llvm-project/llvm/tools/dsymutil/DwarfLinker.cpp

2541 lines
97 KiB
C++

//===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DebugMap.h"
#include "BinaryHolder.h"
#include "DebugMap.h"
#include "dsymutil.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <string>
#include <tuple>
namespace llvm {
namespace dsymutil {
namespace {
void warn(const Twine &Warning, const Twine &Context) {
errs() << Twine("while processing ") + Context + ":\n";
errs() << Twine("warning: ") + Warning + "\n";
}
bool error(const Twine &Error, const Twine &Context) {
errs() << Twine("while processing ") + Context + ":\n";
errs() << Twine("error: ") + Error + "\n";
return false;
}
template <typename KeyT, typename ValT>
using HalfOpenIntervalMap =
IntervalMap<KeyT, ValT, IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
IntervalMapHalfOpenInfo<KeyT>>;
typedef HalfOpenIntervalMap<uint64_t, int64_t> FunctionIntervals;
/// \brief Stores all information relating to a compile unit, be it in
/// its original instance in the object file to its brand new cloned
/// and linked DIE tree.
class CompileUnit {
public:
/// \brief Information gathered about a DIE in the object file.
struct DIEInfo {
int64_t AddrAdjust; ///< Address offset to apply to the described entity.
DIE *Clone; ///< Cloned version of that DIE.
uint32_t ParentIdx; ///< The index of this DIE's parent.
bool Keep; ///< Is the DIE part of the linked output?
bool InDebugMap; ///< Was this DIE's entity found in the map?
};
CompileUnit(DWARFUnit &OrigUnit, unsigned ID)
: OrigUnit(OrigUnit), ID(ID), LowPc(UINT64_MAX), HighPc(0), RangeAlloc(),
Ranges(RangeAlloc), UnitRangeAttribute(nullptr) {
Info.resize(OrigUnit.getNumDIEs());
}
CompileUnit(CompileUnit &&RHS)
: OrigUnit(RHS.OrigUnit), Info(std::move(RHS.Info)),
CUDie(std::move(RHS.CUDie)), StartOffset(RHS.StartOffset),
NextUnitOffset(RHS.NextUnitOffset), RangeAlloc(), Ranges(RangeAlloc) {
// The CompileUnit container has been 'reserve()'d with the right
// size. We cannot move the IntervalMap anyway.
llvm_unreachable("CompileUnits should not be moved.");
}
DWARFUnit &getOrigUnit() const { return OrigUnit; }
unsigned getUniqueID() const { return ID; }
DIE *getOutputUnitDIE() const { return CUDie.get(); }
void setOutputUnitDIE(DIE *Die) { CUDie.reset(Die); }
DIEInfo &getInfo(unsigned Idx) { return Info[Idx]; }
const DIEInfo &getInfo(unsigned Idx) const { return Info[Idx]; }
uint64_t getStartOffset() const { return StartOffset; }
uint64_t getNextUnitOffset() const { return NextUnitOffset; }
void setStartOffset(uint64_t DebugInfoSize) { StartOffset = DebugInfoSize; }
uint64_t getLowPc() const { return LowPc; }
uint64_t getHighPc() const { return HighPc; }
DIEInteger *getUnitRangesAttribute() const { return UnitRangeAttribute; }
const FunctionIntervals &getFunctionRanges() const { return Ranges; }
const std::vector<DIEInteger *> &getRangesAttributes() const {
return RangeAttributes;
}
const std::vector<std::pair<DIEInteger *, int64_t>> &
getLocationAttributes() const {
return LocationAttributes;
}
/// \brief Compute the end offset for this unit. Must be
/// called after the CU's DIEs have been cloned.
/// \returns the next unit offset (which is also the current
/// debug_info section size).
uint64_t computeNextUnitOffset();
/// \brief Keep track of a forward reference to DIE \p Die in \p
/// RefUnit by \p Attr. The attribute should be fixed up later to
/// point to the absolute offset of \p Die in the debug_info section.
void noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
DIEInteger *Attr);
/// \brief Apply all fixups recored by noteForwardReference().
void fixupForwardReferences();
/// \brief Add a function range [\p LowPC, \p HighPC) that is
/// relocatad by applying offset \p PCOffset.
void addFunctionRange(uint64_t LowPC, uint64_t HighPC, int64_t PCOffset);
/// \brief Keep track of a DW_AT_range attribute that we will need to
/// patch up later.
void noteRangeAttribute(const DIE &Die, DIEInteger *Attr);
/// \brief Keep track of a location attribute pointing to a location
/// list in the debug_loc section.
void noteLocationAttribute(DIEInteger *Attr, int64_t PcOffset);
/// \brief Add a name accelerator entry for \p Die with \p Name
/// which is stored in the string table at \p Offset.
void addNameAccelerator(const DIE *Die, const char *Name, uint32_t Offset,
bool SkipPubnamesSection = false);
/// \brief Add a type accelerator entry for \p Die with \p Name
/// which is stored in the string table at \p Offset.
void addTypeAccelerator(const DIE *Die, const char *Name, uint32_t Offset);
struct AccelInfo {
StringRef Name; ///< Name of the entry.
const DIE *Die; ///< DIE this entry describes.
uint32_t NameOffset; ///< Offset of Name in the string pool.
bool SkipPubSection; ///< Emit this entry only in the apple_* sections.
AccelInfo(StringRef Name, const DIE *Die, uint32_t NameOffset,
bool SkipPubSection = false)
: Name(Name), Die(Die), NameOffset(NameOffset),
SkipPubSection(SkipPubSection) {}
};
const std::vector<AccelInfo> &getPubnames() const { return Pubnames; }
const std::vector<AccelInfo> &getPubtypes() const { return Pubtypes; }
private:
DWARFUnit &OrigUnit;
unsigned ID;
std::vector<DIEInfo> Info; ///< DIE info indexed by DIE index.
std::unique_ptr<DIE> CUDie; ///< Root of the linked DIE tree.
uint64_t StartOffset;
uint64_t NextUnitOffset;
uint64_t LowPc;
uint64_t HighPc;
/// \brief A list of attributes to fixup with the absolute offset of
/// a DIE in the debug_info section.
///
/// The offsets for the attributes in this array couldn't be set while
/// cloning because for cross-cu forward refences the target DIE's
/// offset isn't known you emit the reference attribute.
std::vector<std::tuple<DIE *, const CompileUnit *, DIEInteger *>>
ForwardDIEReferences;
FunctionIntervals::Allocator RangeAlloc;
/// \brief The ranges in that interval map are the PC ranges for
/// functions in this unit, associated with the PC offset to apply
/// to the addresses to get the linked address.
FunctionIntervals Ranges;
/// \brief DW_AT_ranges attributes to patch after we have gathered
/// all the unit's function addresses.
/// @{
std::vector<DIEInteger *> RangeAttributes;
DIEInteger *UnitRangeAttribute;
/// @}
/// \brief Location attributes that need to be transfered from th
/// original debug_loc section to the liked one. They are stored
/// along with the PC offset that is to be applied to their
/// function's address.
std::vector<std::pair<DIEInteger *, int64_t>> LocationAttributes;
/// \brief Accelerator entries for the unit, both for the pub*
/// sections and the apple* ones.
/// @{
std::vector<AccelInfo> Pubnames;
std::vector<AccelInfo> Pubtypes;
/// @}
};
uint64_t CompileUnit::computeNextUnitOffset() {
NextUnitOffset = StartOffset + 11 /* Header size */;
// The root DIE might be null, meaning that the Unit had nothing to
// contribute to the linked output. In that case, we will emit the
// unit header without any actual DIE.
if (CUDie)
NextUnitOffset += CUDie->getSize();
return NextUnitOffset;
}
/// \brief Keep track of a forward cross-cu reference from this unit
/// to \p Die that lives in \p RefUnit.
void CompileUnit::noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
DIEInteger *Attr) {
ForwardDIEReferences.emplace_back(Die, RefUnit, Attr);
}
/// \brief Apply all fixups recorded by noteForwardReference().
void CompileUnit::fixupForwardReferences() {
for (const auto &Ref : ForwardDIEReferences) {
DIE *RefDie;
const CompileUnit *RefUnit;
DIEInteger *Attr;
std::tie(RefDie, RefUnit, Attr) = Ref;
Attr->setValue(RefDie->getOffset() + RefUnit->getStartOffset());
}
}
void CompileUnit::addFunctionRange(uint64_t FuncLowPc, uint64_t FuncHighPc,
int64_t PcOffset) {
Ranges.insert(FuncLowPc, FuncHighPc, PcOffset);
this->LowPc = std::min(LowPc, FuncLowPc + PcOffset);
this->HighPc = std::max(HighPc, FuncHighPc + PcOffset);
}
void CompileUnit::noteRangeAttribute(const DIE &Die, DIEInteger *Attr) {
if (Die.getTag() != dwarf::DW_TAG_compile_unit)
RangeAttributes.push_back(Attr);
else
UnitRangeAttribute = Attr;
}
void CompileUnit::noteLocationAttribute(DIEInteger *Attr, int64_t PcOffset) {
LocationAttributes.emplace_back(Attr, PcOffset);
}
/// \brief Add a name accelerator entry for \p Die with \p Name
/// which is stored in the string table at \p Offset.
void CompileUnit::addNameAccelerator(const DIE *Die, const char *Name,
uint32_t Offset, bool SkipPubSection) {
Pubnames.emplace_back(Name, Die, Offset, SkipPubSection);
}
/// \brief Add a type accelerator entry for \p Die with \p Name
/// which is stored in the string table at \p Offset.
void CompileUnit::addTypeAccelerator(const DIE *Die, const char *Name,
uint32_t Offset) {
Pubtypes.emplace_back(Name, Die, Offset, false);
}
/// \brief A string table that doesn't need relocations.
///
/// We are doing a final link, no need for a string table that
/// has relocation entries for every reference to it. This class
/// provides this ablitity by just associating offsets with
/// strings.
class NonRelocatableStringpool {
public:
/// \brief Entries are stored into the StringMap and simply linked
/// together through the second element of this pair in order to
/// keep track of insertion order.
typedef StringMap<std::pair<uint32_t, StringMapEntryBase *>, BumpPtrAllocator>
MapTy;
NonRelocatableStringpool()
: CurrentEndOffset(0), Sentinel(0), Last(&Sentinel) {
// Legacy dsymutil puts an empty string at the start of the line
// table.
getStringOffset("");
}
/// \brief Get the offset of string \p S in the string table. This
/// can insert a new element or return the offset of a preexisitng
/// one.
uint32_t getStringOffset(StringRef S);
/// \brief Get permanent storage for \p S (but do not necessarily
/// emit \p S in the output section).
/// \returns The StringRef that points to permanent storage to use
/// in place of \p S.
StringRef internString(StringRef S);
// \brief Return the first entry of the string table.
const MapTy::MapEntryTy *getFirstEntry() const {
return getNextEntry(&Sentinel);
}
// \brief Get the entry following \p E in the string table or null
// if \p E was the last entry.
const MapTy::MapEntryTy *getNextEntry(const MapTy::MapEntryTy *E) const {
return static_cast<const MapTy::MapEntryTy *>(E->getValue().second);
}
uint64_t getSize() { return CurrentEndOffset; }
private:
MapTy Strings;
uint32_t CurrentEndOffset;
MapTy::MapEntryTy Sentinel, *Last;
};
/// \brief Get the offset of string \p S in the string table. This
/// can insert a new element or return the offset of a preexisitng
/// one.
uint32_t NonRelocatableStringpool::getStringOffset(StringRef S) {
if (S.empty() && !Strings.empty())
return 0;
std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
MapTy::iterator It;
bool Inserted;
// A non-empty string can't be at offset 0, so if we have an entry
// with a 0 offset, it must be a previously interned string.
std::tie(It, Inserted) = Strings.insert(std::make_pair(S, Entry));
if (Inserted || It->getValue().first == 0) {
// Set offset and chain at the end of the entries list.
It->getValue().first = CurrentEndOffset;
CurrentEndOffset += S.size() + 1; // +1 for the '\0'.
Last->getValue().second = &*It;
Last = &*It;
}
return It->getValue().first;
}
/// \brief Put \p S into the StringMap so that it gets permanent
/// storage, but do not actually link it in the chain of elements
/// that go into the output section. A latter call to
/// getStringOffset() with the same string will chain it though.
StringRef NonRelocatableStringpool::internString(StringRef S) {
std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
auto InsertResult = Strings.insert(std::make_pair(S, Entry));
return InsertResult.first->getKey();
}
/// \brief The Dwarf streaming logic
///
/// All interactions with the MC layer that is used to build the debug
/// information binary representation are handled in this class.
class DwarfStreamer {
/// \defgroup MCObjects MC layer objects constructed by the streamer
/// @{
std::unique_ptr<MCRegisterInfo> MRI;
std::unique_ptr<MCAsmInfo> MAI;
std::unique_ptr<MCObjectFileInfo> MOFI;
std::unique_ptr<MCContext> MC;
MCAsmBackend *MAB; // Owned by MCStreamer
std::unique_ptr<MCInstrInfo> MII;
std::unique_ptr<MCSubtargetInfo> MSTI;
MCCodeEmitter *MCE; // Owned by MCStreamer
MCStreamer *MS; // Owned by AsmPrinter
std::unique_ptr<TargetMachine> TM;
std::unique_ptr<AsmPrinter> Asm;
/// @}
/// \brief the file we stream the linked Dwarf to.
std::unique_ptr<raw_fd_ostream> OutFile;
uint32_t RangesSectionSize;
uint32_t LocSectionSize;
uint32_t LineSectionSize;
/// \brief Emit the pubnames or pubtypes section contribution for \p
/// Unit into \p Sec. The data is provided in \p Names.
void emitPubSectionForUnit(const MCSection *Sec, StringRef Name,
const CompileUnit &Unit,
const std::vector<CompileUnit::AccelInfo> &Names);
public:
/// \brief Actually create the streamer and the ouptut file.
///
/// This could be done directly in the constructor, but it feels
/// more natural to handle errors through return value.
bool init(Triple TheTriple, StringRef OutputFilename);
/// \brief Dump the file to the disk.
bool finish();
AsmPrinter &getAsmPrinter() const { return *Asm; }
/// \brief Set the current output section to debug_info and change
/// the MC Dwarf version to \p DwarfVersion.
void switchToDebugInfoSection(unsigned DwarfVersion);
/// \brief Emit the compilation unit header for \p Unit in the
/// debug_info section.
///
/// As a side effect, this also switches the current Dwarf version
/// of the MC layer to the one of U.getOrigUnit().
void emitCompileUnitHeader(CompileUnit &Unit);
/// \brief Recursively emit the DIE tree rooted at \p Die.
void emitDIE(DIE &Die);
/// \brief Emit the abbreviation table \p Abbrevs to the
/// debug_abbrev section.
void emitAbbrevs(const std::vector<DIEAbbrev *> &Abbrevs);
/// \brief Emit the string table described by \p Pool.
void emitStrings(const NonRelocatableStringpool &Pool);
/// \brief Emit debug_ranges for \p FuncRange by translating the
/// original \p Entries.
void emitRangesEntries(
int64_t UnitPcOffset, uint64_t OrigLowPc,
FunctionIntervals::const_iterator FuncRange,
const std::vector<DWARFDebugRangeList::RangeListEntry> &Entries,
unsigned AddressSize);
/// \brief Emit debug_aranges entries for \p Unit and if \p
/// DoRangesSection is true, also emit the debug_ranges entries for
/// the DW_TAG_compile_unit's DW_AT_ranges attribute.
void emitUnitRangesEntries(CompileUnit &Unit, bool DoRangesSection);
uint32_t getRangesSectionSize() const { return RangesSectionSize; }
/// \brief Emit the debug_loc contribution for \p Unit by copying
/// the entries from \p Dwarf and offseting them. Update the
/// location attributes to point to the new entries.
void emitLocationsForUnit(const CompileUnit &Unit, DWARFContext &Dwarf);
/// \brief Emit the line table described in \p Rows into the
/// debug_line section.
void emitLineTableForUnit(StringRef PrologueBytes, unsigned MinInstLength,
std::vector<DWARFDebugLine::Row> &Rows,
unsigned AdddressSize);
uint32_t getLineSectionSize() const { return LineSectionSize; }
/// \brief Emit the .debug_pubnames contribution for \p Unit.
void emitPubNamesForUnit(const CompileUnit &Unit);
/// \brief Emit the .debug_pubtypes contribution for \p Unit.
void emitPubTypesForUnit(const CompileUnit &Unit);
};
bool DwarfStreamer::init(Triple TheTriple, StringRef OutputFilename) {
std::string ErrorStr;
std::string TripleName;
StringRef Context = "dwarf streamer init";
// Get the target.
const Target *TheTarget =
TargetRegistry::lookupTarget(TripleName, TheTriple, ErrorStr);
if (!TheTarget)
return error(ErrorStr, Context);
TripleName = TheTriple.getTriple();
// Create all the MC Objects.
MRI.reset(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
return error(Twine("no register info for target ") + TripleName, Context);
MAI.reset(TheTarget->createMCAsmInfo(*MRI, TripleName));
if (!MAI)
return error("no asm info for target " + TripleName, Context);
MOFI.reset(new MCObjectFileInfo);
MC.reset(new MCContext(MAI.get(), MRI.get(), MOFI.get()));
MOFI->InitMCObjectFileInfo(TripleName, Reloc::Default, CodeModel::Default,
*MC);
MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, "");
if (!MAB)
return error("no asm backend for target " + TripleName, Context);
MII.reset(TheTarget->createMCInstrInfo());
if (!MII)
return error("no instr info info for target " + TripleName, Context);
MSTI.reset(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
if (!MSTI)
return error("no subtarget info for target " + TripleName, Context);
MCE = TheTarget->createMCCodeEmitter(*MII, *MRI, *MC);
if (!MCE)
return error("no code emitter for target " + TripleName, Context);
// Create the output file.
std::error_code EC;
OutFile =
llvm::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::F_None);
if (EC)
return error(Twine(OutputFilename) + ": " + EC.message(), Context);
MS = TheTarget->createMCObjectStreamer(TheTriple, *MC, *MAB, *OutFile, MCE,
*MSTI, false);
if (!MS)
return error("no object streamer for target " + TripleName, Context);
// Finally create the AsmPrinter we'll use to emit the DIEs.
TM.reset(TheTarget->createTargetMachine(TripleName, "", "", TargetOptions()));
if (!TM)
return error("no target machine for target " + TripleName, Context);
Asm.reset(TheTarget->createAsmPrinter(*TM, std::unique_ptr<MCStreamer>(MS)));
if (!Asm)
return error("no asm printer for target " + TripleName, Context);
RangesSectionSize = 0;
LocSectionSize = 0;
LineSectionSize = 0;
return true;
}
bool DwarfStreamer::finish() {
MS->Finish();
return true;
}
/// \brief Set the current output section to debug_info and change
/// the MC Dwarf version to \p DwarfVersion.
void DwarfStreamer::switchToDebugInfoSection(unsigned DwarfVersion) {
MS->SwitchSection(MOFI->getDwarfInfoSection());
MC->setDwarfVersion(DwarfVersion);
}
/// \brief Emit the compilation unit header for \p Unit in the
/// debug_info section.
///
/// A Dwarf scetion header is encoded as:
/// uint32_t Unit length (omiting this field)
/// uint16_t Version
/// uint32_t Abbreviation table offset
/// uint8_t Address size
///
/// Leading to a total of 11 bytes.
void DwarfStreamer::emitCompileUnitHeader(CompileUnit &Unit) {
unsigned Version = Unit.getOrigUnit().getVersion();
switchToDebugInfoSection(Version);
// Emit size of content not including length itself. The size has
// already been computed in CompileUnit::computeOffsets(). Substract
// 4 to that size to account for the length field.
Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset() - 4);
Asm->EmitInt16(Version);
// We share one abbreviations table across all units so it's always at the
// start of the section.
Asm->EmitInt32(0);
Asm->EmitInt8(Unit.getOrigUnit().getAddressByteSize());
}
/// \brief Emit the \p Abbrevs array as the shared abbreviation table
/// for the linked Dwarf file.
void DwarfStreamer::emitAbbrevs(const std::vector<DIEAbbrev *> &Abbrevs) {
MS->SwitchSection(MOFI->getDwarfAbbrevSection());
Asm->emitDwarfAbbrevs(Abbrevs);
}
/// \brief Recursively emit the DIE tree rooted at \p Die.
void DwarfStreamer::emitDIE(DIE &Die) {
MS->SwitchSection(MOFI->getDwarfInfoSection());
Asm->emitDwarfDIE(Die);
}
/// \brief Emit the debug_str section stored in \p Pool.
void DwarfStreamer::emitStrings(const NonRelocatableStringpool &Pool) {
Asm->OutStreamer.SwitchSection(MOFI->getDwarfStrSection());
for (auto *Entry = Pool.getFirstEntry(); Entry;
Entry = Pool.getNextEntry(Entry))
Asm->OutStreamer.EmitBytes(
StringRef(Entry->getKey().data(), Entry->getKey().size() + 1));
}
/// \brief Emit the debug_range section contents for \p FuncRange by
/// translating the original \p Entries. The debug_range section
/// format is totally trivial, consisting just of pairs of address
/// sized addresses describing the ranges.
void DwarfStreamer::emitRangesEntries(
int64_t UnitPcOffset, uint64_t OrigLowPc,
FunctionIntervals::const_iterator FuncRange,
const std::vector<DWARFDebugRangeList::RangeListEntry> &Entries,
unsigned AddressSize) {
MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection());
// Offset each range by the right amount.
int64_t PcOffset = FuncRange.value() + UnitPcOffset;
for (const auto &Range : Entries) {
if (Range.isBaseAddressSelectionEntry(AddressSize)) {
warn("unsupported base address selection operation",
"emitting debug_ranges");
break;
}
// Do not emit empty ranges.
if (Range.StartAddress == Range.EndAddress)
continue;
// All range entries should lie in the function range.
if (!(Range.StartAddress + OrigLowPc >= FuncRange.start() &&
Range.EndAddress + OrigLowPc <= FuncRange.stop()))
warn("inconsistent range data.", "emitting debug_ranges");
MS->EmitIntValue(Range.StartAddress + PcOffset, AddressSize);
MS->EmitIntValue(Range.EndAddress + PcOffset, AddressSize);
RangesSectionSize += 2 * AddressSize;
}
// Add the terminator entry.
MS->EmitIntValue(0, AddressSize);
MS->EmitIntValue(0, AddressSize);
RangesSectionSize += 2 * AddressSize;
}
/// \brief Emit the debug_aranges contribution of a unit and
/// if \p DoDebugRanges is true the debug_range contents for a
/// compile_unit level DW_AT_ranges attribute (Which are basically the
/// same thing with a different base address).
/// Just aggregate all the ranges gathered inside that unit.
void DwarfStreamer::emitUnitRangesEntries(CompileUnit &Unit,
bool DoDebugRanges) {
unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
// Gather the ranges in a vector, so that we can simplify them. The
// IntervalMap will have coalesced the non-linked ranges, but here
// we want to coalesce the linked addresses.
std::vector<std::pair<uint64_t, uint64_t>> Ranges;
const auto &FunctionRanges = Unit.getFunctionRanges();
for (auto Range = FunctionRanges.begin(), End = FunctionRanges.end();
Range != End; ++Range)
Ranges.push_back(std::make_pair(Range.start() + Range.value(),
Range.stop() + Range.value()));
// The object addresses where sorted, but again, the linked
// addresses might end up in a different order.
std::sort(Ranges.begin(), Ranges.end());
if (!Ranges.empty()) {
MS->SwitchSection(MC->getObjectFileInfo()->getDwarfARangesSection());
MCSymbol *BeginLabel = Asm->createTempSymbol("Barange");
MCSymbol *EndLabel = Asm->createTempSymbol("Earange");
unsigned HeaderSize =
sizeof(int32_t) + // Size of contents (w/o this field
sizeof(int16_t) + // DWARF ARange version number
sizeof(int32_t) + // Offset of CU in the .debug_info section
sizeof(int8_t) + // Pointer Size (in bytes)
sizeof(int8_t); // Segment Size (in bytes)
unsigned TupleSize = AddressSize * 2;
unsigned Padding = OffsetToAlignment(HeaderSize, TupleSize);
Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Arange length
Asm->OutStreamer.EmitLabel(BeginLabel);
Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); // Version number
Asm->EmitInt32(Unit.getStartOffset()); // Corresponding unit's offset
Asm->EmitInt8(AddressSize); // Address size
Asm->EmitInt8(0); // Segment size
Asm->OutStreamer.EmitFill(Padding, 0x0);
for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End;
++Range) {
uint64_t RangeStart = Range->first;
MS->EmitIntValue(RangeStart, AddressSize);
while ((Range + 1) != End && Range->second == (Range + 1)->first)
++Range;
MS->EmitIntValue(Range->second - RangeStart, AddressSize);
}
// Emit terminator
Asm->OutStreamer.EmitIntValue(0, AddressSize);
Asm->OutStreamer.EmitIntValue(0, AddressSize);
Asm->OutStreamer.EmitLabel(EndLabel);
}
if (!DoDebugRanges)
return;
MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection());
// Offset each range by the right amount.
int64_t PcOffset = -Unit.getLowPc();
// Emit coalesced ranges.
for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End; ++Range) {
MS->EmitIntValue(Range->first + PcOffset, AddressSize);
while (Range + 1 != End && Range->second == (Range + 1)->first)
++Range;
MS->EmitIntValue(Range->second + PcOffset, AddressSize);
RangesSectionSize += 2 * AddressSize;
}
// Add the terminator entry.
MS->EmitIntValue(0, AddressSize);
MS->EmitIntValue(0, AddressSize);
RangesSectionSize += 2 * AddressSize;
}
/// \brief Emit location lists for \p Unit and update attribtues to
/// point to the new entries.
void DwarfStreamer::emitLocationsForUnit(const CompileUnit &Unit,
DWARFContext &Dwarf) {
const std::vector<std::pair<DIEInteger *, int64_t>> &Attributes =
Unit.getLocationAttributes();
if (Attributes.empty())
return;
MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLocSection());
unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
const DWARFSection &InputSec = Dwarf.getLocSection();
DataExtractor Data(InputSec.Data, Dwarf.isLittleEndian(), AddressSize);
DWARFUnit &OrigUnit = Unit.getOrigUnit();
const auto *OrigUnitDie = OrigUnit.getCompileUnitDIE(false);
int64_t UnitPcOffset = 0;
uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress(
&OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
if (OrigLowPc != -1ULL)
UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
for (const auto &Attr : Attributes) {
uint32_t Offset = Attr.first->getValue();
Attr.first->setValue(LocSectionSize);
// This is the quantity to add to the old location address to get
// the correct address for the new one.
int64_t LocPcOffset = Attr.second + UnitPcOffset;
while (Data.isValidOffset(Offset)) {
uint64_t Low = Data.getUnsigned(&Offset, AddressSize);
uint64_t High = Data.getUnsigned(&Offset, AddressSize);
LocSectionSize += 2 * AddressSize;
if (Low == 0 && High == 0) {
Asm->OutStreamer.EmitIntValue(0, AddressSize);
Asm->OutStreamer.EmitIntValue(0, AddressSize);
break;
}
Asm->OutStreamer.EmitIntValue(Low + LocPcOffset, AddressSize);
Asm->OutStreamer.EmitIntValue(High + LocPcOffset, AddressSize);
uint64_t Length = Data.getU16(&Offset);
Asm->OutStreamer.EmitIntValue(Length, 2);
// Just copy the bytes over.
Asm->OutStreamer.EmitBytes(
StringRef(InputSec.Data.substr(Offset, Length)));
Offset += Length;
LocSectionSize += Length + 2;
}
}
}
void DwarfStreamer::emitLineTableForUnit(StringRef PrologueBytes,
unsigned MinInstLength,
std::vector<DWARFDebugLine::Row> &Rows,
unsigned PointerSize) {
// Switch to the section where the table will be emitted into.
MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLineSection());
MCSymbol *LineStartSym = MC->CreateTempSymbol();
MCSymbol *LineEndSym = MC->CreateTempSymbol();
// The first 4 bytes is the total length of the information for this
// compilation unit (not including these 4 bytes for the length).
Asm->EmitLabelDifference(LineEndSym, LineStartSym, 4);
Asm->OutStreamer.EmitLabel(LineStartSym);
// Copy Prologue.
MS->EmitBytes(PrologueBytes);
LineSectionSize += PrologueBytes.size() + 4;
SmallString<128> EncodingBuffer;
raw_svector_ostream EncodingOS(EncodingBuffer);
if (Rows.empty()) {
// We only have the dummy entry, dsymutil emits an entry with a 0
// address in that case.
MCDwarfLineAddr::Encode(*MC, INT64_MAX, 0, EncodingOS);
MS->EmitBytes(EncodingOS.str());
LineSectionSize += EncodingBuffer.size();
MS->EmitLabel(LineEndSym);
return;
}
// Line table state machine fields
unsigned FileNum = 1;
unsigned LastLine = 1;
unsigned Column = 0;
unsigned IsStatement = 1;
unsigned Isa = 0;
uint64_t Address = -1ULL;
unsigned RowsSinceLastSequence = 0;
for (unsigned Idx = 0; Idx < Rows.size(); ++Idx) {
auto &Row = Rows[Idx];
int64_t AddressDelta;
if (Address == -1ULL) {
MS->EmitIntValue(dwarf::DW_LNS_extended_op, 1);
MS->EmitULEB128IntValue(PointerSize + 1);
MS->EmitIntValue(dwarf::DW_LNE_set_address, 1);
MS->EmitIntValue(Row.Address, PointerSize);
LineSectionSize += 2 + PointerSize + getULEB128Size(PointerSize + 1);
AddressDelta = 0;
} else {
AddressDelta = (Row.Address - Address) / MinInstLength;
}
// FIXME: code copied and transfromed from
// MCDwarf.cpp::EmitDwarfLineTable. We should find a way to share
// this code, but the current compatibility requirement with
// classic dsymutil makes it hard. Revisit that once this
// requirement is dropped.
if (FileNum != Row.File) {
FileNum = Row.File;
MS->EmitIntValue(dwarf::DW_LNS_set_file, 1);
MS->EmitULEB128IntValue(FileNum);
LineSectionSize += 1 + getULEB128Size(FileNum);
}
if (Column != Row.Column) {
Column = Row.Column;
MS->EmitIntValue(dwarf::DW_LNS_set_column, 1);
MS->EmitULEB128IntValue(Column);
LineSectionSize += 1 + getULEB128Size(Column);
}
// FIXME: We should handle the discriminator here, but dsymutil
// doesn' consider it, thus ignore it for now.
if (Isa != Row.Isa) {
Isa = Row.Isa;
MS->EmitIntValue(dwarf::DW_LNS_set_isa, 1);
MS->EmitULEB128IntValue(Isa);
LineSectionSize += 1 + getULEB128Size(Isa);
}
if (IsStatement != Row.IsStmt) {
IsStatement = Row.IsStmt;
MS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1);
LineSectionSize += 1;
}
if (Row.BasicBlock) {
MS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1);
LineSectionSize += 1;
}
if (Row.PrologueEnd) {
MS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1);
LineSectionSize += 1;
}
if (Row.EpilogueBegin) {
MS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1);
LineSectionSize += 1;
}
int64_t LineDelta = int64_t(Row.Line) - LastLine;
if (!Row.EndSequence) {
MCDwarfLineAddr::Encode(*MC, LineDelta, AddressDelta, EncodingOS);
MS->EmitBytes(EncodingOS.str());
LineSectionSize += EncodingBuffer.size();
EncodingBuffer.resize(0);
EncodingOS.resync();
Address = Row.Address;
LastLine = Row.Line;
RowsSinceLastSequence++;
} else {
if (LineDelta) {
MS->EmitIntValue(dwarf::DW_LNS_advance_line, 1);
MS->EmitSLEB128IntValue(LineDelta);
LineSectionSize += 1 + getSLEB128Size(LineDelta);
}
if (AddressDelta) {
MS->EmitIntValue(dwarf::DW_LNS_advance_pc, 1);
MS->EmitULEB128IntValue(AddressDelta);
LineSectionSize += 1 + getULEB128Size(AddressDelta);
}
MCDwarfLineAddr::Encode(*MC, INT64_MAX, 0, EncodingOS);
MS->EmitBytes(EncodingOS.str());
LineSectionSize += EncodingBuffer.size();
EncodingBuffer.resize(0);
EncodingOS.resync();
Address = -1ULL;
LastLine = FileNum = IsStatement = 1;
RowsSinceLastSequence = Column = Isa = 0;
}
}
if (RowsSinceLastSequence) {
MCDwarfLineAddr::Encode(*MC, INT64_MAX, 0, EncodingOS);
MS->EmitBytes(EncodingOS.str());
LineSectionSize += EncodingBuffer.size();
EncodingBuffer.resize(0);
EncodingOS.resync();
}
MS->EmitLabel(LineEndSym);
}
/// \brief Emit the pubnames or pubtypes section contribution for \p
/// Unit into \p Sec. The data is provided in \p Names.
void DwarfStreamer::emitPubSectionForUnit(
const MCSection *Sec, StringRef SecName, const CompileUnit &Unit,
const std::vector<CompileUnit::AccelInfo> &Names) {
if (Names.empty())
return;
// Start the dwarf pubnames section.
Asm->OutStreamer.SwitchSection(Sec);
MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + SecName + "_begin");
MCSymbol *EndLabel = Asm->createTempSymbol("pub" + SecName + "_end");
bool HeaderEmitted = false;
// Emit the pubnames for this compilation unit.
for (const auto &Name : Names) {
if (Name.SkipPubSection)
continue;
if (!HeaderEmitted) {
// Emit the header.
Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Length
Asm->OutStreamer.EmitLabel(BeginLabel);
Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); // Version
Asm->EmitInt32(Unit.getStartOffset()); // Unit offset
Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset()); // Size
HeaderEmitted = true;
}
Asm->EmitInt32(Name.Die->getOffset());
Asm->OutStreamer.EmitBytes(
StringRef(Name.Name.data(), Name.Name.size() + 1));
}
if (!HeaderEmitted)
return;
Asm->EmitInt32(0); // End marker.
Asm->OutStreamer.EmitLabel(EndLabel);
}
/// \brief Emit .debug_pubnames for \p Unit.
void DwarfStreamer::emitPubNamesForUnit(const CompileUnit &Unit) {
emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubNamesSection(),
"names", Unit, Unit.getPubnames());
}
/// \brief Emit .debug_pubtypes for \p Unit.
void DwarfStreamer::emitPubTypesForUnit(const CompileUnit &Unit) {
emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubTypesSection(),
"types", Unit, Unit.getPubtypes());
}
/// \brief The core of the Dwarf linking logic.
///
/// The link of the dwarf information from the object files will be
/// driven by the selection of 'root DIEs', which are DIEs that
/// describe variables or functions that are present in the linked
/// binary (and thus have entries in the debug map). All the debug
/// information that will be linked (the DIEs, but also the line
/// tables, ranges, ...) is derived from that set of root DIEs.
///
/// The root DIEs are identified because they contain relocations that
/// correspond to a debug map entry at specific places (the low_pc for
/// a function, the location for a variable). These relocations are
/// called ValidRelocs in the DwarfLinker and are gathered as a very
/// first step when we start processing a DebugMapObject.
class DwarfLinker {
public:
DwarfLinker(StringRef OutputFilename, const LinkOptions &Options)
: OutputFilename(OutputFilename), Options(Options),
BinHolder(Options.Verbose) {}
~DwarfLinker() {
for (auto *Abbrev : Abbreviations)
delete Abbrev;
}
/// \brief Link the contents of the DebugMap.
bool link(const DebugMap &);
private:
/// \brief Called at the start of a debug object link.
void startDebugObject(DWARFContext &, DebugMapObject &);
/// \brief Called at the end of a debug object link.
void endDebugObject();
/// \defgroup FindValidRelocations Translate debug map into a list
/// of relevant relocations
///
/// @{
struct ValidReloc {
uint32_t Offset;
uint32_t Size;
uint64_t Addend;
const DebugMapObject::DebugMapEntry *Mapping;
ValidReloc(uint32_t Offset, uint32_t Size, uint64_t Addend,
const DebugMapObject::DebugMapEntry *Mapping)
: Offset(Offset), Size(Size), Addend(Addend), Mapping(Mapping) {}
bool operator<(const ValidReloc &RHS) const { return Offset < RHS.Offset; }
};
/// \brief The valid relocations for the current DebugMapObject.
/// This vector is sorted by relocation offset.
std::vector<ValidReloc> ValidRelocs;
/// \brief Index into ValidRelocs of the next relocation to
/// consider. As we walk the DIEs in acsending file offset and as
/// ValidRelocs is sorted by file offset, keeping this index
/// uptodate is all we have to do to have a cheap lookup during the
/// root DIE selection and during DIE cloning.
unsigned NextValidReloc;
bool findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
const DebugMapObject &DMO);
bool findValidRelocs(const object::SectionRef &Section,
const object::ObjectFile &Obj,
const DebugMapObject &DMO);
void findValidRelocsMachO(const object::SectionRef &Section,
const object::MachOObjectFile &Obj,
const DebugMapObject &DMO);
/// @}
/// \defgroup FindRootDIEs Find DIEs corresponding to debug map entries.
///
/// @{
/// \brief Recursively walk the \p DIE tree and look for DIEs to
/// keep. Store that information in \p CU's DIEInfo.
void lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE,
const DebugMapObject &DMO, CompileUnit &CU,
unsigned Flags);
/// \brief Flags passed to DwarfLinker::lookForDIEsToKeep
enum TravesalFlags {
TF_Keep = 1 << 0, ///< Mark the traversed DIEs as kept.
TF_InFunctionScope = 1 << 1, ///< Current scope is a fucntion scope.
TF_DependencyWalk = 1 << 2, ///< Walking the dependencies of a kept DIE.
TF_ParentWalk = 1 << 3, ///< Walking up the parents of a kept DIE.
};
/// \brief Mark the passed DIE as well as all the ones it depends on
/// as kept.
void keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit::DIEInfo &MyInfo,
const DebugMapObject &DMO, CompileUnit &CU,
unsigned Flags);
unsigned shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
unsigned Flags);
unsigned shouldKeepVariableDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo, unsigned Flags);
unsigned shouldKeepSubprogramDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo,
unsigned Flags);
bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
CompileUnit::DIEInfo &Info);
/// @}
/// \defgroup Linking Methods used to link the debug information
///
/// @{
/// \brief Recursively clone \p InputDIE into an tree of DIE objects
/// where useless (as decided by lookForDIEsToKeep()) bits have been
/// stripped out and addresses have been rewritten according to the
/// debug map.
///
/// \param OutOffset is the offset the cloned DIE in the output
/// compile unit.
/// \param PCOffset (while cloning a function scope) is the offset
/// applied to the entry point of the function to get the linked address.
///
/// \returns the root of the cloned tree.
DIE *cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U,
int64_t PCOffset, uint32_t OutOffset);
typedef DWARFAbbreviationDeclaration::AttributeSpec AttributeSpec;
/// \brief Information gathered and exchanged between the various
/// clone*Attributes helpers about the attributes of a particular DIE.
struct AttributesInfo {
const char *Name, *MangledName; ///< Names.
uint32_t NameOffset, MangledNameOffset; ///< Offsets in the string pool.
uint64_t OrigHighPc; ///< Value of AT_high_pc in the input DIE
int64_t PCOffset; ///< Offset to apply to PC addresses inside a function.
bool HasLowPc; ///< Does the DIE have a low_pc attribute?
bool IsDeclaration; ///< Is this DIE only a declaration?
AttributesInfo()
: Name(nullptr), MangledName(nullptr), NameOffset(0),
MangledNameOffset(0), OrigHighPc(0), PCOffset(0), HasLowPc(false),
IsDeclaration(false) {}
};
/// \brief Helper for cloneDIE.
unsigned cloneAttribute(DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE,
CompileUnit &U, const DWARFFormValue &Val,
const AttributeSpec AttrSpec, unsigned AttrSize,
AttributesInfo &AttrInfo);
/// \brief Helper for cloneDIE.
unsigned cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec,
const DWARFFormValue &Val, const DWARFUnit &U);
/// \brief Helper for cloneDIE.
unsigned
cloneDieReferenceAttribute(DIE &Die,
const DWARFDebugInfoEntryMinimal &InputDIE,
AttributeSpec AttrSpec, unsigned AttrSize,
const DWARFFormValue &Val, CompileUnit &Unit);
/// \brief Helper for cloneDIE.
unsigned cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec,
const DWARFFormValue &Val, unsigned AttrSize);
/// \brief Helper for cloneDIE.
unsigned cloneAddressAttribute(DIE &Die, AttributeSpec AttrSpec,
const DWARFFormValue &Val,
const CompileUnit &Unit, AttributesInfo &Info);
/// \brief Helper for cloneDIE.
unsigned cloneScalarAttribute(DIE &Die,
const DWARFDebugInfoEntryMinimal &InputDIE,
CompileUnit &U, AttributeSpec AttrSpec,
const DWARFFormValue &Val, unsigned AttrSize,
AttributesInfo &Info);
/// \brief Helper for cloneDIE.
bool applyValidRelocs(MutableArrayRef<char> Data, uint32_t BaseOffset,
bool isLittleEndian);
/// \brief Assign an abbreviation number to \p Abbrev
void AssignAbbrev(DIEAbbrev &Abbrev);
/// \brief FoldingSet that uniques the abbreviations.
FoldingSet<DIEAbbrev> AbbreviationsSet;
/// \brief Storage for the unique Abbreviations.
/// This is passed to AsmPrinter::emitDwarfAbbrevs(), thus it cannot
/// be changed to a vecot of unique_ptrs.
std::vector<DIEAbbrev *> Abbreviations;
/// \brief Compute and emit debug_ranges section for \p Unit, and
/// patch the attributes referencing it.
void patchRangesForUnit(const CompileUnit &Unit, DWARFContext &Dwarf) const;
/// \brief Generate and emit the DW_AT_ranges attribute for a
/// compile_unit if it had one.
void generateUnitRanges(CompileUnit &Unit) const;
/// \brief Extract the line tables fromt he original dwarf, extract
/// the relevant parts according to the linked function ranges and
/// emit the result in the debug_line section.
void patchLineTableForUnit(CompileUnit &Unit, DWARFContext &OrigDwarf);
/// \brief Emit the accelerator entries for \p Unit.
void emitAcceleratorEntriesForUnit(CompileUnit &Unit);
/// \brief DIELoc objects that need to be destructed (but not freed!).
std::vector<DIELoc *> DIELocs;
/// \brief DIEBlock objects that need to be destructed (but not freed!).
std::vector<DIEBlock *> DIEBlocks;
/// \brief Allocator used for all the DIEValue objects.
BumpPtrAllocator DIEAlloc;
/// @}
/// \defgroup Helpers Various helper methods.
///
/// @{
const DWARFDebugInfoEntryMinimal *
resolveDIEReference(DWARFFormValue &RefValue, const DWARFUnit &Unit,
const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit *&ReferencedCU);
CompileUnit *getUnitForOffset(unsigned Offset);
bool getDIENames(const DWARFDebugInfoEntryMinimal &Die, DWARFUnit &U,
AttributesInfo &Info);
void reportWarning(const Twine &Warning, const DWARFUnit *Unit = nullptr,
const DWARFDebugInfoEntryMinimal *DIE = nullptr) const;
bool createStreamer(Triple TheTriple, StringRef OutputFilename);
/// @}
private:
std::string OutputFilename;
LinkOptions Options;
BinaryHolder BinHolder;
std::unique_ptr<DwarfStreamer> Streamer;
/// The units of the current debug map object.
std::vector<CompileUnit> Units;
/// The debug map object curently under consideration.
DebugMapObject *CurrentDebugObject;
/// \brief The Dwarf string pool
NonRelocatableStringpool StringPool;
/// \brief This map is keyed by the entry PC of functions in that
/// debug object and the associated value is a pair storing the
/// corresponding end PC and the offset to apply to get the linked
/// address.
///
/// See startDebugObject() for a more complete description of its use.
std::map<uint64_t, std::pair<uint64_t, int64_t>> Ranges;
};
/// \brief Similar to DWARFUnitSection::getUnitForOffset(), but
/// returning our CompileUnit object instead.
CompileUnit *DwarfLinker::getUnitForOffset(unsigned Offset) {
auto CU =
std::upper_bound(Units.begin(), Units.end(), Offset,
[](uint32_t LHS, const CompileUnit &RHS) {
return LHS < RHS.getOrigUnit().getNextUnitOffset();
});
return CU != Units.end() ? &*CU : nullptr;
}
/// \brief Resolve the DIE attribute reference that has been
/// extracted in \p RefValue. The resulting DIE migh be in another
/// CompileUnit which is stored into \p ReferencedCU.
/// \returns null if resolving fails for any reason.
const DWARFDebugInfoEntryMinimal *DwarfLinker::resolveDIEReference(
DWARFFormValue &RefValue, const DWARFUnit &Unit,
const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&RefCU) {
assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
uint64_t RefOffset = *RefValue.getAsReference(&Unit);
if ((RefCU = getUnitForOffset(RefOffset)))
if (const auto *RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset))
return RefDie;
reportWarning("could not find referenced DIE", &Unit, &DIE);
return nullptr;
}
/// \brief Get the potential name and mangled name for the entity
/// described by \p Die and store them in \Info if they are not
/// already there.
/// \returns is a name was found.
bool DwarfLinker::getDIENames(const DWARFDebugInfoEntryMinimal &Die,
DWARFUnit &U, AttributesInfo &Info) {
// FIXME: a bit wastefull as the first getName might return the
// short name.
if (!Info.MangledName &&
(Info.MangledName = Die.getName(&U, DINameKind::LinkageName)))
Info.MangledNameOffset = StringPool.getStringOffset(Info.MangledName);
if (!Info.Name && (Info.Name = Die.getName(&U, DINameKind::ShortName)))
Info.NameOffset = StringPool.getStringOffset(Info.Name);
return Info.Name || Info.MangledName;
}
/// \brief Report a warning to the user, optionaly including
/// information about a specific \p DIE related to the warning.
void DwarfLinker::reportWarning(const Twine &Warning, const DWARFUnit *Unit,
const DWARFDebugInfoEntryMinimal *DIE) const {
StringRef Context = "<debug map>";
if (CurrentDebugObject)
Context = CurrentDebugObject->getObjectFilename();
warn(Warning, Context);
if (!Options.Verbose || !DIE)
return;
errs() << " in DIE:\n";
DIE->dump(errs(), const_cast<DWARFUnit *>(Unit), 0 /* RecurseDepth */,
6 /* Indent */);
}
bool DwarfLinker::createStreamer(Triple TheTriple, StringRef OutputFilename) {
if (Options.NoOutput)
return true;
Streamer = llvm::make_unique<DwarfStreamer>();
return Streamer->init(TheTriple, OutputFilename);
}
/// \brief Recursive helper to gather the child->parent relationships in the
/// original compile unit.
static void gatherDIEParents(const DWARFDebugInfoEntryMinimal *DIE,
unsigned ParentIdx, CompileUnit &CU) {
unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
CU.getInfo(MyIdx).ParentIdx = ParentIdx;
if (DIE->hasChildren())
for (auto *Child = DIE->getFirstChild(); Child && !Child->isNULL();
Child = Child->getSibling())
gatherDIEParents(Child, MyIdx, CU);
}
static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
switch (Tag) {
default:
return false;
case dwarf::DW_TAG_subprogram:
case dwarf::DW_TAG_lexical_block:
case dwarf::DW_TAG_subroutine_type:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_class_type:
case dwarf::DW_TAG_union_type:
return true;
}
llvm_unreachable("Invalid Tag");
}
void DwarfLinker::startDebugObject(DWARFContext &Dwarf, DebugMapObject &Obj) {
Units.reserve(Dwarf.getNumCompileUnits());
NextValidReloc = 0;
// Iterate over the debug map entries and put all the ones that are
// functions (because they have a size) into the Ranges map. This
// map is very similar to the FunctionRanges that are stored in each
// unit, with 2 notable differences:
// - obviously this one is global, while the other ones are per-unit.
// - this one contains not only the functions described in the DIE
// tree, but also the ones that are only in the debug map.
// The latter information is required to reproduce dsymutil's logic
// while linking line tables. The cases where this information
// matters look like bugs that need to be investigated, but for now
// we need to reproduce dsymutil's behavior.
// FIXME: Once we understood exactly if that information is needed,
// maybe totally remove this (or try to use it to do a real
// -gline-tables-only on Darwin.
for (const auto &Entry : Obj.symbols()) {
const auto &Mapping = Entry.getValue();
if (Mapping.Size)
Ranges[Mapping.ObjectAddress] = std::make_pair(
Mapping.ObjectAddress + Mapping.Size,
int64_t(Mapping.BinaryAddress) - Mapping.ObjectAddress);
}
}
void DwarfLinker::endDebugObject() {
Units.clear();
ValidRelocs.clear();
Ranges.clear();
for (auto *Block : DIEBlocks)
Block->~DIEBlock();
for (auto *Loc : DIELocs)
Loc->~DIELoc();
DIEBlocks.clear();
DIELocs.clear();
DIEAlloc.Reset();
}
/// \brief Iterate over the relocations of the given \p Section and
/// store the ones that correspond to debug map entries into the
/// ValidRelocs array.
void DwarfLinker::findValidRelocsMachO(const object::SectionRef &Section,
const object::MachOObjectFile &Obj,
const DebugMapObject &DMO) {
StringRef Contents;
Section.getContents(Contents);
DataExtractor Data(Contents, Obj.isLittleEndian(), 0);
for (const object::RelocationRef &Reloc : Section.relocations()) {
object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
uint64_t Offset64;
if ((RelocSize != 4 && RelocSize != 8) || Reloc.getOffset(Offset64)) {
reportWarning(" unsupported relocation in debug_info section.");
continue;
}
uint32_t Offset = Offset64;
// Mach-o uses REL relocations, the addend is at the relocation offset.
uint64_t Addend = Data.getUnsigned(&Offset, RelocSize);
auto Sym = Reloc.getSymbol();
if (Sym != Obj.symbol_end()) {
StringRef SymbolName;
if (Sym->getName(SymbolName)) {
reportWarning("error getting relocation symbol name.");
continue;
}
if (const auto *Mapping = DMO.lookupSymbol(SymbolName))
ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
} else if (const auto *Mapping = DMO.lookupObjectAddress(Addend)) {
// Do not store the addend. The addend was the address of the
// symbol in the object file, the address in the binary that is
// stored in the debug map doesn't need to be offseted.
ValidRelocs.emplace_back(Offset64, RelocSize, 0, Mapping);
}
}
}
/// \brief Dispatch the valid relocation finding logic to the
/// appropriate handler depending on the object file format.
bool DwarfLinker::findValidRelocs(const object::SectionRef &Section,
const object::ObjectFile &Obj,
const DebugMapObject &DMO) {
// Dispatch to the right handler depending on the file type.
if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
findValidRelocsMachO(Section, *MachOObj, DMO);
else
reportWarning(Twine("unsupported object file type: ") + Obj.getFileName());
if (ValidRelocs.empty())
return false;
// Sort the relocations by offset. We will walk the DIEs linearly in
// the file, this allows us to just keep an index in the relocation
// array that we advance during our walk, rather than resorting to
// some associative container. See DwarfLinker::NextValidReloc.
std::sort(ValidRelocs.begin(), ValidRelocs.end());
return true;
}
/// \brief Look for relocations in the debug_info section that match
/// entries in the debug map. These relocations will drive the Dwarf
/// link by indicating which DIEs refer to symbols present in the
/// linked binary.
/// \returns wether there are any valid relocations in the debug info.
bool DwarfLinker::findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
const DebugMapObject &DMO) {
// Find the debug_info section.
for (const object::SectionRef &Section : Obj.sections()) {
StringRef SectionName;
Section.getName(SectionName);
SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
if (SectionName != "debug_info")
continue;
return findValidRelocs(Section, Obj, DMO);
}
return false;
}
/// \brief Checks that there is a relocation against an actual debug
/// map entry between \p StartOffset and \p NextOffset.
///
/// This function must be called with offsets in strictly ascending
/// order because it never looks back at relocations it already 'went past'.
/// \returns true and sets Info.InDebugMap if it is the case.
bool DwarfLinker::hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
CompileUnit::DIEInfo &Info) {
assert(NextValidReloc == 0 ||
StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
if (NextValidReloc >= ValidRelocs.size())
return false;
uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
// We might need to skip some relocs that we didn't consider. For
// example the high_pc of a discarded DIE might contain a reloc that
// is in the list because it actually corresponds to the start of a
// function that is in the debug map.
while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
RelocOffset = ValidRelocs[++NextValidReloc].Offset;
if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
return false;
const auto &ValidReloc = ValidRelocs[NextValidReloc++];
if (Options.Verbose)
outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
<< " " << format("\t%016" PRIx64 " => %016" PRIx64,
ValidReloc.Mapping->getValue().ObjectAddress,
ValidReloc.Mapping->getValue().BinaryAddress);
Info.AddrAdjust = int64_t(ValidReloc.Mapping->getValue().BinaryAddress) +
ValidReloc.Addend -
ValidReloc.Mapping->getValue().ObjectAddress;
Info.InDebugMap = true;
return true;
}
/// \brief Get the starting and ending (exclusive) offset for the
/// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
/// supposed to point to the position of the first attribute described
/// by \p Abbrev.
/// \return [StartOffset, EndOffset) as a pair.
static std::pair<uint32_t, uint32_t>
getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
unsigned Offset, const DWARFUnit &Unit) {
DataExtractor Data = Unit.getDebugInfoExtractor();
for (unsigned i = 0; i < Idx; ++i)
DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset, &Unit);
uint32_t End = Offset;
DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, &Unit);
return std::make_pair(Offset, End);
}
/// \brief Check if a variable describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinker::shouldKeepVariableDIE(
const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
// Global variables with constant value can always be kept.
if (!(Flags & TF_InFunctionScope) &&
Abbrev->findAttributeIndex(dwarf::DW_AT_const_value) != -1U) {
MyInfo.InDebugMap = true;
return Flags | TF_Keep;
}
uint32_t LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location);
if (LocationIdx == -1U)
return Flags;
uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
const DWARFUnit &OrigUnit = Unit.getOrigUnit();
uint32_t LocationOffset, LocationEndOffset;
std::tie(LocationOffset, LocationEndOffset) =
getAttributeOffsets(Abbrev, LocationIdx, Offset, OrigUnit);
// See if there is a relocation to a valid debug map entry inside
// this variable's location. The order is important here. We want to
// always check in the variable has a valid relocation, so that the
// DIEInfo is filled. However, we don't want a static variable in a
// function to force us to keep the enclosing function.
if (!hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) ||
(Flags & TF_InFunctionScope))
return Flags;
if (Options.Verbose)
DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
return Flags | TF_Keep;
}
/// \brief Check if a function describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinker::shouldKeepSubprogramDIE(
const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
Flags |= TF_InFunctionScope;
uint32_t LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
if (LowPcIdx == -1U)
return Flags;
uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
const DWARFUnit &OrigUnit = Unit.getOrigUnit();
uint32_t LowPcOffset, LowPcEndOffset;
std::tie(LowPcOffset, LowPcEndOffset) =
getAttributeOffsets(Abbrev, LowPcIdx, Offset, OrigUnit);
uint64_t LowPc =
DIE.getAttributeValueAsAddress(&OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
assert(LowPc != -1ULL && "low_pc attribute is not an address.");
if (LowPc == -1ULL ||
!hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo))
return Flags;
if (Options.Verbose)
DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
Flags |= TF_Keep;
DWARFFormValue HighPcValue;
if (!DIE.getAttributeValue(&OrigUnit, dwarf::DW_AT_high_pc, HighPcValue)) {
reportWarning("Function without high_pc. Range will be discarded.\n",
&OrigUnit, &DIE);
return Flags;
}
uint64_t HighPc;
if (HighPcValue.isFormClass(DWARFFormValue::FC_Address)) {
HighPc = *HighPcValue.getAsAddress(&OrigUnit);
} else {
assert(HighPcValue.isFormClass(DWARFFormValue::FC_Constant));
HighPc = LowPc + *HighPcValue.getAsUnsignedConstant();
}
// Replace the debug map range with a more accurate one.
Ranges[LowPc] = std::make_pair(HighPc, MyInfo.AddrAdjust);
Unit.addFunctionRange(LowPc, HighPc, MyInfo.AddrAdjust);
return Flags;
}
/// \brief Check if a DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinker::shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo,
unsigned Flags) {
switch (DIE.getTag()) {
case dwarf::DW_TAG_constant:
case dwarf::DW_TAG_variable:
return shouldKeepVariableDIE(DIE, Unit, MyInfo, Flags);
case dwarf::DW_TAG_subprogram:
return shouldKeepSubprogramDIE(DIE, Unit, MyInfo, Flags);
case dwarf::DW_TAG_module:
case dwarf::DW_TAG_imported_module:
case dwarf::DW_TAG_imported_declaration:
case dwarf::DW_TAG_imported_unit:
// We always want to keep these.
return Flags | TF_Keep;
}
return Flags;
}
/// \brief Mark the passed DIE as well as all the ones it depends on
/// as kept.
///
/// This function is called by lookForDIEsToKeep on DIEs that are
/// newly discovered to be needed in the link. It recursively calls
/// back to lookForDIEsToKeep while adding TF_DependencyWalk to the
/// TraversalFlags to inform it that it's not doing the primary DIE
/// tree walk.
void DwarfLinker::keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit::DIEInfo &MyInfo,
const DebugMapObject &DMO,
CompileUnit &CU, unsigned Flags) {
const DWARFUnit &Unit = CU.getOrigUnit();
MyInfo.Keep = true;
// First mark all the parent chain as kept.
unsigned AncestorIdx = MyInfo.ParentIdx;
while (!CU.getInfo(AncestorIdx).Keep) {
lookForDIEsToKeep(*Unit.getDIEAtIndex(AncestorIdx), DMO, CU,
TF_ParentWalk | TF_Keep | TF_DependencyWalk);
AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx;
}
// Then we need to mark all the DIEs referenced by this DIE's
// attributes as kept.
DataExtractor Data = Unit.getDebugInfoExtractor();
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
// Mark all DIEs referenced through atttributes as kept.
for (const auto &AttrSpec : Abbrev->attributes()) {
DWARFFormValue Val(AttrSpec.Form);
if (!Val.isFormClass(DWARFFormValue::FC_Reference)) {
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &Unit);
continue;
}
Val.extractValue(Data, &Offset, &Unit);
CompileUnit *ReferencedCU;
if (const auto *RefDIE = resolveDIEReference(Val, Unit, DIE, ReferencedCU))
lookForDIEsToKeep(*RefDIE, DMO, *ReferencedCU,
TF_Keep | TF_DependencyWalk);
}
}
/// \brief Recursively walk the \p DIE tree and look for DIEs to
/// keep. Store that information in \p CU's DIEInfo.
///
/// This function is the entry point of the DIE selection
/// algorithm. It is expected to walk the DIE tree in file order and
/// (though the mediation of its helper) call hasValidRelocation() on
/// each DIE that might be a 'root DIE' (See DwarfLinker class
/// comment).
/// While walking the dependencies of root DIEs, this function is
/// also called, but during these dependency walks the file order is
/// not respected. The TF_DependencyWalk flag tells us which kind of
/// traversal we are currently doing.
void DwarfLinker::lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE,
const DebugMapObject &DMO, CompileUnit &CU,
unsigned Flags) {
unsigned Idx = CU.getOrigUnit().getDIEIndex(&DIE);
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
bool AlreadyKept = MyInfo.Keep;
// If the Keep flag is set, we are marking a required DIE's
// dependencies. If our target is already marked as kept, we're all
// set.
if ((Flags & TF_DependencyWalk) && AlreadyKept)
return;
// We must not call shouldKeepDIE while called from keepDIEAndDenpendencies,
// because it would screw up the relocation finding logic.
if (!(Flags & TF_DependencyWalk))
Flags = shouldKeepDIE(DIE, CU, MyInfo, Flags);
// If it is a newly kept DIE mark it as well as all its dependencies as kept.
if (!AlreadyKept && (Flags & TF_Keep))
keepDIEAndDenpendencies(DIE, MyInfo, DMO, CU, Flags);
// The TF_ParentWalk flag tells us that we are currently walking up
// the parent chain of a required DIE, and we don't want to mark all
// the children of the parents as kept (consider for example a
// DW_TAG_namespace node in the parent chain). There are however a
// set of DIE types for which we want to ignore that directive and still
// walk their children.
if (dieNeedsChildrenToBeMeaningful(DIE.getTag()))
Flags &= ~TF_ParentWalk;
if (!DIE.hasChildren() || (Flags & TF_ParentWalk))
return;
for (auto *Child = DIE.getFirstChild(); Child && !Child->isNULL();
Child = Child->getSibling())
lookForDIEsToKeep(*Child, DMO, CU, Flags);
}
/// \brief Assign an abbreviation numer to \p Abbrev.
///
/// Our DIEs get freed after every DebugMapObject has been processed,
/// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
/// the instances hold by the DIEs. When we encounter an abbreviation
/// that we don't know, we create a permanent copy of it.
void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) {
// Check the set for priors.
FoldingSetNodeID ID;
Abbrev.Profile(ID);
void *InsertToken;
DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
// If it's newly added.
if (InSet) {
// Assign existing abbreviation number.
Abbrev.setNumber(InSet->getNumber());
} else {
// Add to abbreviation list.
Abbreviations.push_back(
new DIEAbbrev(Abbrev.getTag(), Abbrev.hasChildren()));
for (const auto &Attr : Abbrev.getData())
Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
AbbreviationsSet.InsertNode(Abbreviations.back(), InsertToken);
// Assign the unique abbreviation number.
Abbrev.setNumber(Abbreviations.size());
Abbreviations.back()->setNumber(Abbreviations.size());
}
}
/// \brief Clone a string attribute described by \p AttrSpec and add
/// it to \p Die.
/// \returns the size of the new attribute.
unsigned DwarfLinker::cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec,
const DWARFFormValue &Val,
const DWARFUnit &U) {
// Switch everything to out of line strings.
const char *String = *Val.getAsCString(&U);
unsigned Offset = StringPool.getStringOffset(String);
Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
new (DIEAlloc) DIEInteger(Offset));
return 4;
}
/// \brief Clone an attribute referencing another DIE and add
/// it to \p Die.
/// \returns the size of the new attribute.
unsigned DwarfLinker::cloneDieReferenceAttribute(
DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE,
AttributeSpec AttrSpec, unsigned AttrSize, const DWARFFormValue &Val,
CompileUnit &Unit) {
uint32_t Ref = *Val.getAsReference(&Unit.getOrigUnit());
DIE *NewRefDie = nullptr;
CompileUnit *RefUnit = nullptr;
const DWARFDebugInfoEntryMinimal *RefDie = nullptr;
if (!(RefUnit = getUnitForOffset(Ref)) ||
!(RefDie = RefUnit->getOrigUnit().getDIEForOffset(Ref))) {
const char *AttributeString = dwarf::AttributeString(AttrSpec.Attr);
if (!AttributeString)
AttributeString = "DW_AT_???";
reportWarning(Twine("Missing DIE for ref in attribute ") + AttributeString +
". Dropping.",
&Unit.getOrigUnit(), &InputDIE);
return 0;
}
unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);
if (!RefInfo.Clone) {
assert(Ref > InputDIE.getOffset());
// We haven't cloned this DIE yet. Just create an empty one and
// store it. It'll get really cloned when we process it.
RefInfo.Clone = new DIE(dwarf::Tag(RefDie->getTag()));
}
NewRefDie = RefInfo.Clone;
if (AttrSpec.Form == dwarf::DW_FORM_ref_addr) {
// We cannot currently rely on a DIEEntry to emit ref_addr
// references, because the implementation calls back to DwarfDebug
// to find the unit offset. (We don't have a DwarfDebug)
// FIXME: we should be able to design DIEEntry reliance on
// DwarfDebug away.
DIEInteger *Attr;
if (Ref < InputDIE.getOffset()) {
// We must have already cloned that DIE.
uint32_t NewRefOffset =
RefUnit->getStartOffset() + NewRefDie->getOffset();
Attr = new (DIEAlloc) DIEInteger(NewRefOffset);
} else {
// A forward reference. Note and fixup later.
Attr = new (DIEAlloc) DIEInteger(0xBADDEF);
Unit.noteForwardReference(NewRefDie, RefUnit, Attr);
}
Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr,
Attr);
return AttrSize;
}
Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form),
new (DIEAlloc) DIEEntry(*NewRefDie));
return AttrSize;
}
/// \brief Clone an attribute of block form (locations, constants) and add
/// it to \p Die.
/// \returns the size of the new attribute.
unsigned DwarfLinker::cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec,
const DWARFFormValue &Val,
unsigned AttrSize) {
DIE *Attr;
DIEValue *Value;
DIELoc *Loc = nullptr;
DIEBlock *Block = nullptr;
// Just copy the block data over.
if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
Loc = new (DIEAlloc) DIELoc();
DIELocs.push_back(Loc);
} else {
Block = new (DIEAlloc) DIEBlock();
DIEBlocks.push_back(Block);
}
Attr = Loc ? static_cast<DIE *>(Loc) : static_cast<DIE *>(Block);
Value = Loc ? static_cast<DIEValue *>(Loc) : static_cast<DIEValue *>(Block);
ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
for (auto Byte : Bytes)
Attr->addValue(static_cast<dwarf::Attribute>(0), dwarf::DW_FORM_data1,
new (DIEAlloc) DIEInteger(Byte));
// FIXME: If DIEBlock and DIELoc just reuses the Size field of
// the DIE class, this if could be replaced by
// Attr->setSize(Bytes.size()).
if (Streamer) {
if (Loc)
Loc->ComputeSize(&Streamer->getAsmPrinter());
else
Block->ComputeSize(&Streamer->getAsmPrinter());
}
Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form),
Value);
return AttrSize;
}
/// \brief Clone an address attribute and add it to \p Die.
/// \returns the size of the new attribute.
unsigned DwarfLinker::cloneAddressAttribute(DIE &Die, AttributeSpec AttrSpec,
const DWARFFormValue &Val,
const CompileUnit &Unit,
AttributesInfo &Info) {
uint64_t Addr = *Val.getAsAddress(&Unit.getOrigUnit());
if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
Die.getTag() == dwarf::DW_TAG_lexical_block)
Addr += Info.PCOffset;
else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
Addr = Unit.getLowPc();
if (Addr == UINT64_MAX)
return 0;
}
Info.HasLowPc = true;
} else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
if (uint64_t HighPc = Unit.getHighPc())
Addr = HighPc;
else
return 0;
} else
// If we have a high_pc recorded for the input DIE, use
// it. Otherwise (when no relocations where applied) just use the
// one we just decoded.
Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
}
Die.addValue(static_cast<dwarf::Attribute>(AttrSpec.Attr),
static_cast<dwarf::Form>(AttrSpec.Form),
new (DIEAlloc) DIEInteger(Addr));
return Unit.getOrigUnit().getAddressByteSize();
}
/// \brief Clone a scalar attribute and add it to \p Die.
/// \returns the size of the new attribute.
unsigned DwarfLinker::cloneScalarAttribute(
DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize,
AttributesInfo &Info) {
uint64_t Value;
if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
Die.getTag() == dwarf::DW_TAG_compile_unit) {
if (Unit.getLowPc() == -1ULL)
return 0;
// Dwarf >= 4 high_pc is an size, not an address.
Value = Unit.getHighPc() - Unit.getLowPc();
} else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
Value = *Val.getAsSectionOffset();
else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
Value = *Val.getAsSignedConstant();
else if (auto OptionalValue = Val.getAsUnsignedConstant())
Value = *OptionalValue;
else {
reportWarning("Unsupported scalar attribute form. Dropping attribute.",
&Unit.getOrigUnit(), &InputDIE);
return 0;
}
DIEInteger *Attr = new (DIEAlloc) DIEInteger(Value);
if (AttrSpec.Attr == dwarf::DW_AT_ranges)
Unit.noteRangeAttribute(Die, Attr);
// A more generic way to check for location attributes would be
// nice, but it's very unlikely that any other attribute needs a
// location list.
else if (AttrSpec.Attr == dwarf::DW_AT_location ||
AttrSpec.Attr == dwarf::DW_AT_frame_base)
Unit.noteLocationAttribute(Attr, Info.PCOffset);
else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
Info.IsDeclaration = true;
Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form),
Attr);
return AttrSize;
}
/// \brief Clone \p InputDIE's attribute described by \p AttrSpec with
/// value \p Val, and add it to \p Die.
/// \returns the size of the cloned attribute.
unsigned DwarfLinker::cloneAttribute(DIE &Die,
const DWARFDebugInfoEntryMinimal &InputDIE,
CompileUnit &Unit,
const DWARFFormValue &Val,
const AttributeSpec AttrSpec,
unsigned AttrSize, AttributesInfo &Info) {
const DWARFUnit &U = Unit.getOrigUnit();
switch (AttrSpec.Form) {
case dwarf::DW_FORM_strp:
case dwarf::DW_FORM_string:
return cloneStringAttribute(Die, AttrSpec, Val, U);
case dwarf::DW_FORM_ref_addr:
case dwarf::DW_FORM_ref1:
case dwarf::DW_FORM_ref2:
case dwarf::DW_FORM_ref4:
case dwarf::DW_FORM_ref8:
return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
Unit);
case dwarf::DW_FORM_block:
case dwarf::DW_FORM_block1:
case dwarf::DW_FORM_block2:
case dwarf::DW_FORM_block4:
case dwarf::DW_FORM_exprloc:
return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize);
case dwarf::DW_FORM_addr:
return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
case dwarf::DW_FORM_data1:
case dwarf::DW_FORM_data2:
case dwarf::DW_FORM_data4:
case dwarf::DW_FORM_data8:
case dwarf::DW_FORM_udata:
case dwarf::DW_FORM_sdata:
case dwarf::DW_FORM_sec_offset:
case dwarf::DW_FORM_flag:
case dwarf::DW_FORM_flag_present:
return cloneScalarAttribute(Die, InputDIE, Unit, AttrSpec, Val, AttrSize,
Info);
default:
reportWarning("Unsupported attribute form in cloneAttribute. Dropping.", &U,
&InputDIE);
}
return 0;
}
/// \brief Apply the valid relocations found by findValidRelocs() to
/// the buffer \p Data, taking into account that Data is at \p BaseOffset
/// in the debug_info section.
///
/// Like for findValidRelocs(), this function must be called with
/// monotonic \p BaseOffset values.
///
/// \returns wether any reloc has been applied.
bool DwarfLinker::applyValidRelocs(MutableArrayRef<char> Data,
uint32_t BaseOffset, bool isLittleEndian) {
assert((NextValidReloc == 0 ||
BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&
"BaseOffset should only be increasing.");
if (NextValidReloc >= ValidRelocs.size())
return false;
// Skip relocs that haven't been applied.
while (NextValidReloc < ValidRelocs.size() &&
ValidRelocs[NextValidReloc].Offset < BaseOffset)
++NextValidReloc;
bool Applied = false;
uint64_t EndOffset = BaseOffset + Data.size();
while (NextValidReloc < ValidRelocs.size() &&
ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
ValidRelocs[NextValidReloc].Offset < EndOffset) {
const auto &ValidReloc = ValidRelocs[NextValidReloc++];
assert(ValidReloc.Offset - BaseOffset < Data.size());
assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size());
char Buf[8];
uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
Value += ValidReloc.Addend;
for (unsigned i = 0; i != ValidReloc.Size; ++i) {
unsigned Index = isLittleEndian ? i : (ValidReloc.Size - i - 1);
Buf[i] = uint8_t(Value >> (Index * 8));
}
assert(ValidReloc.Size <= sizeof(Buf));
memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
Applied = true;
}
return Applied;
}
static bool isTypeTag(uint16_t Tag) {
switch (Tag) {
case dwarf::DW_TAG_array_type:
case dwarf::DW_TAG_class_type:
case dwarf::DW_TAG_enumeration_type:
case dwarf::DW_TAG_pointer_type:
case dwarf::DW_TAG_reference_type:
case dwarf::DW_TAG_string_type:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_subroutine_type:
case dwarf::DW_TAG_typedef:
case dwarf::DW_TAG_union_type:
case dwarf::DW_TAG_ptr_to_member_type:
case dwarf::DW_TAG_set_type:
case dwarf::DW_TAG_subrange_type:
case dwarf::DW_TAG_base_type:
case dwarf::DW_TAG_const_type:
case dwarf::DW_TAG_constant:
case dwarf::DW_TAG_file_type:
case dwarf::DW_TAG_namelist:
case dwarf::DW_TAG_packed_type:
case dwarf::DW_TAG_volatile_type:
case dwarf::DW_TAG_restrict_type:
case dwarf::DW_TAG_interface_type:
case dwarf::DW_TAG_unspecified_type:
case dwarf::DW_TAG_shared_type:
return true;
default:
break;
}
return false;
}
/// \brief Recursively clone \p InputDIE's subtrees that have been
/// selected to appear in the linked output.
///
/// \param OutOffset is the Offset where the newly created DIE will
/// lie in the linked compile unit.
///
/// \returns the cloned DIE object or null if nothing was selected.
DIE *DwarfLinker::cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE,
CompileUnit &Unit, int64_t PCOffset,
uint32_t OutOffset) {
DWARFUnit &U = Unit.getOrigUnit();
unsigned Idx = U.getDIEIndex(&InputDIE);
CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
// Should the DIE appear in the output?
if (!Unit.getInfo(Idx).Keep)
return nullptr;
uint32_t Offset = InputDIE.getOffset();
// The DIE might have been already created by a forward reference
// (see cloneDieReferenceAttribute()).
DIE *Die = Info.Clone;
if (!Die)
Die = Info.Clone = new DIE(dwarf::Tag(InputDIE.getTag()));
assert(Die->getTag() == InputDIE.getTag());
Die->setOffset(OutOffset);
// Extract and clone every attribute.
DataExtractor Data = U.getDebugInfoExtractor();
uint32_t NextOffset = U.getDIEAtIndex(Idx + 1)->getOffset();
AttributesInfo AttrInfo;
// We could copy the data only if we need to aply a relocation to
// it. After testing, it seems there is no performance downside to
// doing the copy unconditionally, and it makes the code simpler.
SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
Data = DataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
// Modify the copy with relocated addresses.
if (applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
// If we applied relocations, we store the value of high_pc that was
// potentially stored in the input DIE. If high_pc is an address
// (Dwarf version == 2), then it might have been relocated to a
// totally unrelated value (because the end address in the object
// file might be start address of another function which got moved
// independantly by the linker). The computation of the actual
// high_pc value is done in cloneAddressAttribute().
AttrInfo.OrigHighPc =
InputDIE.getAttributeValueAsAddress(&U, dwarf::DW_AT_high_pc, 0);
}
// Reset the Offset to 0 as we will be working on the local copy of
// the data.
Offset = 0;
const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
Offset += getULEB128Size(Abbrev->getCode());
// We are entering a subprogram. Get and propagate the PCOffset.
if (Die->getTag() == dwarf::DW_TAG_subprogram)
PCOffset = Info.AddrAdjust;
AttrInfo.PCOffset = PCOffset;
for (const auto &AttrSpec : Abbrev->attributes()) {
DWARFFormValue Val(AttrSpec.Form);
uint32_t AttrSize = Offset;
Val.extractValue(Data, &Offset, &U);
AttrSize = Offset - AttrSize;
OutOffset +=
cloneAttribute(*Die, InputDIE, Unit, Val, AttrSpec, AttrSize, AttrInfo);
}
// Look for accelerator entries.
uint16_t Tag = InputDIE.getTag();
// FIXME: This is slightly wrong. An inline_subroutine without a
// low_pc, but with AT_ranges might be interesting to get into the
// accelerator tables too. For now stick with dsymutil's behavior.
if ((Info.InDebugMap || AttrInfo.HasLowPc) &&
Tag != dwarf::DW_TAG_compile_unit &&
getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) {
if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
Unit.addNameAccelerator(Die, AttrInfo.MangledName,
AttrInfo.MangledNameOffset,
Tag == dwarf::DW_TAG_inlined_subroutine);
if (AttrInfo.Name)
Unit.addNameAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset,
Tag == dwarf::DW_TAG_inlined_subroutine);
} else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) {
Unit.addTypeAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset);
}
DIEAbbrev &NewAbbrev = Die->getAbbrev();
// If a scope DIE is kept, we must have kept at least one child. If
// it's not the case, we'll just be emitting one wasteful end of
// children marker, but things won't break.
if (InputDIE.hasChildren())
NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
// Assign a permanent abbrev number
AssignAbbrev(Die->getAbbrev());
// Add the size of the abbreviation number to the output offset.
OutOffset += getULEB128Size(Die->getAbbrevNumber());
if (!Abbrev->hasChildren()) {
// Update our size.
Die->setSize(OutOffset - Die->getOffset());
return Die;
}
// Recursively clone children.
for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL();
Child = Child->getSibling()) {
if (DIE *Clone = cloneDIE(*Child, Unit, PCOffset, OutOffset)) {
Die->addChild(std::unique_ptr<DIE>(Clone));
OutOffset = Clone->getOffset() + Clone->getSize();
}
}
// Account for the end of children marker.
OutOffset += sizeof(int8_t);
// Update our size.
Die->setSize(OutOffset - Die->getOffset());
return Die;
}
/// \brief Patch the input object file relevant debug_ranges entries
/// and emit them in the output file. Update the relevant attributes
/// to point at the new entries.
void DwarfLinker::patchRangesForUnit(const CompileUnit &Unit,
DWARFContext &OrigDwarf) const {
DWARFDebugRangeList RangeList;
const auto &FunctionRanges = Unit.getFunctionRanges();
unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
DataExtractor RangeExtractor(OrigDwarf.getRangeSection(),
OrigDwarf.isLittleEndian(), AddressSize);
auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
DWARFUnit &OrigUnit = Unit.getOrigUnit();
const auto *OrigUnitDie = OrigUnit.getCompileUnitDIE(false);
uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress(
&OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
// Ranges addresses are based on the unit's low_pc. Compute the
// offset we need to apply to adapt to the the new unit's low_pc.
int64_t UnitPcOffset = 0;
if (OrigLowPc != -1ULL)
UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
uint32_t Offset = RangeAttribute->getValue();
RangeAttribute->setValue(Streamer->getRangesSectionSize());
RangeList.extract(RangeExtractor, &Offset);
const auto &Entries = RangeList.getEntries();
const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
if (CurrRange == InvalidRange || First.StartAddress < CurrRange.start() ||
First.StartAddress >= CurrRange.stop()) {
CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
if (CurrRange == InvalidRange ||
CurrRange.start() > First.StartAddress + OrigLowPc) {
reportWarning("no mapping for range.");
continue;
}
}
Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
AddressSize);
}
}
/// \brief Generate the debug_aranges entries for \p Unit and if the
/// unit has a DW_AT_ranges attribute, also emit the debug_ranges
/// contribution for this attribute.
/// FIXME: this could actually be done right in patchRangesForUnit,
/// but for the sake of initial bit-for-bit compatibility with legacy
/// dsymutil, we have to do it in a delayed pass.
void DwarfLinker::generateUnitRanges(CompileUnit &Unit) const {
DIEInteger *Attr = Unit.getUnitRangesAttribute();
if (Attr)
Attr->setValue(Streamer->getRangesSectionSize());
Streamer->emitUnitRangesEntries(Unit, Attr != nullptr);
}
/// \brief Insert the new line info sequence \p Seq into the current
/// set of already linked line info \p Rows.
static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
std::vector<DWARFDebugLine::Row> &Rows) {
if (Seq.empty())
return;
if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
Rows.insert(Rows.end(), Seq.begin(), Seq.end());
Seq.clear();
return;
}
auto InsertPoint = std::lower_bound(
Rows.begin(), Rows.end(), Seq.front(),
[](const DWARFDebugLine::Row &LHS, const DWARFDebugLine::Row &RHS) {
return LHS.Address < RHS.Address;
});
// FIXME: this only removes the unneeded end_sequence if the
// sequences have been inserted in order. using a global sort like
// described in patchLineTableForUnit() and delaying the end_sequene
// elimination to emitLineTableForUnit() we can get rid of all of them.
if (InsertPoint != Rows.end() &&
InsertPoint->Address == Seq.front().Address && InsertPoint->EndSequence) {
*InsertPoint = Seq.front();
Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
} else {
Rows.insert(InsertPoint, Seq.begin(), Seq.end());
}
Seq.clear();
}
/// \brief Extract the line table for \p Unit from \p OrigDwarf, and
/// recreate a relocated version of these for the address ranges that
/// are present in the binary.
void DwarfLinker::patchLineTableForUnit(CompileUnit &Unit,
DWARFContext &OrigDwarf) {
const DWARFDebugInfoEntryMinimal *CUDie =
Unit.getOrigUnit().getCompileUnitDIE();
uint64_t StmtList = CUDie->getAttributeValueAsSectionOffset(
&Unit.getOrigUnit(), dwarf::DW_AT_stmt_list, -1ULL);
if (StmtList == -1ULL)
return;
// Update the cloned DW_AT_stmt_list with the correct debug_line offset.
if (auto *OutputDIE = Unit.getOutputUnitDIE()) {
const auto &Abbrev = OutputDIE->getAbbrev().getData();
auto Stmt = std::find_if(
Abbrev.begin(), Abbrev.end(), [](const DIEAbbrevData &AbbrevData) {
return AbbrevData.getAttribute() == dwarf::DW_AT_stmt_list;
});
assert(Stmt < Abbrev.end() && "Didn't find DW_AT_stmt_list in cloned DIE!");
DIEInteger *StmtAttr =
cast<DIEInteger>(OutputDIE->getValues()[Stmt - Abbrev.begin()]);
StmtAttr->setValue(Streamer->getLineSectionSize());
}
// Parse the original line info for the unit.
DWARFDebugLine::LineTable LineTable;
uint32_t StmtOffset = StmtList;
StringRef LineData = OrigDwarf.getLineSection().Data;
DataExtractor LineExtractor(LineData, OrigDwarf.isLittleEndian(),
Unit.getOrigUnit().getAddressByteSize());
LineTable.parse(LineExtractor, &OrigDwarf.getLineSection().Relocs,
&StmtOffset);
// This vector is the output line table.
std::vector<DWARFDebugLine::Row> NewRows;
NewRows.reserve(LineTable.Rows.size());
// Current sequence of rows being extracted, before being inserted
// in NewRows.
std::vector<DWARFDebugLine::Row> Seq;
const auto &FunctionRanges = Unit.getFunctionRanges();
auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
// FIXME: This logic is meant to generate exactly the same output as
// Darwin's classic dsynutil. There is a nicer way to implement this
// by simply putting all the relocated line info in NewRows and simply
// sorting NewRows before passing it to emitLineTableForUnit. This
// should be correct as sequences for a function should stay
// together in the sorted output. There are a few corner cases that
// look suspicious though, and that required to implement the logic
// this way. Revisit that once initial validation is finished.
// Iterate over the object file line info and extract the sequences
// that correspond to linked functions.
for (auto &Row : LineTable.Rows) {
// Check wether we stepped out of the range. The range is
// half-open, but consider accept the end address of the range if
// it is marked as end_sequence in the input (because in that
// case, the relocation offset is accurate and that entry won't
// serve as the start of another function).
if (CurrRange == InvalidRange || Row.Address < CurrRange.start() ||
Row.Address > CurrRange.stop() ||
(Row.Address == CurrRange.stop() && !Row.EndSequence)) {
// We just stepped out of a known range. Insert a end_sequence
// corresponding to the end of the range.
uint64_t StopAddress = CurrRange != InvalidRange
? CurrRange.stop() + CurrRange.value()
: -1ULL;
CurrRange = FunctionRanges.find(Row.Address);
bool CurrRangeValid =
CurrRange != InvalidRange && CurrRange.start() <= Row.Address;
if (!CurrRangeValid) {
CurrRange = InvalidRange;
if (StopAddress != -1ULL) {
// Try harder by looking in the DebugMapObject function
// ranges map. There are corner cases where this finds a
// valid entry. It's unclear if this is right or wrong, but
// for now do as dsymutil.
// FIXME: Understand exactly what cases this addresses and
// potentially remove it along with the Ranges map.
auto Range = Ranges.lower_bound(Row.Address);
if (Range != Ranges.begin() && Range != Ranges.end())
--Range;
if (Range != Ranges.end() && Range->first <= Row.Address &&
Range->second.first >= Row.Address) {
StopAddress = Row.Address + Range->second.second;
}
}
}
if (StopAddress != -1ULL && !Seq.empty()) {
// Insert end sequence row with the computed end address, but
// the same line as the previous one.
Seq.emplace_back(Seq.back());
Seq.back().Address = StopAddress;
Seq.back().EndSequence = 1;
Seq.back().PrologueEnd = 0;
Seq.back().BasicBlock = 0;
Seq.back().EpilogueBegin = 0;
insertLineSequence(Seq, NewRows);
}
if (!CurrRangeValid)
continue;
}
// Ignore empty sequences.
if (Row.EndSequence && Seq.empty())
continue;
// Relocate row address and add it to the current sequence.
Row.Address += CurrRange.value();
Seq.emplace_back(Row);
if (Row.EndSequence)
insertLineSequence(Seq, NewRows);
}
// Finished extracting, now emit the line tables.
uint32_t PrologueEnd = StmtList + 10 + LineTable.Prologue.PrologueLength;
// FIXME: LLVM hardcodes it's prologue values. We just copy the
// prologue over and that works because we act as both producer and
// consumer. It would be nicer to have a real configurable line
// table emitter.
if (LineTable.Prologue.Version != 2 ||
LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
LineTable.Prologue.LineBase != -5 || LineTable.Prologue.LineRange != 14 ||
LineTable.Prologue.OpcodeBase != 13)
reportWarning("line table paramters mismatch. Cannot emit.");
else
Streamer->emitLineTableForUnit(LineData.slice(StmtList + 4, PrologueEnd),
LineTable.Prologue.MinInstLength, NewRows,
Unit.getOrigUnit().getAddressByteSize());
}
void DwarfLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
Streamer->emitPubNamesForUnit(Unit);
Streamer->emitPubTypesForUnit(Unit);
}
bool DwarfLinker::link(const DebugMap &Map) {
if (Map.begin() == Map.end()) {
errs() << "Empty debug map.\n";
return false;
}
if (!createStreamer(Map.getTriple(), OutputFilename))
return false;
// Size of the DIEs (and headers) generated for the linked output.
uint64_t OutputDebugInfoSize = 0;
// A unique ID that identifies each compile unit.
unsigned UnitID = 0;
for (const auto &Obj : Map.objects()) {
CurrentDebugObject = Obj.get();
if (Options.Verbose)
outs() << "DEBUG MAP OBJECT: " << Obj->getObjectFilename() << "\n";
auto ErrOrObj = BinHolder.GetObjectFile(Obj->getObjectFilename());
if (std::error_code EC = ErrOrObj.getError()) {
reportWarning(Twine(Obj->getObjectFilename()) + ": " + EC.message());
continue;
}
// Look for relocations that correspond to debug map entries.
if (!findValidRelocsInDebugInfo(*ErrOrObj, *Obj)) {
if (Options.Verbose)
outs() << "No valid relocations found. Skipping.\n";
continue;
}
// Setup access to the debug info.
DWARFContextInMemory DwarfContext(*ErrOrObj);
startDebugObject(DwarfContext, *Obj);
// In a first phase, just read in the debug info and store the DIE
// parent links that we will use during the next phase.
for (const auto &CU : DwarfContext.compile_units()) {
auto *CUDie = CU->getCompileUnitDIE(false);
if (Options.Verbose) {
outs() << "Input compilation unit:";
CUDie->dump(outs(), CU.get(), 0);
}
Units.emplace_back(*CU, UnitID++);
gatherDIEParents(CUDie, 0, Units.back());
}
// Then mark all the DIEs that need to be present in the linked
// output and collect some information about them. Note that this
// loop can not be merged with the previous one becaue cross-cu
// references require the ParentIdx to be setup for every CU in
// the object file before calling this.
for (auto &CurrentUnit : Units)
lookForDIEsToKeep(*CurrentUnit.getOrigUnit().getCompileUnitDIE(), *Obj,
CurrentUnit, 0);
// The calls to applyValidRelocs inside cloneDIE will walk the
// reloc array again (in the same way findValidRelocsInDebugInfo()
// did). We need to reset the NextValidReloc index to the beginning.
NextValidReloc = 0;
// Construct the output DIE tree by cloning the DIEs we chose to
// keep above. If there are no valid relocs, then there's nothing
// to clone/emit.
if (!ValidRelocs.empty())
for (auto &CurrentUnit : Units) {
const auto *InputDIE = CurrentUnit.getOrigUnit().getCompileUnitDIE();
CurrentUnit.setStartOffset(OutputDebugInfoSize);
DIE *OutputDIE = cloneDIE(*InputDIE, CurrentUnit, 0 /* PCOffset */,
11 /* Unit Header size */);
CurrentUnit.setOutputUnitDIE(OutputDIE);
OutputDebugInfoSize = CurrentUnit.computeNextUnitOffset();
if (Options.NoOutput)
continue;
// FIXME: for compatibility with the classic dsymutil, we emit
// an empty line table for the unit, even if the unit doesn't
// actually exist in the DIE tree.
patchLineTableForUnit(CurrentUnit, DwarfContext);
if (!OutputDIE)
continue;
patchRangesForUnit(CurrentUnit, DwarfContext);
Streamer->emitLocationsForUnit(CurrentUnit, DwarfContext);
emitAcceleratorEntriesForUnit(CurrentUnit);
}
// Emit all the compile unit's debug information.
if (!ValidRelocs.empty() && !Options.NoOutput)
for (auto &CurrentUnit : Units) {
generateUnitRanges(CurrentUnit);
CurrentUnit.fixupForwardReferences();
Streamer->emitCompileUnitHeader(CurrentUnit);
if (!CurrentUnit.getOutputUnitDIE())
continue;
Streamer->emitDIE(*CurrentUnit.getOutputUnitDIE());
}
// Clean-up before starting working on the next object.
endDebugObject();
}
// Emit everything that's global.
if (!Options.NoOutput) {
Streamer->emitAbbrevs(Abbreviations);
Streamer->emitStrings(StringPool);
}
return Options.NoOutput ? true : Streamer->finish();
}
}
bool linkDwarf(StringRef OutputFilename, const DebugMap &DM,
const LinkOptions &Options) {
DwarfLinker Linker(OutputFilename, Options);
return Linker.link(DM);
}
}
}