
// our new return value at the new index
RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
"newret", RI);
} else {
// We are now only returning a simple value, so just return the
// extracted value.
RetVal = EV;
}
}
}
// Replace the return instruction with one returning the new return
// value (possibly 0 if we became void).
ReturnInst::Create(F->getContext(), RetVal, RI);
BB->getInstList().erase(RI);
}
// Now that the old function is dead, delete it.
F->eraseFromParent();
return true;
}
bool DAE::runOnModule(Module &M) {
bool Changed = false;
// First pass: Do a simple check to see if any functions can have their "..."
// removed. We can do this if they never call va_start. This loop cannot be
// fused with the next loop, because deleting a function invalidates
// information computed while surveying other functions.
DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
Function &F = *I++;
if (F.getFunctionType()->isVarArg())
Changed |= DeleteDeadVarargs(F);
}
// Second phase:loop through the module, determining which arguments are live.
// We assume all arguments are dead unless proven otherwise (allowing us to
// determine that dead arguments passed into recursive functions are dead).
//
DEBUG(dbgs() << "DAE - Determining liveness\n");
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
SurveyFunction(*I);
// Now, remove all dead arguments and return values from each function in
// turn.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
// Increment now, because the function will probably get removed (ie.
// replaced by a new one).
Function *F = I++;
Changed |= RemoveDeadStuffFromFunction(F);
}
return Changed;
}