forked from OSchip/llvm-project
4385 lines
165 KiB
C++
4385 lines
165 KiB
C++
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This coordinates the per-module state used while generating code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenModule.h"
|
|
#include "CGBlocks.h"
|
|
#include "CGCUDARuntime.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGCall.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "CGOpenCLRuntime.h"
|
|
#include "CGOpenMPRuntime.h"
|
|
#include "CGOpenMPRuntimeNVPTX.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenPGO.h"
|
|
#include "CodeGenTBAA.h"
|
|
#include "CoverageMappingGen.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/CharInfo.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/Module.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Basic/Version.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "clang/Sema/SemaDiagnostic.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/ProfileData/InstrProfReader.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MD5.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
static const char AnnotationSection[] = "llvm.metadata";
|
|
|
|
static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
|
|
switch (CGM.getTarget().getCXXABI().getKind()) {
|
|
case TargetCXXABI::GenericAArch64:
|
|
case TargetCXXABI::GenericARM:
|
|
case TargetCXXABI::iOS:
|
|
case TargetCXXABI::iOS64:
|
|
case TargetCXXABI::WatchOS:
|
|
case TargetCXXABI::GenericMIPS:
|
|
case TargetCXXABI::GenericItanium:
|
|
case TargetCXXABI::WebAssembly:
|
|
return CreateItaniumCXXABI(CGM);
|
|
case TargetCXXABI::Microsoft:
|
|
return CreateMicrosoftCXXABI(CGM);
|
|
}
|
|
|
|
llvm_unreachable("invalid C++ ABI kind");
|
|
}
|
|
|
|
CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
|
|
const PreprocessorOptions &PPO,
|
|
const CodeGenOptions &CGO, llvm::Module &M,
|
|
DiagnosticsEngine &diags,
|
|
CoverageSourceInfo *CoverageInfo)
|
|
: Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
|
|
PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
|
|
Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
|
|
VMContext(M.getContext()), Types(*this), VTables(*this),
|
|
SanitizerMD(new SanitizerMetadata(*this)) {
|
|
|
|
// Initialize the type cache.
|
|
llvm::LLVMContext &LLVMContext = M.getContext();
|
|
VoidTy = llvm::Type::getVoidTy(LLVMContext);
|
|
Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
|
|
Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
|
|
Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
|
|
Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
|
|
FloatTy = llvm::Type::getFloatTy(LLVMContext);
|
|
DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
|
|
PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
|
|
PointerAlignInBytes =
|
|
C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
|
|
SizeSizeInBytes =
|
|
C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
|
|
IntAlignInBytes =
|
|
C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
|
|
IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
|
|
IntPtrTy = llvm::IntegerType::get(LLVMContext,
|
|
C.getTargetInfo().getMaxPointerWidth());
|
|
Int8PtrTy = Int8Ty->getPointerTo(0);
|
|
Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
|
|
|
|
RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
|
|
BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
|
|
|
|
if (LangOpts.ObjC1)
|
|
createObjCRuntime();
|
|
if (LangOpts.OpenCL)
|
|
createOpenCLRuntime();
|
|
if (LangOpts.OpenMP)
|
|
createOpenMPRuntime();
|
|
if (LangOpts.CUDA)
|
|
createCUDARuntime();
|
|
|
|
// Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
|
|
(!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
|
|
TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
|
|
getCXXABI().getMangleContext()));
|
|
|
|
// If debug info or coverage generation is enabled, create the CGDebugInfo
|
|
// object.
|
|
if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
|
|
CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
|
|
DebugInfo.reset(new CGDebugInfo(*this));
|
|
|
|
Block.GlobalUniqueCount = 0;
|
|
|
|
if (C.getLangOpts().ObjC1)
|
|
ObjCData.reset(new ObjCEntrypoints());
|
|
|
|
if (CodeGenOpts.hasProfileClangUse()) {
|
|
auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
|
|
CodeGenOpts.ProfileInstrumentUsePath);
|
|
if (auto E = ReaderOrErr.takeError()) {
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"Could not read profile %0: %1");
|
|
llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
|
|
getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
|
|
<< EI.message();
|
|
});
|
|
} else
|
|
PGOReader = std::move(ReaderOrErr.get());
|
|
}
|
|
|
|
// If coverage mapping generation is enabled, create the
|
|
// CoverageMappingModuleGen object.
|
|
if (CodeGenOpts.CoverageMapping)
|
|
CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
|
|
}
|
|
|
|
CodeGenModule::~CodeGenModule() {}
|
|
|
|
void CodeGenModule::createObjCRuntime() {
|
|
// This is just isGNUFamily(), but we want to force implementors of
|
|
// new ABIs to decide how best to do this.
|
|
switch (LangOpts.ObjCRuntime.getKind()) {
|
|
case ObjCRuntime::GNUstep:
|
|
case ObjCRuntime::GCC:
|
|
case ObjCRuntime::ObjFW:
|
|
ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
|
|
return;
|
|
|
|
case ObjCRuntime::FragileMacOSX:
|
|
case ObjCRuntime::MacOSX:
|
|
case ObjCRuntime::iOS:
|
|
case ObjCRuntime::WatchOS:
|
|
ObjCRuntime.reset(CreateMacObjCRuntime(*this));
|
|
return;
|
|
}
|
|
llvm_unreachable("bad runtime kind");
|
|
}
|
|
|
|
void CodeGenModule::createOpenCLRuntime() {
|
|
OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
|
|
}
|
|
|
|
void CodeGenModule::createOpenMPRuntime() {
|
|
// Select a specialized code generation class based on the target, if any.
|
|
// If it does not exist use the default implementation.
|
|
switch (getTarget().getTriple().getArch()) {
|
|
|
|
case llvm::Triple::nvptx:
|
|
case llvm::Triple::nvptx64:
|
|
assert(getLangOpts().OpenMPIsDevice &&
|
|
"OpenMP NVPTX is only prepared to deal with device code.");
|
|
OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
|
|
break;
|
|
default:
|
|
OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::createCUDARuntime() {
|
|
CUDARuntime.reset(CreateNVCUDARuntime(*this));
|
|
}
|
|
|
|
void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
|
|
Replacements[Name] = C;
|
|
}
|
|
|
|
void CodeGenModule::applyReplacements() {
|
|
for (auto &I : Replacements) {
|
|
StringRef MangledName = I.first();
|
|
llvm::Constant *Replacement = I.second;
|
|
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
|
|
if (!Entry)
|
|
continue;
|
|
auto *OldF = cast<llvm::Function>(Entry);
|
|
auto *NewF = dyn_cast<llvm::Function>(Replacement);
|
|
if (!NewF) {
|
|
if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
|
|
NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
|
|
} else {
|
|
auto *CE = cast<llvm::ConstantExpr>(Replacement);
|
|
assert(CE->getOpcode() == llvm::Instruction::BitCast ||
|
|
CE->getOpcode() == llvm::Instruction::GetElementPtr);
|
|
NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
|
|
}
|
|
}
|
|
|
|
// Replace old with new, but keep the old order.
|
|
OldF->replaceAllUsesWith(Replacement);
|
|
if (NewF) {
|
|
NewF->removeFromParent();
|
|
OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
|
|
NewF);
|
|
}
|
|
OldF->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
|
|
GlobalValReplacements.push_back(std::make_pair(GV, C));
|
|
}
|
|
|
|
void CodeGenModule::applyGlobalValReplacements() {
|
|
for (auto &I : GlobalValReplacements) {
|
|
llvm::GlobalValue *GV = I.first;
|
|
llvm::Constant *C = I.second;
|
|
|
|
GV->replaceAllUsesWith(C);
|
|
GV->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// This is only used in aliases that we created and we know they have a
|
|
// linear structure.
|
|
static const llvm::GlobalObject *getAliasedGlobal(
|
|
const llvm::GlobalIndirectSymbol &GIS) {
|
|
llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
|
|
const llvm::Constant *C = &GIS;
|
|
for (;;) {
|
|
C = C->stripPointerCasts();
|
|
if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
|
|
return GO;
|
|
// stripPointerCasts will not walk over weak aliases.
|
|
auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
|
|
if (!GIS2)
|
|
return nullptr;
|
|
if (!Visited.insert(GIS2).second)
|
|
return nullptr;
|
|
C = GIS2->getIndirectSymbol();
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::checkAliases() {
|
|
// Check if the constructed aliases are well formed. It is really unfortunate
|
|
// that we have to do this in CodeGen, but we only construct mangled names
|
|
// and aliases during codegen.
|
|
bool Error = false;
|
|
DiagnosticsEngine &Diags = getDiags();
|
|
for (const GlobalDecl &GD : Aliases) {
|
|
const auto *D = cast<ValueDecl>(GD.getDecl());
|
|
SourceLocation Location;
|
|
bool IsIFunc = D->hasAttr<IFuncAttr>();
|
|
if (const Attr *A = D->getDefiningAttr())
|
|
Location = A->getLocation();
|
|
else
|
|
llvm_unreachable("Not an alias or ifunc?");
|
|
StringRef MangledName = getMangledName(GD);
|
|
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
|
|
auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
|
|
const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
|
|
if (!GV) {
|
|
Error = true;
|
|
Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
|
|
} else if (GV->isDeclaration()) {
|
|
Error = true;
|
|
Diags.Report(Location, diag::err_alias_to_undefined)
|
|
<< IsIFunc << IsIFunc;
|
|
} else if (IsIFunc) {
|
|
// Check resolver function type.
|
|
llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
|
|
GV->getType()->getPointerElementType());
|
|
assert(FTy);
|
|
if (!FTy->getReturnType()->isPointerTy())
|
|
Diags.Report(Location, diag::err_ifunc_resolver_return);
|
|
if (FTy->getNumParams())
|
|
Diags.Report(Location, diag::err_ifunc_resolver_params);
|
|
}
|
|
|
|
llvm::Constant *Aliasee = Alias->getIndirectSymbol();
|
|
llvm::GlobalValue *AliaseeGV;
|
|
if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
|
|
AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
|
|
else
|
|
AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
|
|
|
|
if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
|
|
StringRef AliasSection = SA->getName();
|
|
if (AliasSection != AliaseeGV->getSection())
|
|
Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
|
|
<< AliasSection << IsIFunc << IsIFunc;
|
|
}
|
|
|
|
// We have to handle alias to weak aliases in here. LLVM itself disallows
|
|
// this since the object semantics would not match the IL one. For
|
|
// compatibility with gcc we implement it by just pointing the alias
|
|
// to its aliasee's aliasee. We also warn, since the user is probably
|
|
// expecting the link to be weak.
|
|
if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
|
|
if (GA->isInterposable()) {
|
|
Diags.Report(Location, diag::warn_alias_to_weak_alias)
|
|
<< GV->getName() << GA->getName() << IsIFunc;
|
|
Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
|
|
GA->getIndirectSymbol(), Alias->getType());
|
|
Alias->setIndirectSymbol(Aliasee);
|
|
}
|
|
}
|
|
}
|
|
if (!Error)
|
|
return;
|
|
|
|
for (const GlobalDecl &GD : Aliases) {
|
|
StringRef MangledName = getMangledName(GD);
|
|
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
|
|
auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
|
|
Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
|
|
Alias->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::clear() {
|
|
DeferredDeclsToEmit.clear();
|
|
if (OpenMPRuntime)
|
|
OpenMPRuntime->clear();
|
|
}
|
|
|
|
void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
|
|
StringRef MainFile) {
|
|
if (!hasDiagnostics())
|
|
return;
|
|
if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
|
|
if (MainFile.empty())
|
|
MainFile = "<stdin>";
|
|
Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
|
|
} else
|
|
Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
|
|
<< Mismatched;
|
|
}
|
|
|
|
void CodeGenModule::Release() {
|
|
EmitDeferred();
|
|
applyGlobalValReplacements();
|
|
applyReplacements();
|
|
checkAliases();
|
|
EmitCXXGlobalInitFunc();
|
|
EmitCXXGlobalDtorFunc();
|
|
EmitCXXThreadLocalInitFunc();
|
|
if (ObjCRuntime)
|
|
if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
|
|
AddGlobalCtor(ObjCInitFunction);
|
|
if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
|
|
CUDARuntime) {
|
|
if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
|
|
AddGlobalCtor(CudaCtorFunction);
|
|
if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
|
|
AddGlobalDtor(CudaDtorFunction);
|
|
}
|
|
if (OpenMPRuntime)
|
|
if (llvm::Function *OpenMPRegistrationFunction =
|
|
OpenMPRuntime->emitRegistrationFunction())
|
|
AddGlobalCtor(OpenMPRegistrationFunction, 0);
|
|
if (PGOReader) {
|
|
getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
|
|
if (PGOStats.hasDiagnostics())
|
|
PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
|
|
}
|
|
EmitCtorList(GlobalCtors, "llvm.global_ctors");
|
|
EmitCtorList(GlobalDtors, "llvm.global_dtors");
|
|
EmitGlobalAnnotations();
|
|
EmitStaticExternCAliases();
|
|
EmitDeferredUnusedCoverageMappings();
|
|
if (CoverageMapping)
|
|
CoverageMapping->emit();
|
|
if (CodeGenOpts.SanitizeCfiCrossDso)
|
|
CodeGenFunction(*this).EmitCfiCheckFail();
|
|
emitLLVMUsed();
|
|
if (SanStats)
|
|
SanStats->finish();
|
|
|
|
if (CodeGenOpts.Autolink &&
|
|
(Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
|
|
EmitModuleLinkOptions();
|
|
}
|
|
if (CodeGenOpts.DwarfVersion) {
|
|
// We actually want the latest version when there are conflicts.
|
|
// We can change from Warning to Latest if such mode is supported.
|
|
getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
|
|
CodeGenOpts.DwarfVersion);
|
|
}
|
|
if (CodeGenOpts.EmitCodeView) {
|
|
// Indicate that we want CodeView in the metadata.
|
|
getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
|
|
}
|
|
if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
|
|
// We don't support LTO with 2 with different StrictVTablePointers
|
|
// FIXME: we could support it by stripping all the information introduced
|
|
// by StrictVTablePointers.
|
|
|
|
getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
|
|
|
|
llvm::Metadata *Ops[2] = {
|
|
llvm::MDString::get(VMContext, "StrictVTablePointers"),
|
|
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
|
|
llvm::Type::getInt32Ty(VMContext), 1))};
|
|
|
|
getModule().addModuleFlag(llvm::Module::Require,
|
|
"StrictVTablePointersRequirement",
|
|
llvm::MDNode::get(VMContext, Ops));
|
|
}
|
|
if (DebugInfo)
|
|
// We support a single version in the linked module. The LLVM
|
|
// parser will drop debug info with a different version number
|
|
// (and warn about it, too).
|
|
getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
|
|
llvm::DEBUG_METADATA_VERSION);
|
|
|
|
// We need to record the widths of enums and wchar_t, so that we can generate
|
|
// the correct build attributes in the ARM backend.
|
|
llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
|
|
if ( Arch == llvm::Triple::arm
|
|
|| Arch == llvm::Triple::armeb
|
|
|| Arch == llvm::Triple::thumb
|
|
|| Arch == llvm::Triple::thumbeb) {
|
|
// Width of wchar_t in bytes
|
|
uint64_t WCharWidth =
|
|
Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
|
|
getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
|
|
|
|
// The minimum width of an enum in bytes
|
|
uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
|
|
getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
|
|
}
|
|
|
|
if (CodeGenOpts.SanitizeCfiCrossDso) {
|
|
// Indicate that we want cross-DSO control flow integrity checks.
|
|
getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
|
|
}
|
|
|
|
if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
|
|
// Indicate whether __nvvm_reflect should be configured to flush denormal
|
|
// floating point values to 0. (This corresponds to its "__CUDA_FTZ"
|
|
// property.)
|
|
getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
|
|
LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
|
|
}
|
|
|
|
if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
|
|
assert(PLevel < 3 && "Invalid PIC Level");
|
|
getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
|
|
if (Context.getLangOpts().PIE)
|
|
getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
|
|
}
|
|
|
|
SimplifyPersonality();
|
|
|
|
if (getCodeGenOpts().EmitDeclMetadata)
|
|
EmitDeclMetadata();
|
|
|
|
if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
|
|
EmitCoverageFile();
|
|
|
|
if (DebugInfo)
|
|
DebugInfo->finalize();
|
|
|
|
EmitVersionIdentMetadata();
|
|
|
|
EmitTargetMetadata();
|
|
|
|
// Emit any deferred diagnostics gathered during codegen. We didn't emit them
|
|
// when we first discovered them because that would have halted codegen,
|
|
// preventing us from gathering other deferred diags.
|
|
for (const PartialDiagnosticAt &DiagAt : DeferredDiags) {
|
|
SourceLocation Loc = DiagAt.first;
|
|
const PartialDiagnostic &PD = DiagAt.second;
|
|
DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID()));
|
|
PD.Emit(Builder);
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
|
|
// Make sure that this type is translated.
|
|
Types.UpdateCompletedType(TD);
|
|
}
|
|
|
|
void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
|
|
// Make sure that this type is translated.
|
|
Types.RefreshTypeCacheForClass(RD);
|
|
}
|
|
|
|
llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
|
|
if (!TBAA)
|
|
return nullptr;
|
|
return TBAA->getTBAAInfo(QTy);
|
|
}
|
|
|
|
llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
|
|
if (!TBAA)
|
|
return nullptr;
|
|
return TBAA->getTBAAInfoForVTablePtr();
|
|
}
|
|
|
|
llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
|
|
if (!TBAA)
|
|
return nullptr;
|
|
return TBAA->getTBAAStructInfo(QTy);
|
|
}
|
|
|
|
llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
|
|
llvm::MDNode *AccessN,
|
|
uint64_t O) {
|
|
if (!TBAA)
|
|
return nullptr;
|
|
return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
|
|
}
|
|
|
|
/// Decorate the instruction with a TBAA tag. For both scalar TBAA
|
|
/// and struct-path aware TBAA, the tag has the same format:
|
|
/// base type, access type and offset.
|
|
/// When ConvertTypeToTag is true, we create a tag based on the scalar type.
|
|
void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
|
|
llvm::MDNode *TBAAInfo,
|
|
bool ConvertTypeToTag) {
|
|
if (ConvertTypeToTag && TBAA)
|
|
Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
|
|
TBAA->getTBAAScalarTagInfo(TBAAInfo));
|
|
else
|
|
Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
|
|
}
|
|
|
|
void CodeGenModule::DecorateInstructionWithInvariantGroup(
|
|
llvm::Instruction *I, const CXXRecordDecl *RD) {
|
|
llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
|
|
auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
|
|
// Check if we have to wrap MDString in MDNode.
|
|
if (!MetaDataNode)
|
|
MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
|
|
I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
|
|
}
|
|
|
|
void CodeGenModule::Error(SourceLocation loc, StringRef message) {
|
|
unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
|
|
getDiags().Report(Context.getFullLoc(loc), diagID) << message;
|
|
}
|
|
|
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
|
/// specified stmt yet.
|
|
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot compile this %0 yet");
|
|
std::string Msg = Type;
|
|
getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
|
|
<< Msg << S->getSourceRange();
|
|
}
|
|
|
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
|
/// specified decl yet.
|
|
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot compile this %0 yet");
|
|
std::string Msg = Type;
|
|
getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
|
|
}
|
|
|
|
llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
|
|
return llvm::ConstantInt::get(SizeTy, size.getQuantity());
|
|
}
|
|
|
|
void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
|
|
const NamedDecl *D) const {
|
|
// Internal definitions always have default visibility.
|
|
if (GV->hasLocalLinkage()) {
|
|
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
|
|
return;
|
|
}
|
|
|
|
// Set visibility for definitions.
|
|
LinkageInfo LV = D->getLinkageAndVisibility();
|
|
if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
|
|
GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
|
|
}
|
|
|
|
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
|
|
return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
|
|
.Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
|
|
.Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
|
|
.Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
|
|
.Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
|
|
}
|
|
|
|
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
|
|
CodeGenOptions::TLSModel M) {
|
|
switch (M) {
|
|
case CodeGenOptions::GeneralDynamicTLSModel:
|
|
return llvm::GlobalVariable::GeneralDynamicTLSModel;
|
|
case CodeGenOptions::LocalDynamicTLSModel:
|
|
return llvm::GlobalVariable::LocalDynamicTLSModel;
|
|
case CodeGenOptions::InitialExecTLSModel:
|
|
return llvm::GlobalVariable::InitialExecTLSModel;
|
|
case CodeGenOptions::LocalExecTLSModel:
|
|
return llvm::GlobalVariable::LocalExecTLSModel;
|
|
}
|
|
llvm_unreachable("Invalid TLS model!");
|
|
}
|
|
|
|
void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
|
|
assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
|
|
|
|
llvm::GlobalValue::ThreadLocalMode TLM;
|
|
TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
|
|
|
|
// Override the TLS model if it is explicitly specified.
|
|
if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
|
|
TLM = GetLLVMTLSModel(Attr->getModel());
|
|
}
|
|
|
|
GV->setThreadLocalMode(TLM);
|
|
}
|
|
|
|
StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
|
|
GlobalDecl CanonicalGD = GD.getCanonicalDecl();
|
|
|
|
// Some ABIs don't have constructor variants. Make sure that base and
|
|
// complete constructors get mangled the same.
|
|
if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
|
|
if (!getTarget().getCXXABI().hasConstructorVariants()) {
|
|
CXXCtorType OrigCtorType = GD.getCtorType();
|
|
assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
|
|
if (OrigCtorType == Ctor_Base)
|
|
CanonicalGD = GlobalDecl(CD, Ctor_Complete);
|
|
}
|
|
}
|
|
|
|
StringRef &FoundStr = MangledDeclNames[CanonicalGD];
|
|
if (!FoundStr.empty())
|
|
return FoundStr;
|
|
|
|
const auto *ND = cast<NamedDecl>(GD.getDecl());
|
|
SmallString<256> Buffer;
|
|
StringRef Str;
|
|
if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
|
|
getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
|
|
else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
|
|
getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
|
|
else
|
|
getCXXABI().getMangleContext().mangleName(ND, Out);
|
|
Str = Out.str();
|
|
} else {
|
|
IdentifierInfo *II = ND->getIdentifier();
|
|
assert(II && "Attempt to mangle unnamed decl.");
|
|
Str = II->getName();
|
|
}
|
|
|
|
// Keep the first result in the case of a mangling collision.
|
|
auto Result = Manglings.insert(std::make_pair(Str, GD));
|
|
return FoundStr = Result.first->first();
|
|
}
|
|
|
|
StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
|
|
const BlockDecl *BD) {
|
|
MangleContext &MangleCtx = getCXXABI().getMangleContext();
|
|
const Decl *D = GD.getDecl();
|
|
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
if (!D)
|
|
MangleCtx.mangleGlobalBlock(BD,
|
|
dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
|
|
else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
|
|
MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
|
|
else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
|
|
MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
|
|
else
|
|
MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
|
|
|
|
auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
|
|
return Result.first->first();
|
|
}
|
|
|
|
llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
|
|
return getModule().getNamedValue(Name);
|
|
}
|
|
|
|
/// AddGlobalCtor - Add a function to the list that will be called before
|
|
/// main() runs.
|
|
void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
|
|
llvm::Constant *AssociatedData) {
|
|
// FIXME: Type coercion of void()* types.
|
|
GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
|
|
}
|
|
|
|
/// AddGlobalDtor - Add a function to the list that will be called
|
|
/// when the module is unloaded.
|
|
void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
|
|
// FIXME: Type coercion of void()* types.
|
|
GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
|
|
}
|
|
|
|
void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
|
|
// Ctor function type is void()*.
|
|
llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
|
|
llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
|
|
|
|
// Get the type of a ctor entry, { i32, void ()*, i8* }.
|
|
llvm::StructType *CtorStructTy = llvm::StructType::get(
|
|
Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
|
|
|
|
// Construct the constructor and destructor arrays.
|
|
SmallVector<llvm::Constant *, 8> Ctors;
|
|
for (const auto &I : Fns) {
|
|
llvm::Constant *S[] = {
|
|
llvm::ConstantInt::get(Int32Ty, I.Priority, false),
|
|
llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
|
|
(I.AssociatedData
|
|
? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
|
|
: llvm::Constant::getNullValue(VoidPtrTy))};
|
|
Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
|
|
}
|
|
|
|
if (!Ctors.empty()) {
|
|
llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
|
|
new llvm::GlobalVariable(TheModule, AT, false,
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
llvm::ConstantArray::get(AT, Ctors),
|
|
GlobalName);
|
|
}
|
|
}
|
|
|
|
llvm::GlobalValue::LinkageTypes
|
|
CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
|
|
const auto *D = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
|
|
|
|
if (isa<CXXDestructorDecl>(D) &&
|
|
getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
|
|
GD.getDtorType())) {
|
|
// Destructor variants in the Microsoft C++ ABI are always internal or
|
|
// linkonce_odr thunks emitted on an as-needed basis.
|
|
return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
|
|
: llvm::GlobalValue::LinkOnceODRLinkage;
|
|
}
|
|
|
|
if (isa<CXXConstructorDecl>(D) &&
|
|
cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
|
|
Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
// Our approach to inheriting constructors is fundamentally different from
|
|
// that used by the MS ABI, so keep our inheriting constructor thunks
|
|
// internal rather than trying to pick an unambiguous mangling for them.
|
|
return llvm::GlobalValue::InternalLinkage;
|
|
}
|
|
|
|
return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
|
|
}
|
|
|
|
void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
|
|
const auto *FD = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
|
|
if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
|
|
// Don't dllexport/import destructor thunks.
|
|
F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (FD->hasAttr<DLLImportAttr>())
|
|
F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
|
|
else if (FD->hasAttr<DLLExportAttr>())
|
|
F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
|
|
else
|
|
F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
|
|
}
|
|
|
|
llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
|
|
llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
|
|
if (!MDS) return nullptr;
|
|
|
|
llvm::MD5 md5;
|
|
llvm::MD5::MD5Result result;
|
|
md5.update(MDS->getString());
|
|
md5.final(result);
|
|
uint64_t id = 0;
|
|
for (int i = 0; i < 8; ++i)
|
|
id |= static_cast<uint64_t>(result[i]) << (i * 8);
|
|
return llvm::ConstantInt::get(Int64Ty, id);
|
|
}
|
|
|
|
void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
|
|
llvm::Function *F) {
|
|
setNonAliasAttributes(D, F);
|
|
}
|
|
|
|
void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
|
|
const CGFunctionInfo &Info,
|
|
llvm::Function *F) {
|
|
unsigned CallingConv;
|
|
AttributeListType AttributeList;
|
|
ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
|
|
false);
|
|
F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
|
|
F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
|
|
}
|
|
|
|
/// Determines whether the language options require us to model
|
|
/// unwind exceptions. We treat -fexceptions as mandating this
|
|
/// except under the fragile ObjC ABI with only ObjC exceptions
|
|
/// enabled. This means, for example, that C with -fexceptions
|
|
/// enables this.
|
|
static bool hasUnwindExceptions(const LangOptions &LangOpts) {
|
|
// If exceptions are completely disabled, obviously this is false.
|
|
if (!LangOpts.Exceptions) return false;
|
|
|
|
// If C++ exceptions are enabled, this is true.
|
|
if (LangOpts.CXXExceptions) return true;
|
|
|
|
// If ObjC exceptions are enabled, this depends on the ABI.
|
|
if (LangOpts.ObjCExceptions) {
|
|
return LangOpts.ObjCRuntime.hasUnwindExceptions();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
|
|
llvm::Function *F) {
|
|
llvm::AttrBuilder B;
|
|
|
|
if (CodeGenOpts.UnwindTables)
|
|
B.addAttribute(llvm::Attribute::UWTable);
|
|
|
|
if (!hasUnwindExceptions(LangOpts))
|
|
B.addAttribute(llvm::Attribute::NoUnwind);
|
|
|
|
if (LangOpts.getStackProtector() == LangOptions::SSPOn)
|
|
B.addAttribute(llvm::Attribute::StackProtect);
|
|
else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
|
|
B.addAttribute(llvm::Attribute::StackProtectStrong);
|
|
else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
|
|
B.addAttribute(llvm::Attribute::StackProtectReq);
|
|
|
|
if (!D) {
|
|
F->addAttributes(llvm::AttributeSet::FunctionIndex,
|
|
llvm::AttributeSet::get(
|
|
F->getContext(),
|
|
llvm::AttributeSet::FunctionIndex, B));
|
|
return;
|
|
}
|
|
|
|
if (D->hasAttr<NakedAttr>()) {
|
|
// Naked implies noinline: we should not be inlining such functions.
|
|
B.addAttribute(llvm::Attribute::Naked);
|
|
B.addAttribute(llvm::Attribute::NoInline);
|
|
} else if (D->hasAttr<NoDuplicateAttr>()) {
|
|
B.addAttribute(llvm::Attribute::NoDuplicate);
|
|
} else if (D->hasAttr<NoInlineAttr>()) {
|
|
B.addAttribute(llvm::Attribute::NoInline);
|
|
} else if (D->hasAttr<AlwaysInlineAttr>() &&
|
|
!F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::NoInline)) {
|
|
// (noinline wins over always_inline, and we can't specify both in IR)
|
|
B.addAttribute(llvm::Attribute::AlwaysInline);
|
|
}
|
|
|
|
if (D->hasAttr<ColdAttr>()) {
|
|
if (!D->hasAttr<OptimizeNoneAttr>())
|
|
B.addAttribute(llvm::Attribute::OptimizeForSize);
|
|
B.addAttribute(llvm::Attribute::Cold);
|
|
}
|
|
|
|
if (D->hasAttr<MinSizeAttr>())
|
|
B.addAttribute(llvm::Attribute::MinSize);
|
|
|
|
F->addAttributes(llvm::AttributeSet::FunctionIndex,
|
|
llvm::AttributeSet::get(
|
|
F->getContext(), llvm::AttributeSet::FunctionIndex, B));
|
|
|
|
if (D->hasAttr<OptimizeNoneAttr>()) {
|
|
// OptimizeNone implies noinline; we should not be inlining such functions.
|
|
F->addFnAttr(llvm::Attribute::OptimizeNone);
|
|
F->addFnAttr(llvm::Attribute::NoInline);
|
|
|
|
// OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
|
|
F->removeFnAttr(llvm::Attribute::OptimizeForSize);
|
|
F->removeFnAttr(llvm::Attribute::MinSize);
|
|
assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
|
|
"OptimizeNone and AlwaysInline on same function!");
|
|
|
|
// Attribute 'inlinehint' has no effect on 'optnone' functions.
|
|
// Explicitly remove it from the set of function attributes.
|
|
F->removeFnAttr(llvm::Attribute::InlineHint);
|
|
}
|
|
|
|
unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
|
|
if (alignment)
|
|
F->setAlignment(alignment);
|
|
|
|
// Some C++ ABIs require 2-byte alignment for member functions, in order to
|
|
// reserve a bit for differentiating between virtual and non-virtual member
|
|
// functions. If the current target's C++ ABI requires this and this is a
|
|
// member function, set its alignment accordingly.
|
|
if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
|
|
if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
|
|
F->setAlignment(2);
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::SetCommonAttributes(const Decl *D,
|
|
llvm::GlobalValue *GV) {
|
|
if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
|
|
setGlobalVisibility(GV, ND);
|
|
else
|
|
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
|
|
|
|
if (D && D->hasAttr<UsedAttr>())
|
|
addUsedGlobal(GV);
|
|
}
|
|
|
|
void CodeGenModule::setAliasAttributes(const Decl *D,
|
|
llvm::GlobalValue *GV) {
|
|
SetCommonAttributes(D, GV);
|
|
|
|
// Process the dllexport attribute based on whether the original definition
|
|
// (not necessarily the aliasee) was exported.
|
|
if (D->hasAttr<DLLExportAttr>())
|
|
GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
|
|
}
|
|
|
|
void CodeGenModule::setNonAliasAttributes(const Decl *D,
|
|
llvm::GlobalObject *GO) {
|
|
SetCommonAttributes(D, GO);
|
|
|
|
if (D)
|
|
if (const SectionAttr *SA = D->getAttr<SectionAttr>())
|
|
GO->setSection(SA->getName());
|
|
|
|
getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
|
|
}
|
|
|
|
void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
|
|
llvm::Function *F,
|
|
const CGFunctionInfo &FI) {
|
|
SetLLVMFunctionAttributes(D, FI, F);
|
|
SetLLVMFunctionAttributesForDefinition(D, F);
|
|
|
|
F->setLinkage(llvm::Function::InternalLinkage);
|
|
|
|
setNonAliasAttributes(D, F);
|
|
}
|
|
|
|
static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
|
|
const NamedDecl *ND) {
|
|
// Set linkage and visibility in case we never see a definition.
|
|
LinkageInfo LV = ND->getLinkageAndVisibility();
|
|
if (LV.getLinkage() != ExternalLinkage) {
|
|
// Don't set internal linkage on declarations.
|
|
} else {
|
|
if (ND->hasAttr<DLLImportAttr>()) {
|
|
GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
|
|
GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
|
|
} else if (ND->hasAttr<DLLExportAttr>()) {
|
|
GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
|
|
GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
|
|
} else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
|
|
// "extern_weak" is overloaded in LLVM; we probably should have
|
|
// separate linkage types for this.
|
|
GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
|
|
}
|
|
|
|
// Set visibility on a declaration only if it's explicit.
|
|
if (LV.isVisibilityExplicit())
|
|
GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
|
|
llvm::Function *F) {
|
|
// Only if we are checking indirect calls.
|
|
if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
|
|
return;
|
|
|
|
// Non-static class methods are handled via vtable pointer checks elsewhere.
|
|
if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
|
|
return;
|
|
|
|
// Additionally, if building with cross-DSO support...
|
|
if (CodeGenOpts.SanitizeCfiCrossDso) {
|
|
// Don't emit entries for function declarations. In cross-DSO mode these are
|
|
// handled with better precision at run time.
|
|
if (!FD->hasBody())
|
|
return;
|
|
// Skip available_externally functions. They won't be codegen'ed in the
|
|
// current module anyway.
|
|
if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
|
|
return;
|
|
}
|
|
|
|
llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
|
|
F->addTypeMetadata(0, MD);
|
|
|
|
// Emit a hash-based bit set entry for cross-DSO calls.
|
|
if (CodeGenOpts.SanitizeCfiCrossDso)
|
|
if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
|
|
F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
|
|
}
|
|
|
|
void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
|
|
bool IsIncompleteFunction,
|
|
bool IsThunk) {
|
|
if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
|
|
// If this is an intrinsic function, set the function's attributes
|
|
// to the intrinsic's attributes.
|
|
F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
|
|
return;
|
|
}
|
|
|
|
const auto *FD = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
if (!IsIncompleteFunction)
|
|
SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
|
|
|
|
// Add the Returned attribute for "this", except for iOS 5 and earlier
|
|
// where substantial code, including the libstdc++ dylib, was compiled with
|
|
// GCC and does not actually return "this".
|
|
if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
|
|
!(getTarget().getTriple().isiOS() &&
|
|
getTarget().getTriple().isOSVersionLT(6))) {
|
|
assert(!F->arg_empty() &&
|
|
F->arg_begin()->getType()
|
|
->canLosslesslyBitCastTo(F->getReturnType()) &&
|
|
"unexpected this return");
|
|
F->addAttribute(1, llvm::Attribute::Returned);
|
|
}
|
|
|
|
// Only a few attributes are set on declarations; these may later be
|
|
// overridden by a definition.
|
|
|
|
setLinkageAndVisibilityForGV(F, FD);
|
|
|
|
if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
|
|
F->setSection(SA->getName());
|
|
|
|
if (FD->isReplaceableGlobalAllocationFunction()) {
|
|
// A replaceable global allocation function does not act like a builtin by
|
|
// default, only if it is invoked by a new-expression or delete-expression.
|
|
F->addAttribute(llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::NoBuiltin);
|
|
|
|
// A sane operator new returns a non-aliasing pointer.
|
|
// FIXME: Also add NonNull attribute to the return value
|
|
// for the non-nothrow forms?
|
|
auto Kind = FD->getDeclName().getCXXOverloadedOperator();
|
|
if (getCodeGenOpts().AssumeSaneOperatorNew &&
|
|
(Kind == OO_New || Kind == OO_Array_New))
|
|
F->addAttribute(llvm::AttributeSet::ReturnIndex,
|
|
llvm::Attribute::NoAlias);
|
|
}
|
|
|
|
if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
|
|
F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
|
|
if (MD->isVirtual())
|
|
F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
|
|
CreateFunctionTypeMetadata(FD, F);
|
|
}
|
|
|
|
void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
|
|
assert(!GV->isDeclaration() &&
|
|
"Only globals with definition can force usage.");
|
|
LLVMUsed.emplace_back(GV);
|
|
}
|
|
|
|
void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
|
|
assert(!GV->isDeclaration() &&
|
|
"Only globals with definition can force usage.");
|
|
LLVMCompilerUsed.emplace_back(GV);
|
|
}
|
|
|
|
static void emitUsed(CodeGenModule &CGM, StringRef Name,
|
|
std::vector<llvm::WeakVH> &List) {
|
|
// Don't create llvm.used if there is no need.
|
|
if (List.empty())
|
|
return;
|
|
|
|
// Convert List to what ConstantArray needs.
|
|
SmallVector<llvm::Constant*, 8> UsedArray;
|
|
UsedArray.resize(List.size());
|
|
for (unsigned i = 0, e = List.size(); i != e; ++i) {
|
|
UsedArray[i] =
|
|
llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
|
|
cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
|
|
}
|
|
|
|
if (UsedArray.empty())
|
|
return;
|
|
llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
|
|
|
|
auto *GV = new llvm::GlobalVariable(
|
|
CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
|
|
llvm::ConstantArray::get(ATy, UsedArray), Name);
|
|
|
|
GV->setSection("llvm.metadata");
|
|
}
|
|
|
|
void CodeGenModule::emitLLVMUsed() {
|
|
emitUsed(*this, "llvm.used", LLVMUsed);
|
|
emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
|
|
}
|
|
|
|
void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
|
|
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
|
|
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
|
|
}
|
|
|
|
void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
|
|
llvm::SmallString<32> Opt;
|
|
getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
|
|
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
|
|
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
|
|
}
|
|
|
|
void CodeGenModule::AddDependentLib(StringRef Lib) {
|
|
llvm::SmallString<24> Opt;
|
|
getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
|
|
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
|
|
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
|
|
}
|
|
|
|
/// \brief Add link options implied by the given module, including modules
|
|
/// it depends on, using a postorder walk.
|
|
static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
|
|
SmallVectorImpl<llvm::Metadata *> &Metadata,
|
|
llvm::SmallPtrSet<Module *, 16> &Visited) {
|
|
// Import this module's parent.
|
|
if (Mod->Parent && Visited.insert(Mod->Parent).second) {
|
|
addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
|
|
}
|
|
|
|
// Import this module's dependencies.
|
|
for (unsigned I = Mod->Imports.size(); I > 0; --I) {
|
|
if (Visited.insert(Mod->Imports[I - 1]).second)
|
|
addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
|
|
}
|
|
|
|
// Add linker options to link against the libraries/frameworks
|
|
// described by this module.
|
|
llvm::LLVMContext &Context = CGM.getLLVMContext();
|
|
for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
|
|
// Link against a framework. Frameworks are currently Darwin only, so we
|
|
// don't to ask TargetCodeGenInfo for the spelling of the linker option.
|
|
if (Mod->LinkLibraries[I-1].IsFramework) {
|
|
llvm::Metadata *Args[2] = {
|
|
llvm::MDString::get(Context, "-framework"),
|
|
llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
|
|
|
|
Metadata.push_back(llvm::MDNode::get(Context, Args));
|
|
continue;
|
|
}
|
|
|
|
// Link against a library.
|
|
llvm::SmallString<24> Opt;
|
|
CGM.getTargetCodeGenInfo().getDependentLibraryOption(
|
|
Mod->LinkLibraries[I-1].Library, Opt);
|
|
auto *OptString = llvm::MDString::get(Context, Opt);
|
|
Metadata.push_back(llvm::MDNode::get(Context, OptString));
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitModuleLinkOptions() {
|
|
// Collect the set of all of the modules we want to visit to emit link
|
|
// options, which is essentially the imported modules and all of their
|
|
// non-explicit child modules.
|
|
llvm::SetVector<clang::Module *> LinkModules;
|
|
llvm::SmallPtrSet<clang::Module *, 16> Visited;
|
|
SmallVector<clang::Module *, 16> Stack;
|
|
|
|
// Seed the stack with imported modules.
|
|
for (Module *M : ImportedModules)
|
|
if (Visited.insert(M).second)
|
|
Stack.push_back(M);
|
|
|
|
// Find all of the modules to import, making a little effort to prune
|
|
// non-leaf modules.
|
|
while (!Stack.empty()) {
|
|
clang::Module *Mod = Stack.pop_back_val();
|
|
|
|
bool AnyChildren = false;
|
|
|
|
// Visit the submodules of this module.
|
|
for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
|
|
SubEnd = Mod->submodule_end();
|
|
Sub != SubEnd; ++Sub) {
|
|
// Skip explicit children; they need to be explicitly imported to be
|
|
// linked against.
|
|
if ((*Sub)->IsExplicit)
|
|
continue;
|
|
|
|
if (Visited.insert(*Sub).second) {
|
|
Stack.push_back(*Sub);
|
|
AnyChildren = true;
|
|
}
|
|
}
|
|
|
|
// We didn't find any children, so add this module to the list of
|
|
// modules to link against.
|
|
if (!AnyChildren) {
|
|
LinkModules.insert(Mod);
|
|
}
|
|
}
|
|
|
|
// Add link options for all of the imported modules in reverse topological
|
|
// order. We don't do anything to try to order import link flags with respect
|
|
// to linker options inserted by things like #pragma comment().
|
|
SmallVector<llvm::Metadata *, 16> MetadataArgs;
|
|
Visited.clear();
|
|
for (Module *M : LinkModules)
|
|
if (Visited.insert(M).second)
|
|
addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
|
|
std::reverse(MetadataArgs.begin(), MetadataArgs.end());
|
|
LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
|
|
|
|
// Add the linker options metadata flag.
|
|
getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
|
|
llvm::MDNode::get(getLLVMContext(),
|
|
LinkerOptionsMetadata));
|
|
}
|
|
|
|
void CodeGenModule::EmitDeferred() {
|
|
// Emit code for any potentially referenced deferred decls. Since a
|
|
// previously unused static decl may become used during the generation of code
|
|
// for a static function, iterate until no changes are made.
|
|
|
|
if (!DeferredVTables.empty()) {
|
|
EmitDeferredVTables();
|
|
|
|
// Emitting a vtable doesn't directly cause more vtables to
|
|
// become deferred, although it can cause functions to be
|
|
// emitted that then need those vtables.
|
|
assert(DeferredVTables.empty());
|
|
}
|
|
|
|
// Stop if we're out of both deferred vtables and deferred declarations.
|
|
if (DeferredDeclsToEmit.empty())
|
|
return;
|
|
|
|
// Grab the list of decls to emit. If EmitGlobalDefinition schedules more
|
|
// work, it will not interfere with this.
|
|
std::vector<DeferredGlobal> CurDeclsToEmit;
|
|
CurDeclsToEmit.swap(DeferredDeclsToEmit);
|
|
|
|
for (DeferredGlobal &G : CurDeclsToEmit) {
|
|
GlobalDecl D = G.GD;
|
|
G.GV = nullptr;
|
|
|
|
// We should call GetAddrOfGlobal with IsForDefinition set to true in order
|
|
// to get GlobalValue with exactly the type we need, not something that
|
|
// might had been created for another decl with the same mangled name but
|
|
// different type.
|
|
llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
|
|
GetAddrOfGlobal(D, /*IsForDefinition=*/true));
|
|
|
|
// In case of different address spaces, we may still get a cast, even with
|
|
// IsForDefinition equal to true. Query mangled names table to get
|
|
// GlobalValue.
|
|
if (!GV)
|
|
GV = GetGlobalValue(getMangledName(D));
|
|
|
|
// Make sure GetGlobalValue returned non-null.
|
|
assert(GV);
|
|
|
|
// Check to see if we've already emitted this. This is necessary
|
|
// for a couple of reasons: first, decls can end up in the
|
|
// deferred-decls queue multiple times, and second, decls can end
|
|
// up with definitions in unusual ways (e.g. by an extern inline
|
|
// function acquiring a strong function redefinition). Just
|
|
// ignore these cases.
|
|
if (!GV->isDeclaration())
|
|
continue;
|
|
|
|
// Otherwise, emit the definition and move on to the next one.
|
|
EmitGlobalDefinition(D, GV);
|
|
|
|
// If we found out that we need to emit more decls, do that recursively.
|
|
// This has the advantage that the decls are emitted in a DFS and related
|
|
// ones are close together, which is convenient for testing.
|
|
if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
|
|
EmitDeferred();
|
|
assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalAnnotations() {
|
|
if (Annotations.empty())
|
|
return;
|
|
|
|
// Create a new global variable for the ConstantStruct in the Module.
|
|
llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
|
|
Annotations[0]->getType(), Annotations.size()), Annotations);
|
|
auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
Array, "llvm.global.annotations");
|
|
gv->setSection(AnnotationSection);
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
|
|
llvm::Constant *&AStr = AnnotationStrings[Str];
|
|
if (AStr)
|
|
return AStr;
|
|
|
|
// Not found yet, create a new global.
|
|
llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
|
|
auto *gv =
|
|
new llvm::GlobalVariable(getModule(), s->getType(), true,
|
|
llvm::GlobalValue::PrivateLinkage, s, ".str");
|
|
gv->setSection(AnnotationSection);
|
|
gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
AStr = gv;
|
|
return gv;
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
|
|
SourceManager &SM = getContext().getSourceManager();
|
|
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
|
|
if (PLoc.isValid())
|
|
return EmitAnnotationString(PLoc.getFilename());
|
|
return EmitAnnotationString(SM.getBufferName(Loc));
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
|
|
SourceManager &SM = getContext().getSourceManager();
|
|
PresumedLoc PLoc = SM.getPresumedLoc(L);
|
|
unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
|
|
SM.getExpansionLineNumber(L);
|
|
return llvm::ConstantInt::get(Int32Ty, LineNo);
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
|
|
const AnnotateAttr *AA,
|
|
SourceLocation L) {
|
|
// Get the globals for file name, annotation, and the line number.
|
|
llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
|
|
*UnitGV = EmitAnnotationUnit(L),
|
|
*LineNoCst = EmitAnnotationLineNo(L);
|
|
|
|
// Create the ConstantStruct for the global annotation.
|
|
llvm::Constant *Fields[4] = {
|
|
llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
|
|
llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
|
|
llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
|
|
LineNoCst
|
|
};
|
|
return llvm::ConstantStruct::getAnon(Fields);
|
|
}
|
|
|
|
void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
|
|
llvm::GlobalValue *GV) {
|
|
assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
|
|
// Get the struct elements for these annotations.
|
|
for (const auto *I : D->specific_attrs<AnnotateAttr>())
|
|
Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
|
|
}
|
|
|
|
bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
|
|
SourceLocation Loc) const {
|
|
const auto &SanitizerBL = getContext().getSanitizerBlacklist();
|
|
// Blacklist by function name.
|
|
if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
|
|
return true;
|
|
// Blacklist by location.
|
|
if (Loc.isValid())
|
|
return SanitizerBL.isBlacklistedLocation(Loc);
|
|
// If location is unknown, this may be a compiler-generated function. Assume
|
|
// it's located in the main file.
|
|
auto &SM = Context.getSourceManager();
|
|
if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
|
|
return SanitizerBL.isBlacklistedFile(MainFile->getName());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
|
|
SourceLocation Loc, QualType Ty,
|
|
StringRef Category) const {
|
|
// For now globals can be blacklisted only in ASan and KASan.
|
|
if (!LangOpts.Sanitize.hasOneOf(
|
|
SanitizerKind::Address | SanitizerKind::KernelAddress))
|
|
return false;
|
|
const auto &SanitizerBL = getContext().getSanitizerBlacklist();
|
|
if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
|
|
return true;
|
|
if (SanitizerBL.isBlacklistedLocation(Loc, Category))
|
|
return true;
|
|
// Check global type.
|
|
if (!Ty.isNull()) {
|
|
// Drill down the array types: if global variable of a fixed type is
|
|
// blacklisted, we also don't instrument arrays of them.
|
|
while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
|
|
Ty = AT->getElementType();
|
|
Ty = Ty.getCanonicalType().getUnqualifiedType();
|
|
// We allow to blacklist only record types (classes, structs etc.)
|
|
if (Ty->isRecordType()) {
|
|
std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
|
|
if (SanitizerBL.isBlacklistedType(TypeStr, Category))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
|
|
// Never defer when EmitAllDecls is specified.
|
|
if (LangOpts.EmitAllDecls)
|
|
return true;
|
|
|
|
return getContext().DeclMustBeEmitted(Global);
|
|
}
|
|
|
|
bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(Global))
|
|
if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
|
|
// Implicit template instantiations may change linkage if they are later
|
|
// explicitly instantiated, so they should not be emitted eagerly.
|
|
return false;
|
|
if (const auto *VD = dyn_cast<VarDecl>(Global))
|
|
if (Context.getInlineVariableDefinitionKind(VD) ==
|
|
ASTContext::InlineVariableDefinitionKind::WeakUnknown)
|
|
// A definition of an inline constexpr static data member may change
|
|
// linkage later if it's redeclared outside the class.
|
|
return false;
|
|
// If OpenMP is enabled and threadprivates must be generated like TLS, delay
|
|
// codegen for global variables, because they may be marked as threadprivate.
|
|
if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
|
|
getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
|
|
const CXXUuidofExpr* E) {
|
|
// Sema has verified that IIDSource has a __declspec(uuid()), and that its
|
|
// well-formed.
|
|
StringRef Uuid = E->getUuidStr();
|
|
std::string Name = "_GUID_" + Uuid.lower();
|
|
std::replace(Name.begin(), Name.end(), '-', '_');
|
|
|
|
// The UUID descriptor should be pointer aligned.
|
|
CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
|
|
|
|
// Look for an existing global.
|
|
if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
|
|
return ConstantAddress(GV, Alignment);
|
|
|
|
llvm::Constant *Init = EmitUuidofInitializer(Uuid);
|
|
assert(Init && "failed to initialize as constant");
|
|
|
|
auto *GV = new llvm::GlobalVariable(
|
|
getModule(), Init->getType(),
|
|
/*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
|
|
if (supportsCOMDAT())
|
|
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
|
|
return ConstantAddress(GV, Alignment);
|
|
}
|
|
|
|
ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
|
|
const AliasAttr *AA = VD->getAttr<AliasAttr>();
|
|
assert(AA && "No alias?");
|
|
|
|
CharUnits Alignment = getContext().getDeclAlign(VD);
|
|
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
|
|
|
|
// See if there is already something with the target's name in the module.
|
|
llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
|
|
if (Entry) {
|
|
unsigned AS = getContext().getTargetAddressSpace(VD->getType());
|
|
auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
|
|
return ConstantAddress(Ptr, Alignment);
|
|
}
|
|
|
|
llvm::Constant *Aliasee;
|
|
if (isa<llvm::FunctionType>(DeclTy))
|
|
Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
|
|
GlobalDecl(cast<FunctionDecl>(VD)),
|
|
/*ForVTable=*/false);
|
|
else
|
|
Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
|
|
llvm::PointerType::getUnqual(DeclTy),
|
|
nullptr);
|
|
|
|
auto *F = cast<llvm::GlobalValue>(Aliasee);
|
|
F->setLinkage(llvm::Function::ExternalWeakLinkage);
|
|
WeakRefReferences.insert(F);
|
|
|
|
return ConstantAddress(Aliasee, Alignment);
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobal(GlobalDecl GD) {
|
|
const auto *Global = cast<ValueDecl>(GD.getDecl());
|
|
|
|
// Weak references don't produce any output by themselves.
|
|
if (Global->hasAttr<WeakRefAttr>())
|
|
return;
|
|
|
|
// If this is an alias definition (which otherwise looks like a declaration)
|
|
// emit it now.
|
|
if (Global->hasAttr<AliasAttr>())
|
|
return EmitAliasDefinition(GD);
|
|
|
|
// IFunc like an alias whose value is resolved at runtime by calling resolver.
|
|
if (Global->hasAttr<IFuncAttr>())
|
|
return emitIFuncDefinition(GD);
|
|
|
|
// If this is CUDA, be selective about which declarations we emit.
|
|
if (LangOpts.CUDA) {
|
|
if (LangOpts.CUDAIsDevice) {
|
|
if (!Global->hasAttr<CUDADeviceAttr>() &&
|
|
!Global->hasAttr<CUDAGlobalAttr>() &&
|
|
!Global->hasAttr<CUDAConstantAttr>() &&
|
|
!Global->hasAttr<CUDASharedAttr>())
|
|
return;
|
|
} else {
|
|
// We need to emit host-side 'shadows' for all global
|
|
// device-side variables because the CUDA runtime needs their
|
|
// size and host-side address in order to provide access to
|
|
// their device-side incarnations.
|
|
|
|
// So device-only functions are the only things we skip.
|
|
if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
|
|
Global->hasAttr<CUDADeviceAttr>())
|
|
return;
|
|
|
|
assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
|
|
"Expected Variable or Function");
|
|
}
|
|
}
|
|
|
|
if (LangOpts.OpenMP) {
|
|
// If this is OpenMP device, check if it is legal to emit this global
|
|
// normally.
|
|
if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
|
|
return;
|
|
if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
|
|
if (MustBeEmitted(Global))
|
|
EmitOMPDeclareReduction(DRD);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Ignore declarations, they will be emitted on their first use.
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
|
|
// Forward declarations are emitted lazily on first use.
|
|
if (!FD->doesThisDeclarationHaveABody()) {
|
|
if (!FD->doesDeclarationForceExternallyVisibleDefinition())
|
|
return;
|
|
|
|
StringRef MangledName = getMangledName(GD);
|
|
|
|
// Compute the function info and LLVM type.
|
|
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
|
|
llvm::Type *Ty = getTypes().GetFunctionType(FI);
|
|
|
|
GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
|
|
/*DontDefer=*/false);
|
|
return;
|
|
}
|
|
} else {
|
|
const auto *VD = cast<VarDecl>(Global);
|
|
assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
|
|
// We need to emit device-side global CUDA variables even if a
|
|
// variable does not have a definition -- we still need to define
|
|
// host-side shadow for it.
|
|
bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
|
|
!VD->hasDefinition() &&
|
|
(VD->hasAttr<CUDAConstantAttr>() ||
|
|
VD->hasAttr<CUDADeviceAttr>());
|
|
if (!MustEmitForCuda &&
|
|
VD->isThisDeclarationADefinition() != VarDecl::Definition &&
|
|
!Context.isMSStaticDataMemberInlineDefinition(VD)) {
|
|
// If this declaration may have caused an inline variable definition to
|
|
// change linkage, make sure that it's emitted.
|
|
if (Context.getInlineVariableDefinitionKind(VD) ==
|
|
ASTContext::InlineVariableDefinitionKind::Strong)
|
|
GetAddrOfGlobalVar(VD);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Defer code generation to first use when possible, e.g. if this is an inline
|
|
// function. If the global must always be emitted, do it eagerly if possible
|
|
// to benefit from cache locality.
|
|
if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
|
|
// Emit the definition if it can't be deferred.
|
|
EmitGlobalDefinition(GD);
|
|
return;
|
|
}
|
|
|
|
// If we're deferring emission of a C++ variable with an
|
|
// initializer, remember the order in which it appeared in the file.
|
|
if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
|
|
cast<VarDecl>(Global)->hasInit()) {
|
|
DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
|
|
CXXGlobalInits.push_back(nullptr);
|
|
}
|
|
|
|
StringRef MangledName = getMangledName(GD);
|
|
if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
|
|
// The value has already been used and should therefore be emitted.
|
|
addDeferredDeclToEmit(GV, GD);
|
|
} else if (MustBeEmitted(Global)) {
|
|
// The value must be emitted, but cannot be emitted eagerly.
|
|
assert(!MayBeEmittedEagerly(Global));
|
|
addDeferredDeclToEmit(/*GV=*/nullptr, GD);
|
|
} else {
|
|
// Otherwise, remember that we saw a deferred decl with this name. The
|
|
// first use of the mangled name will cause it to move into
|
|
// DeferredDeclsToEmit.
|
|
DeferredDecls[MangledName] = GD;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct FunctionIsDirectlyRecursive :
|
|
public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
|
|
const StringRef Name;
|
|
const Builtin::Context &BI;
|
|
bool Result;
|
|
FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
|
|
Name(N), BI(C), Result(false) {
|
|
}
|
|
typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
|
|
|
|
bool TraverseCallExpr(CallExpr *E) {
|
|
const FunctionDecl *FD = E->getDirectCallee();
|
|
if (!FD)
|
|
return true;
|
|
AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
|
|
if (Attr && Name == Attr->getLabel()) {
|
|
Result = true;
|
|
return false;
|
|
}
|
|
unsigned BuiltinID = FD->getBuiltinID();
|
|
if (!BuiltinID || !BI.isLibFunction(BuiltinID))
|
|
return true;
|
|
StringRef BuiltinName = BI.getName(BuiltinID);
|
|
if (BuiltinName.startswith("__builtin_") &&
|
|
Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
|
|
Result = true;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
struct DLLImportFunctionVisitor
|
|
: public RecursiveASTVisitor<DLLImportFunctionVisitor> {
|
|
bool SafeToInline = true;
|
|
|
|
bool VisitVarDecl(VarDecl *VD) {
|
|
// A thread-local variable cannot be imported.
|
|
SafeToInline = !VD->getTLSKind();
|
|
return SafeToInline;
|
|
}
|
|
|
|
// Make sure we're not referencing non-imported vars or functions.
|
|
bool VisitDeclRefExpr(DeclRefExpr *E) {
|
|
ValueDecl *VD = E->getDecl();
|
|
if (isa<FunctionDecl>(VD))
|
|
SafeToInline = VD->hasAttr<DLLImportAttr>();
|
|
else if (VarDecl *V = dyn_cast<VarDecl>(VD))
|
|
SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
|
|
return SafeToInline;
|
|
}
|
|
bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
|
|
SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
|
|
return SafeToInline;
|
|
}
|
|
bool VisitCXXNewExpr(CXXNewExpr *E) {
|
|
SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
|
|
return SafeToInline;
|
|
}
|
|
};
|
|
}
|
|
|
|
// isTriviallyRecursive - Check if this function calls another
|
|
// decl that, because of the asm attribute or the other decl being a builtin,
|
|
// ends up pointing to itself.
|
|
bool
|
|
CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
|
|
StringRef Name;
|
|
if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
|
|
// asm labels are a special kind of mangling we have to support.
|
|
AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
|
|
if (!Attr)
|
|
return false;
|
|
Name = Attr->getLabel();
|
|
} else {
|
|
Name = FD->getName();
|
|
}
|
|
|
|
FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
|
|
Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
|
|
return Walker.Result;
|
|
}
|
|
|
|
bool
|
|
CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
|
|
if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
|
|
return true;
|
|
const auto *F = cast<FunctionDecl>(GD.getDecl());
|
|
if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
|
|
return false;
|
|
|
|
if (F->hasAttr<DLLImportAttr>()) {
|
|
// Check whether it would be safe to inline this dllimport function.
|
|
DLLImportFunctionVisitor Visitor;
|
|
Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
|
|
if (!Visitor.SafeToInline)
|
|
return false;
|
|
}
|
|
|
|
// PR9614. Avoid cases where the source code is lying to us. An available
|
|
// externally function should have an equivalent function somewhere else,
|
|
// but a function that calls itself is clearly not equivalent to the real
|
|
// implementation.
|
|
// This happens in glibc's btowc and in some configure checks.
|
|
return !isTriviallyRecursive(F);
|
|
}
|
|
|
|
/// If the type for the method's class was generated by
|
|
/// CGDebugInfo::createContextChain(), the cache contains only a
|
|
/// limited DIType without any declarations. Since EmitFunctionStart()
|
|
/// needs to find the canonical declaration for each method, we need
|
|
/// to construct the complete type prior to emitting the method.
|
|
void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
|
|
if (!D->isInstance())
|
|
return;
|
|
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
|
|
const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
|
|
DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
|
|
const auto *D = cast<ValueDecl>(GD.getDecl());
|
|
|
|
PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
|
|
Context.getSourceManager(),
|
|
"Generating code for declaration");
|
|
|
|
if (isa<FunctionDecl>(D)) {
|
|
// At -O0, don't generate IR for functions with available_externally
|
|
// linkage.
|
|
if (!shouldEmitFunction(GD))
|
|
return;
|
|
|
|
if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
CompleteDIClassType(Method);
|
|
// Make sure to emit the definition(s) before we emit the thunks.
|
|
// This is necessary for the generation of certain thunks.
|
|
if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
|
|
ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
|
|
else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
|
|
ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
|
|
else
|
|
EmitGlobalFunctionDefinition(GD, GV);
|
|
|
|
if (Method->isVirtual())
|
|
getVTables().EmitThunks(GD);
|
|
|
|
return;
|
|
}
|
|
|
|
return EmitGlobalFunctionDefinition(GD, GV);
|
|
}
|
|
|
|
if (const auto *VD = dyn_cast<VarDecl>(D))
|
|
return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
|
|
|
|
llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
|
|
}
|
|
|
|
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
|
|
llvm::Function *NewFn);
|
|
|
|
/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
|
|
/// module, create and return an llvm Function with the specified type. If there
|
|
/// is something in the module with the specified name, return it potentially
|
|
/// bitcasted to the right type.
|
|
///
|
|
/// If D is non-null, it specifies a decl that correspond to this. This is used
|
|
/// to set the attributes on the function when it is first created.
|
|
llvm::Constant *
|
|
CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
|
|
llvm::Type *Ty,
|
|
GlobalDecl GD, bool ForVTable,
|
|
bool DontDefer, bool IsThunk,
|
|
llvm::AttributeSet ExtraAttrs,
|
|
bool IsForDefinition) {
|
|
const Decl *D = GD.getDecl();
|
|
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
|
|
if (Entry) {
|
|
if (WeakRefReferences.erase(Entry)) {
|
|
const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
|
|
if (FD && !FD->hasAttr<WeakAttr>())
|
|
Entry->setLinkage(llvm::Function::ExternalLinkage);
|
|
}
|
|
|
|
// Handle dropped DLL attributes.
|
|
if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
|
|
Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
|
|
|
|
// If there are two attempts to define the same mangled name, issue an
|
|
// error.
|
|
if (IsForDefinition && !Entry->isDeclaration()) {
|
|
GlobalDecl OtherGD;
|
|
// Check that GD is not yet in DiagnosedConflictingDefinitions is required
|
|
// to make sure that we issue an error only once.
|
|
if (lookupRepresentativeDecl(MangledName, OtherGD) &&
|
|
(GD.getCanonicalDecl().getDecl() !=
|
|
OtherGD.getCanonicalDecl().getDecl()) &&
|
|
DiagnosedConflictingDefinitions.insert(GD).second) {
|
|
getDiags().Report(D->getLocation(),
|
|
diag::err_duplicate_mangled_name);
|
|
getDiags().Report(OtherGD.getDecl()->getLocation(),
|
|
diag::note_previous_definition);
|
|
}
|
|
}
|
|
|
|
if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
|
|
(Entry->getType()->getElementType() == Ty)) {
|
|
return Entry;
|
|
}
|
|
|
|
// Make sure the result is of the correct type.
|
|
// (If function is requested for a definition, we always need to create a new
|
|
// function, not just return a bitcast.)
|
|
if (!IsForDefinition)
|
|
return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
|
|
}
|
|
|
|
// This function doesn't have a complete type (for example, the return
|
|
// type is an incomplete struct). Use a fake type instead, and make
|
|
// sure not to try to set attributes.
|
|
bool IsIncompleteFunction = false;
|
|
|
|
llvm::FunctionType *FTy;
|
|
if (isa<llvm::FunctionType>(Ty)) {
|
|
FTy = cast<llvm::FunctionType>(Ty);
|
|
} else {
|
|
FTy = llvm::FunctionType::get(VoidTy, false);
|
|
IsIncompleteFunction = true;
|
|
}
|
|
|
|
llvm::Function *F =
|
|
llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
|
|
Entry ? StringRef() : MangledName, &getModule());
|
|
|
|
// If we already created a function with the same mangled name (but different
|
|
// type) before, take its name and add it to the list of functions to be
|
|
// replaced with F at the end of CodeGen.
|
|
//
|
|
// This happens if there is a prototype for a function (e.g. "int f()") and
|
|
// then a definition of a different type (e.g. "int f(int x)").
|
|
if (Entry) {
|
|
F->takeName(Entry);
|
|
|
|
// This might be an implementation of a function without a prototype, in
|
|
// which case, try to do special replacement of calls which match the new
|
|
// prototype. The really key thing here is that we also potentially drop
|
|
// arguments from the call site so as to make a direct call, which makes the
|
|
// inliner happier and suppresses a number of optimizer warnings (!) about
|
|
// dropping arguments.
|
|
if (!Entry->use_empty()) {
|
|
ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
|
|
Entry->removeDeadConstantUsers();
|
|
}
|
|
|
|
llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
|
|
F, Entry->getType()->getElementType()->getPointerTo());
|
|
addGlobalValReplacement(Entry, BC);
|
|
}
|
|
|
|
assert(F->getName() == MangledName && "name was uniqued!");
|
|
if (D)
|
|
SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
|
|
if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
|
|
llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
|
|
F->addAttributes(llvm::AttributeSet::FunctionIndex,
|
|
llvm::AttributeSet::get(VMContext,
|
|
llvm::AttributeSet::FunctionIndex,
|
|
B));
|
|
}
|
|
|
|
if (!DontDefer) {
|
|
// All MSVC dtors other than the base dtor are linkonce_odr and delegate to
|
|
// each other bottoming out with the base dtor. Therefore we emit non-base
|
|
// dtors on usage, even if there is no dtor definition in the TU.
|
|
if (D && isa<CXXDestructorDecl>(D) &&
|
|
getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
|
|
GD.getDtorType()))
|
|
addDeferredDeclToEmit(F, GD);
|
|
|
|
// This is the first use or definition of a mangled name. If there is a
|
|
// deferred decl with this name, remember that we need to emit it at the end
|
|
// of the file.
|
|
auto DDI = DeferredDecls.find(MangledName);
|
|
if (DDI != DeferredDecls.end()) {
|
|
// Move the potentially referenced deferred decl to the
|
|
// DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
|
|
// don't need it anymore).
|
|
addDeferredDeclToEmit(F, DDI->second);
|
|
DeferredDecls.erase(DDI);
|
|
|
|
// Otherwise, there are cases we have to worry about where we're
|
|
// using a declaration for which we must emit a definition but where
|
|
// we might not find a top-level definition:
|
|
// - member functions defined inline in their classes
|
|
// - friend functions defined inline in some class
|
|
// - special member functions with implicit definitions
|
|
// If we ever change our AST traversal to walk into class methods,
|
|
// this will be unnecessary.
|
|
//
|
|
// We also don't emit a definition for a function if it's going to be an
|
|
// entry in a vtable, unless it's already marked as used.
|
|
} else if (getLangOpts().CPlusPlus && D) {
|
|
// Look for a declaration that's lexically in a record.
|
|
for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
|
|
FD = FD->getPreviousDecl()) {
|
|
if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
|
|
if (FD->doesThisDeclarationHaveABody()) {
|
|
addDeferredDeclToEmit(F, GD.getWithDecl(FD));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure the result is of the requested type.
|
|
if (!IsIncompleteFunction) {
|
|
assert(F->getType()->getElementType() == Ty);
|
|
return F;
|
|
}
|
|
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
|
|
return llvm::ConstantExpr::getBitCast(F, PTy);
|
|
}
|
|
|
|
/// GetAddrOfFunction - Return the address of the given function. If Ty is
|
|
/// non-null, then this function will use the specified type if it has to
|
|
/// create it (this occurs when we see a definition of the function).
|
|
llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
|
|
llvm::Type *Ty,
|
|
bool ForVTable,
|
|
bool DontDefer,
|
|
bool IsForDefinition) {
|
|
// If there was no specific requested type, just convert it now.
|
|
if (!Ty) {
|
|
const auto *FD = cast<FunctionDecl>(GD.getDecl());
|
|
auto CanonTy = Context.getCanonicalType(FD->getType());
|
|
Ty = getTypes().ConvertFunctionType(CanonTy, FD);
|
|
}
|
|
|
|
StringRef MangledName = getMangledName(GD);
|
|
return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
|
|
/*IsThunk=*/false, llvm::AttributeSet(),
|
|
IsForDefinition);
|
|
}
|
|
|
|
/// CreateRuntimeFunction - Create a new runtime function with the specified
|
|
/// type and name.
|
|
llvm::Constant *
|
|
CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
|
|
StringRef Name,
|
|
llvm::AttributeSet ExtraAttrs) {
|
|
llvm::Constant *C =
|
|
GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
|
|
/*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
|
|
if (auto *F = dyn_cast<llvm::Function>(C))
|
|
if (F->empty())
|
|
F->setCallingConv(getRuntimeCC());
|
|
return C;
|
|
}
|
|
|
|
/// CreateBuiltinFunction - Create a new builtin function with the specified
|
|
/// type and name.
|
|
llvm::Constant *
|
|
CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
|
|
StringRef Name,
|
|
llvm::AttributeSet ExtraAttrs) {
|
|
llvm::Constant *C =
|
|
GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
|
|
/*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
|
|
if (auto *F = dyn_cast<llvm::Function>(C))
|
|
if (F->empty())
|
|
F->setCallingConv(getBuiltinCC());
|
|
return C;
|
|
}
|
|
|
|
/// isTypeConstant - Determine whether an object of this type can be emitted
|
|
/// as a constant.
|
|
///
|
|
/// If ExcludeCtor is true, the duration when the object's constructor runs
|
|
/// will not be considered. The caller will need to verify that the object is
|
|
/// not written to during its construction.
|
|
bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
|
|
if (!Ty.isConstant(Context) && !Ty->isReferenceType())
|
|
return false;
|
|
|
|
if (Context.getLangOpts().CPlusPlus) {
|
|
if (const CXXRecordDecl *Record
|
|
= Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
|
|
return ExcludeCtor && !Record->hasMutableFields() &&
|
|
Record->hasTrivialDestructor();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
|
|
/// create and return an llvm GlobalVariable with the specified type. If there
|
|
/// is something in the module with the specified name, return it potentially
|
|
/// bitcasted to the right type.
|
|
///
|
|
/// If D is non-null, it specifies a decl that correspond to this. This is used
|
|
/// to set the attributes on the global when it is first created.
|
|
///
|
|
/// If IsForDefinition is true, it is guranteed that an actual global with
|
|
/// type Ty will be returned, not conversion of a variable with the same
|
|
/// mangled name but some other type.
|
|
llvm::Constant *
|
|
CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
|
|
llvm::PointerType *Ty,
|
|
const VarDecl *D,
|
|
bool IsForDefinition) {
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
|
|
if (Entry) {
|
|
if (WeakRefReferences.erase(Entry)) {
|
|
if (D && !D->hasAttr<WeakAttr>())
|
|
Entry->setLinkage(llvm::Function::ExternalLinkage);
|
|
}
|
|
|
|
// Handle dropped DLL attributes.
|
|
if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
|
|
Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
|
|
|
|
if (Entry->getType() == Ty)
|
|
return Entry;
|
|
|
|
// If there are two attempts to define the same mangled name, issue an
|
|
// error.
|
|
if (IsForDefinition && !Entry->isDeclaration()) {
|
|
GlobalDecl OtherGD;
|
|
const VarDecl *OtherD;
|
|
|
|
// Check that D is not yet in DiagnosedConflictingDefinitions is required
|
|
// to make sure that we issue an error only once.
|
|
if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
|
|
(D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
|
|
(OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
|
|
OtherD->hasInit() &&
|
|
DiagnosedConflictingDefinitions.insert(D).second) {
|
|
getDiags().Report(D->getLocation(),
|
|
diag::err_duplicate_mangled_name);
|
|
getDiags().Report(OtherGD.getDecl()->getLocation(),
|
|
diag::note_previous_definition);
|
|
}
|
|
}
|
|
|
|
// Make sure the result is of the correct type.
|
|
if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
|
|
return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
|
|
|
|
// (If global is requested for a definition, we always need to create a new
|
|
// global, not just return a bitcast.)
|
|
if (!IsForDefinition)
|
|
return llvm::ConstantExpr::getBitCast(Entry, Ty);
|
|
}
|
|
|
|
unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
|
|
auto *GV = new llvm::GlobalVariable(
|
|
getModule(), Ty->getElementType(), false,
|
|
llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
|
|
llvm::GlobalVariable::NotThreadLocal, AddrSpace);
|
|
|
|
// If we already created a global with the same mangled name (but different
|
|
// type) before, take its name and remove it from its parent.
|
|
if (Entry) {
|
|
GV->takeName(Entry);
|
|
|
|
if (!Entry->use_empty()) {
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(GV, Entry->getType());
|
|
Entry->replaceAllUsesWith(NewPtrForOldDecl);
|
|
}
|
|
|
|
Entry->eraseFromParent();
|
|
}
|
|
|
|
// This is the first use or definition of a mangled name. If there is a
|
|
// deferred decl with this name, remember that we need to emit it at the end
|
|
// of the file.
|
|
auto DDI = DeferredDecls.find(MangledName);
|
|
if (DDI != DeferredDecls.end()) {
|
|
// Move the potentially referenced deferred decl to the DeferredDeclsToEmit
|
|
// list, and remove it from DeferredDecls (since we don't need it anymore).
|
|
addDeferredDeclToEmit(GV, DDI->second);
|
|
DeferredDecls.erase(DDI);
|
|
}
|
|
|
|
// Handle things which are present even on external declarations.
|
|
if (D) {
|
|
// FIXME: This code is overly simple and should be merged with other global
|
|
// handling.
|
|
GV->setConstant(isTypeConstant(D->getType(), false));
|
|
|
|
GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
|
|
|
|
setLinkageAndVisibilityForGV(GV, D);
|
|
|
|
if (D->getTLSKind()) {
|
|
if (D->getTLSKind() == VarDecl::TLS_Dynamic)
|
|
CXXThreadLocals.push_back(D);
|
|
setTLSMode(GV, *D);
|
|
}
|
|
|
|
// If required by the ABI, treat declarations of static data members with
|
|
// inline initializers as definitions.
|
|
if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
|
|
EmitGlobalVarDefinition(D);
|
|
}
|
|
|
|
// Handle XCore specific ABI requirements.
|
|
if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
|
|
D->getLanguageLinkage() == CLanguageLinkage &&
|
|
D->getType().isConstant(Context) &&
|
|
isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
|
|
GV->setSection(".cp.rodata");
|
|
}
|
|
|
|
if (AddrSpace != Ty->getAddressSpace())
|
|
return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
|
|
|
|
return GV;
|
|
}
|
|
|
|
llvm::Constant *
|
|
CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
|
|
bool IsForDefinition) {
|
|
if (isa<CXXConstructorDecl>(GD.getDecl()))
|
|
return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
|
|
getFromCtorType(GD.getCtorType()),
|
|
/*FnInfo=*/nullptr, /*FnType=*/nullptr,
|
|
/*DontDefer=*/false, IsForDefinition);
|
|
else if (isa<CXXDestructorDecl>(GD.getDecl()))
|
|
return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
|
|
getFromDtorType(GD.getDtorType()),
|
|
/*FnInfo=*/nullptr, /*FnType=*/nullptr,
|
|
/*DontDefer=*/false, IsForDefinition);
|
|
else if (isa<CXXMethodDecl>(GD.getDecl())) {
|
|
auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
|
|
cast<CXXMethodDecl>(GD.getDecl()));
|
|
auto Ty = getTypes().GetFunctionType(*FInfo);
|
|
return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
|
|
IsForDefinition);
|
|
} else if (isa<FunctionDecl>(GD.getDecl())) {
|
|
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
|
|
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
|
|
return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
|
|
IsForDefinition);
|
|
} else
|
|
return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
|
|
IsForDefinition);
|
|
}
|
|
|
|
llvm::GlobalVariable *
|
|
CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
|
|
llvm::Type *Ty,
|
|
llvm::GlobalValue::LinkageTypes Linkage) {
|
|
llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
|
|
llvm::GlobalVariable *OldGV = nullptr;
|
|
|
|
if (GV) {
|
|
// Check if the variable has the right type.
|
|
if (GV->getType()->getElementType() == Ty)
|
|
return GV;
|
|
|
|
// Because C++ name mangling, the only way we can end up with an already
|
|
// existing global with the same name is if it has been declared extern "C".
|
|
assert(GV->isDeclaration() && "Declaration has wrong type!");
|
|
OldGV = GV;
|
|
}
|
|
|
|
// Create a new variable.
|
|
GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
|
|
Linkage, nullptr, Name);
|
|
|
|
if (OldGV) {
|
|
// Replace occurrences of the old variable if needed.
|
|
GV->takeName(OldGV);
|
|
|
|
if (!OldGV->use_empty()) {
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
|
|
OldGV->replaceAllUsesWith(NewPtrForOldDecl);
|
|
}
|
|
|
|
OldGV->eraseFromParent();
|
|
}
|
|
|
|
if (supportsCOMDAT() && GV->isWeakForLinker() &&
|
|
!GV->hasAvailableExternallyLinkage())
|
|
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
|
|
|
|
return GV;
|
|
}
|
|
|
|
/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
|
|
/// given global variable. If Ty is non-null and if the global doesn't exist,
|
|
/// then it will be created with the specified type instead of whatever the
|
|
/// normal requested type would be. If IsForDefinition is true, it is guranteed
|
|
/// that an actual global with type Ty will be returned, not conversion of a
|
|
/// variable with the same mangled name but some other type.
|
|
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
|
|
llvm::Type *Ty,
|
|
bool IsForDefinition) {
|
|
assert(D->hasGlobalStorage() && "Not a global variable");
|
|
QualType ASTTy = D->getType();
|
|
if (!Ty)
|
|
Ty = getTypes().ConvertTypeForMem(ASTTy);
|
|
|
|
llvm::PointerType *PTy =
|
|
llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
|
|
|
|
StringRef MangledName = getMangledName(D);
|
|
return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
|
|
}
|
|
|
|
/// CreateRuntimeVariable - Create a new runtime global variable with the
|
|
/// specified type and name.
|
|
llvm::Constant *
|
|
CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
|
|
StringRef Name) {
|
|
return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
|
|
}
|
|
|
|
void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
|
|
assert(!D->getInit() && "Cannot emit definite definitions here!");
|
|
|
|
StringRef MangledName = getMangledName(D);
|
|
llvm::GlobalValue *GV = GetGlobalValue(MangledName);
|
|
|
|
// We already have a definition, not declaration, with the same mangled name.
|
|
// Emitting of declaration is not required (and actually overwrites emitted
|
|
// definition).
|
|
if (GV && !GV->isDeclaration())
|
|
return;
|
|
|
|
// If we have not seen a reference to this variable yet, place it into the
|
|
// deferred declarations table to be emitted if needed later.
|
|
if (!MustBeEmitted(D) && !GV) {
|
|
DeferredDecls[MangledName] = D;
|
|
return;
|
|
}
|
|
|
|
// The tentative definition is the only definition.
|
|
EmitGlobalVarDefinition(D);
|
|
}
|
|
|
|
CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
|
|
return Context.toCharUnitsFromBits(
|
|
getDataLayout().getTypeStoreSizeInBits(Ty));
|
|
}
|
|
|
|
unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
|
|
unsigned AddrSpace) {
|
|
if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
|
|
if (D->hasAttr<CUDAConstantAttr>())
|
|
AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
|
|
else if (D->hasAttr<CUDASharedAttr>())
|
|
AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
|
|
else
|
|
AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
|
|
}
|
|
|
|
return AddrSpace;
|
|
}
|
|
|
|
template<typename SomeDecl>
|
|
void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
|
|
llvm::GlobalValue *GV) {
|
|
if (!getLangOpts().CPlusPlus)
|
|
return;
|
|
|
|
// Must have 'used' attribute, or else inline assembly can't rely on
|
|
// the name existing.
|
|
if (!D->template hasAttr<UsedAttr>())
|
|
return;
|
|
|
|
// Must have internal linkage and an ordinary name.
|
|
if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
|
|
return;
|
|
|
|
// Must be in an extern "C" context. Entities declared directly within
|
|
// a record are not extern "C" even if the record is in such a context.
|
|
const SomeDecl *First = D->getFirstDecl();
|
|
if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
|
|
return;
|
|
|
|
// OK, this is an internal linkage entity inside an extern "C" linkage
|
|
// specification. Make a note of that so we can give it the "expected"
|
|
// mangled name if nothing else is using that name.
|
|
std::pair<StaticExternCMap::iterator, bool> R =
|
|
StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
|
|
|
|
// If we have multiple internal linkage entities with the same name
|
|
// in extern "C" regions, none of them gets that name.
|
|
if (!R.second)
|
|
R.first->second = nullptr;
|
|
}
|
|
|
|
static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
|
|
if (!CGM.supportsCOMDAT())
|
|
return false;
|
|
|
|
if (D.hasAttr<SelectAnyAttr>())
|
|
return true;
|
|
|
|
GVALinkage Linkage;
|
|
if (auto *VD = dyn_cast<VarDecl>(&D))
|
|
Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
|
|
else
|
|
Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
|
|
|
|
switch (Linkage) {
|
|
case GVA_Internal:
|
|
case GVA_AvailableExternally:
|
|
case GVA_StrongExternal:
|
|
return false;
|
|
case GVA_DiscardableODR:
|
|
case GVA_StrongODR:
|
|
return true;
|
|
}
|
|
llvm_unreachable("No such linkage");
|
|
}
|
|
|
|
void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
|
|
llvm::GlobalObject &GO) {
|
|
if (!shouldBeInCOMDAT(*this, D))
|
|
return;
|
|
GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
|
|
}
|
|
|
|
/// Pass IsTentative as true if you want to create a tentative definition.
|
|
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
|
|
bool IsTentative) {
|
|
// OpenCL global variables of sampler type are translated to function calls,
|
|
// therefore no need to be translated.
|
|
QualType ASTTy = D->getType();
|
|
if (getLangOpts().OpenCL && ASTTy->isSamplerT())
|
|
return;
|
|
|
|
llvm::Constant *Init = nullptr;
|
|
CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
|
|
bool NeedsGlobalCtor = false;
|
|
bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
|
|
|
|
const VarDecl *InitDecl;
|
|
const Expr *InitExpr = D->getAnyInitializer(InitDecl);
|
|
|
|
// CUDA E.2.4.1 "__shared__ variables cannot have an initialization
|
|
// as part of their declaration." Sema has already checked for
|
|
// error cases, so we just need to set Init to UndefValue.
|
|
if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
|
|
D->hasAttr<CUDASharedAttr>())
|
|
Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
|
|
else if (!InitExpr) {
|
|
// This is a tentative definition; tentative definitions are
|
|
// implicitly initialized with { 0 }.
|
|
//
|
|
// Note that tentative definitions are only emitted at the end of
|
|
// a translation unit, so they should never have incomplete
|
|
// type. In addition, EmitTentativeDefinition makes sure that we
|
|
// never attempt to emit a tentative definition if a real one
|
|
// exists. A use may still exists, however, so we still may need
|
|
// to do a RAUW.
|
|
assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
|
|
Init = EmitNullConstant(D->getType());
|
|
} else {
|
|
initializedGlobalDecl = GlobalDecl(D);
|
|
Init = EmitConstantInit(*InitDecl);
|
|
|
|
if (!Init) {
|
|
QualType T = InitExpr->getType();
|
|
if (D->getType()->isReferenceType())
|
|
T = D->getType();
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
Init = EmitNullConstant(T);
|
|
NeedsGlobalCtor = true;
|
|
} else {
|
|
ErrorUnsupported(D, "static initializer");
|
|
Init = llvm::UndefValue::get(getTypes().ConvertType(T));
|
|
}
|
|
} else {
|
|
// We don't need an initializer, so remove the entry for the delayed
|
|
// initializer position (just in case this entry was delayed) if we
|
|
// also don't need to register a destructor.
|
|
if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
|
|
DelayedCXXInitPosition.erase(D);
|
|
}
|
|
}
|
|
|
|
llvm::Type* InitType = Init->getType();
|
|
llvm::Constant *Entry =
|
|
GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
|
|
|
|
// Strip off a bitcast if we got one back.
|
|
if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
|
|
assert(CE->getOpcode() == llvm::Instruction::BitCast ||
|
|
CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
|
|
// All zero index gep.
|
|
CE->getOpcode() == llvm::Instruction::GetElementPtr);
|
|
Entry = CE->getOperand(0);
|
|
}
|
|
|
|
// Entry is now either a Function or GlobalVariable.
|
|
auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
|
|
|
|
// We have a definition after a declaration with the wrong type.
|
|
// We must make a new GlobalVariable* and update everything that used OldGV
|
|
// (a declaration or tentative definition) with the new GlobalVariable*
|
|
// (which will be a definition).
|
|
//
|
|
// This happens if there is a prototype for a global (e.g.
|
|
// "extern int x[];") and then a definition of a different type (e.g.
|
|
// "int x[10];"). This also happens when an initializer has a different type
|
|
// from the type of the global (this happens with unions).
|
|
if (!GV ||
|
|
GV->getType()->getElementType() != InitType ||
|
|
GV->getType()->getAddressSpace() !=
|
|
GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
|
|
|
|
// Move the old entry aside so that we'll create a new one.
|
|
Entry->setName(StringRef());
|
|
|
|
// Make a new global with the correct type, this is now guaranteed to work.
|
|
GV = cast<llvm::GlobalVariable>(
|
|
GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
|
|
|
|
// Replace all uses of the old global with the new global
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(GV, Entry->getType());
|
|
Entry->replaceAllUsesWith(NewPtrForOldDecl);
|
|
|
|
// Erase the old global, since it is no longer used.
|
|
cast<llvm::GlobalValue>(Entry)->eraseFromParent();
|
|
}
|
|
|
|
MaybeHandleStaticInExternC(D, GV);
|
|
|
|
if (D->hasAttr<AnnotateAttr>())
|
|
AddGlobalAnnotations(D, GV);
|
|
|
|
// Set the llvm linkage type as appropriate.
|
|
llvm::GlobalValue::LinkageTypes Linkage =
|
|
getLLVMLinkageVarDefinition(D, GV->isConstant());
|
|
|
|
// CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
|
|
// the device. [...]"
|
|
// CUDA B.2.2 "The __constant__ qualifier, optionally used together with
|
|
// __device__, declares a variable that: [...]
|
|
// Is accessible from all the threads within the grid and from the host
|
|
// through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
|
|
// / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
|
|
if (GV && LangOpts.CUDA) {
|
|
if (LangOpts.CUDAIsDevice) {
|
|
if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
|
|
GV->setExternallyInitialized(true);
|
|
} else {
|
|
// Host-side shadows of external declarations of device-side
|
|
// global variables become internal definitions. These have to
|
|
// be internal in order to prevent name conflicts with global
|
|
// host variables with the same name in a different TUs.
|
|
if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
|
|
Linkage = llvm::GlobalValue::InternalLinkage;
|
|
|
|
// Shadow variables and their properties must be registered
|
|
// with CUDA runtime.
|
|
unsigned Flags = 0;
|
|
if (!D->hasDefinition())
|
|
Flags |= CGCUDARuntime::ExternDeviceVar;
|
|
if (D->hasAttr<CUDAConstantAttr>())
|
|
Flags |= CGCUDARuntime::ConstantDeviceVar;
|
|
getCUDARuntime().registerDeviceVar(*GV, Flags);
|
|
} else if (D->hasAttr<CUDASharedAttr>())
|
|
// __shared__ variables are odd. Shadows do get created, but
|
|
// they are not registered with the CUDA runtime, so they
|
|
// can't really be used to access their device-side
|
|
// counterparts. It's not clear yet whether it's nvcc's bug or
|
|
// a feature, but we've got to do the same for compatibility.
|
|
Linkage = llvm::GlobalValue::InternalLinkage;
|
|
}
|
|
}
|
|
GV->setInitializer(Init);
|
|
|
|
// If it is safe to mark the global 'constant', do so now.
|
|
GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
|
|
isTypeConstant(D->getType(), true));
|
|
|
|
// If it is in a read-only section, mark it 'constant'.
|
|
if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
|
|
const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
|
|
if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
|
|
GV->setConstant(true);
|
|
}
|
|
|
|
GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
|
|
|
|
|
|
// On Darwin, if the normal linkage of a C++ thread_local variable is
|
|
// LinkOnce or Weak, we keep the normal linkage to prevent multiple
|
|
// copies within a linkage unit; otherwise, the backing variable has
|
|
// internal linkage and all accesses should just be calls to the
|
|
// Itanium-specified entry point, which has the normal linkage of the
|
|
// variable. This is to preserve the ability to change the implementation
|
|
// behind the scenes.
|
|
if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
|
|
Context.getTargetInfo().getTriple().isOSDarwin() &&
|
|
!llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
|
|
!llvm::GlobalVariable::isWeakLinkage(Linkage))
|
|
Linkage = llvm::GlobalValue::InternalLinkage;
|
|
|
|
GV->setLinkage(Linkage);
|
|
if (D->hasAttr<DLLImportAttr>())
|
|
GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
|
|
else if (D->hasAttr<DLLExportAttr>())
|
|
GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
|
|
else
|
|
GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
|
|
|
|
if (Linkage == llvm::GlobalVariable::CommonLinkage)
|
|
// common vars aren't constant even if declared const.
|
|
GV->setConstant(false);
|
|
|
|
setNonAliasAttributes(D, GV);
|
|
|
|
if (D->getTLSKind() && !GV->isThreadLocal()) {
|
|
if (D->getTLSKind() == VarDecl::TLS_Dynamic)
|
|
CXXThreadLocals.push_back(D);
|
|
setTLSMode(GV, *D);
|
|
}
|
|
|
|
maybeSetTrivialComdat(*D, *GV);
|
|
|
|
// Emit the initializer function if necessary.
|
|
if (NeedsGlobalCtor || NeedsGlobalDtor)
|
|
EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
|
|
|
|
SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
|
|
|
|
// Emit global variable debug information.
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
|
|
DI->EmitGlobalVariable(GV, D);
|
|
}
|
|
|
|
static bool isVarDeclStrongDefinition(const ASTContext &Context,
|
|
CodeGenModule &CGM, const VarDecl *D,
|
|
bool NoCommon) {
|
|
// Don't give variables common linkage if -fno-common was specified unless it
|
|
// was overridden by a NoCommon attribute.
|
|
if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
|
|
return true;
|
|
|
|
// C11 6.9.2/2:
|
|
// A declaration of an identifier for an object that has file scope without
|
|
// an initializer, and without a storage-class specifier or with the
|
|
// storage-class specifier static, constitutes a tentative definition.
|
|
if (D->getInit() || D->hasExternalStorage())
|
|
return true;
|
|
|
|
// A variable cannot be both common and exist in a section.
|
|
if (D->hasAttr<SectionAttr>())
|
|
return true;
|
|
|
|
// Thread local vars aren't considered common linkage.
|
|
if (D->getTLSKind())
|
|
return true;
|
|
|
|
// Tentative definitions marked with WeakImportAttr are true definitions.
|
|
if (D->hasAttr<WeakImportAttr>())
|
|
return true;
|
|
|
|
// A variable cannot be both common and exist in a comdat.
|
|
if (shouldBeInCOMDAT(CGM, *D))
|
|
return true;
|
|
|
|
// Declarations with a required alignment do not have common linkage in MSVC
|
|
// mode.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
if (D->hasAttr<AlignedAttr>())
|
|
return true;
|
|
QualType VarType = D->getType();
|
|
if (Context.isAlignmentRequired(VarType))
|
|
return true;
|
|
|
|
if (const auto *RT = VarType->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
if (FD->isBitField())
|
|
continue;
|
|
if (FD->hasAttr<AlignedAttr>())
|
|
return true;
|
|
if (Context.isAlignmentRequired(FD->getType()))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
|
|
const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
|
|
if (Linkage == GVA_Internal)
|
|
return llvm::Function::InternalLinkage;
|
|
|
|
if (D->hasAttr<WeakAttr>()) {
|
|
if (IsConstantVariable)
|
|
return llvm::GlobalVariable::WeakODRLinkage;
|
|
else
|
|
return llvm::GlobalVariable::WeakAnyLinkage;
|
|
}
|
|
|
|
// We are guaranteed to have a strong definition somewhere else,
|
|
// so we can use available_externally linkage.
|
|
if (Linkage == GVA_AvailableExternally)
|
|
return llvm::Function::AvailableExternallyLinkage;
|
|
|
|
// Note that Apple's kernel linker doesn't support symbol
|
|
// coalescing, so we need to avoid linkonce and weak linkages there.
|
|
// Normally, this means we just map to internal, but for explicit
|
|
// instantiations we'll map to external.
|
|
|
|
// In C++, the compiler has to emit a definition in every translation unit
|
|
// that references the function. We should use linkonce_odr because
|
|
// a) if all references in this translation unit are optimized away, we
|
|
// don't need to codegen it. b) if the function persists, it needs to be
|
|
// merged with other definitions. c) C++ has the ODR, so we know the
|
|
// definition is dependable.
|
|
if (Linkage == GVA_DiscardableODR)
|
|
return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
|
|
: llvm::Function::InternalLinkage;
|
|
|
|
// An explicit instantiation of a template has weak linkage, since
|
|
// explicit instantiations can occur in multiple translation units
|
|
// and must all be equivalent. However, we are not allowed to
|
|
// throw away these explicit instantiations.
|
|
//
|
|
// We don't currently support CUDA device code spread out across multiple TUs,
|
|
// so say that CUDA templates are either external (for kernels) or internal.
|
|
// This lets llvm perform aggressive inter-procedural optimizations.
|
|
if (Linkage == GVA_StrongODR) {
|
|
if (Context.getLangOpts().AppleKext)
|
|
return llvm::Function::ExternalLinkage;
|
|
if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
|
|
return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
|
|
: llvm::Function::InternalLinkage;
|
|
return llvm::Function::WeakODRLinkage;
|
|
}
|
|
|
|
// C++ doesn't have tentative definitions and thus cannot have common
|
|
// linkage.
|
|
if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
|
|
!isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
|
|
CodeGenOpts.NoCommon))
|
|
return llvm::GlobalVariable::CommonLinkage;
|
|
|
|
// selectany symbols are externally visible, so use weak instead of
|
|
// linkonce. MSVC optimizes away references to const selectany globals, so
|
|
// all definitions should be the same and ODR linkage should be used.
|
|
// http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
|
|
if (D->hasAttr<SelectAnyAttr>())
|
|
return llvm::GlobalVariable::WeakODRLinkage;
|
|
|
|
// Otherwise, we have strong external linkage.
|
|
assert(Linkage == GVA_StrongExternal);
|
|
return llvm::GlobalVariable::ExternalLinkage;
|
|
}
|
|
|
|
llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
|
|
const VarDecl *VD, bool IsConstant) {
|
|
GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
|
|
return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
|
|
}
|
|
|
|
/// Replace the uses of a function that was declared with a non-proto type.
|
|
/// We want to silently drop extra arguments from call sites
|
|
static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
|
|
llvm::Function *newFn) {
|
|
// Fast path.
|
|
if (old->use_empty()) return;
|
|
|
|
llvm::Type *newRetTy = newFn->getReturnType();
|
|
SmallVector<llvm::Value*, 4> newArgs;
|
|
SmallVector<llvm::OperandBundleDef, 1> newBundles;
|
|
|
|
for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
|
|
ui != ue; ) {
|
|
llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
|
|
llvm::User *user = use->getUser();
|
|
|
|
// Recognize and replace uses of bitcasts. Most calls to
|
|
// unprototyped functions will use bitcasts.
|
|
if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
|
|
if (bitcast->getOpcode() == llvm::Instruction::BitCast)
|
|
replaceUsesOfNonProtoConstant(bitcast, newFn);
|
|
continue;
|
|
}
|
|
|
|
// Recognize calls to the function.
|
|
llvm::CallSite callSite(user);
|
|
if (!callSite) continue;
|
|
if (!callSite.isCallee(&*use)) continue;
|
|
|
|
// If the return types don't match exactly, then we can't
|
|
// transform this call unless it's dead.
|
|
if (callSite->getType() != newRetTy && !callSite->use_empty())
|
|
continue;
|
|
|
|
// Get the call site's attribute list.
|
|
SmallVector<llvm::AttributeSet, 8> newAttrs;
|
|
llvm::AttributeSet oldAttrs = callSite.getAttributes();
|
|
|
|
// Collect any return attributes from the call.
|
|
if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
|
|
newAttrs.push_back(
|
|
llvm::AttributeSet::get(newFn->getContext(),
|
|
oldAttrs.getRetAttributes()));
|
|
|
|
// If the function was passed too few arguments, don't transform.
|
|
unsigned newNumArgs = newFn->arg_size();
|
|
if (callSite.arg_size() < newNumArgs) continue;
|
|
|
|
// If extra arguments were passed, we silently drop them.
|
|
// If any of the types mismatch, we don't transform.
|
|
unsigned argNo = 0;
|
|
bool dontTransform = false;
|
|
for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
|
|
ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
|
|
if (callSite.getArgument(argNo)->getType() != ai->getType()) {
|
|
dontTransform = true;
|
|
break;
|
|
}
|
|
|
|
// Add any parameter attributes.
|
|
if (oldAttrs.hasAttributes(argNo + 1))
|
|
newAttrs.
|
|
push_back(llvm::
|
|
AttributeSet::get(newFn->getContext(),
|
|
oldAttrs.getParamAttributes(argNo + 1)));
|
|
}
|
|
if (dontTransform)
|
|
continue;
|
|
|
|
if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
|
|
newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
|
|
oldAttrs.getFnAttributes()));
|
|
|
|
// Okay, we can transform this. Create the new call instruction and copy
|
|
// over the required information.
|
|
newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
|
|
|
|
// Copy over any operand bundles.
|
|
callSite.getOperandBundlesAsDefs(newBundles);
|
|
|
|
llvm::CallSite newCall;
|
|
if (callSite.isCall()) {
|
|
newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
|
|
callSite.getInstruction());
|
|
} else {
|
|
auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
|
|
newCall = llvm::InvokeInst::Create(newFn,
|
|
oldInvoke->getNormalDest(),
|
|
oldInvoke->getUnwindDest(),
|
|
newArgs, newBundles, "",
|
|
callSite.getInstruction());
|
|
}
|
|
newArgs.clear(); // for the next iteration
|
|
|
|
if (!newCall->getType()->isVoidTy())
|
|
newCall->takeName(callSite.getInstruction());
|
|
newCall.setAttributes(
|
|
llvm::AttributeSet::get(newFn->getContext(), newAttrs));
|
|
newCall.setCallingConv(callSite.getCallingConv());
|
|
|
|
// Finally, remove the old call, replacing any uses with the new one.
|
|
if (!callSite->use_empty())
|
|
callSite->replaceAllUsesWith(newCall.getInstruction());
|
|
|
|
// Copy debug location attached to CI.
|
|
if (callSite->getDebugLoc())
|
|
newCall->setDebugLoc(callSite->getDebugLoc());
|
|
|
|
callSite->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
|
|
/// implement a function with no prototype, e.g. "int foo() {}". If there are
|
|
/// existing call uses of the old function in the module, this adjusts them to
|
|
/// call the new function directly.
|
|
///
|
|
/// This is not just a cleanup: the always_inline pass requires direct calls to
|
|
/// functions to be able to inline them. If there is a bitcast in the way, it
|
|
/// won't inline them. Instcombine normally deletes these calls, but it isn't
|
|
/// run at -O0.
|
|
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
|
|
llvm::Function *NewFn) {
|
|
// If we're redefining a global as a function, don't transform it.
|
|
if (!isa<llvm::Function>(Old)) return;
|
|
|
|
replaceUsesOfNonProtoConstant(Old, NewFn);
|
|
}
|
|
|
|
void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
|
|
auto DK = VD->isThisDeclarationADefinition();
|
|
if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
|
|
return;
|
|
|
|
TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
|
|
// If we have a definition, this might be a deferred decl. If the
|
|
// instantiation is explicit, make sure we emit it at the end.
|
|
if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
|
|
GetAddrOfGlobalVar(VD);
|
|
|
|
EmitTopLevelDecl(VD);
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
|
|
llvm::GlobalValue *GV) {
|
|
const auto *D = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
// Emit this function's deferred diagnostics, if none of them are errors. If
|
|
// any of them are errors, don't codegen the function, but also don't emit any
|
|
// of the diagnostics just yet. Emitting an error during codegen stops
|
|
// further codegen, and we want to display as many deferred diags as possible.
|
|
// We'll emit the now twice-deferred diags at the very end of codegen.
|
|
//
|
|
// (If a function has both error and non-error diags, we don't emit the
|
|
// non-error diags here, because order can be significant, e.g. with notes
|
|
// that follow errors.)
|
|
auto Diags = D->takeDeferredDiags();
|
|
bool HasError = llvm::any_of(Diags, [this](const PartialDiagnosticAt &PDAt) {
|
|
return getDiags().getDiagnosticLevel(PDAt.second.getDiagID(), PDAt.first) >=
|
|
DiagnosticsEngine::Error;
|
|
});
|
|
if (HasError) {
|
|
DeferredDiags.insert(DeferredDiags.end(),
|
|
std::make_move_iterator(Diags.begin()),
|
|
std::make_move_iterator(Diags.end()));
|
|
return;
|
|
}
|
|
for (PartialDiagnosticAt &PDAt : Diags) {
|
|
const SourceLocation &Loc = PDAt.first;
|
|
const PartialDiagnostic &PD = PDAt.second;
|
|
DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID()));
|
|
PD.Emit(Builder);
|
|
}
|
|
|
|
// Compute the function info and LLVM type.
|
|
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
|
|
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
|
|
|
|
// Get or create the prototype for the function.
|
|
if (!GV || (GV->getType()->getElementType() != Ty))
|
|
GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
|
|
/*DontDefer=*/true,
|
|
/*IsForDefinition=*/true));
|
|
|
|
// Already emitted.
|
|
if (!GV->isDeclaration())
|
|
return;
|
|
|
|
// We need to set linkage and visibility on the function before
|
|
// generating code for it because various parts of IR generation
|
|
// want to propagate this information down (e.g. to local static
|
|
// declarations).
|
|
auto *Fn = cast<llvm::Function>(GV);
|
|
setFunctionLinkage(GD, Fn);
|
|
setFunctionDLLStorageClass(GD, Fn);
|
|
|
|
// FIXME: this is redundant with part of setFunctionDefinitionAttributes
|
|
setGlobalVisibility(Fn, D);
|
|
|
|
MaybeHandleStaticInExternC(D, Fn);
|
|
|
|
maybeSetTrivialComdat(*D, *Fn);
|
|
|
|
CodeGenFunction(*this).GenerateCode(D, Fn, FI);
|
|
|
|
setFunctionDefinitionAttributes(D, Fn);
|
|
SetLLVMFunctionAttributesForDefinition(D, Fn);
|
|
|
|
if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
|
|
AddGlobalCtor(Fn, CA->getPriority());
|
|
if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
|
|
AddGlobalDtor(Fn, DA->getPriority());
|
|
if (D->hasAttr<AnnotateAttr>())
|
|
AddGlobalAnnotations(D, Fn);
|
|
}
|
|
|
|
void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
|
|
const auto *D = cast<ValueDecl>(GD.getDecl());
|
|
const AliasAttr *AA = D->getAttr<AliasAttr>();
|
|
assert(AA && "Not an alias?");
|
|
|
|
StringRef MangledName = getMangledName(GD);
|
|
|
|
if (AA->getAliasee() == MangledName) {
|
|
Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
|
|
return;
|
|
}
|
|
|
|
// If there is a definition in the module, then it wins over the alias.
|
|
// This is dubious, but allow it to be safe. Just ignore the alias.
|
|
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
|
|
if (Entry && !Entry->isDeclaration())
|
|
return;
|
|
|
|
Aliases.push_back(GD);
|
|
|
|
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
|
|
|
|
// Create a reference to the named value. This ensures that it is emitted
|
|
// if a deferred decl.
|
|
llvm::Constant *Aliasee;
|
|
if (isa<llvm::FunctionType>(DeclTy))
|
|
Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
|
|
/*ForVTable=*/false);
|
|
else
|
|
Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
|
|
llvm::PointerType::getUnqual(DeclTy),
|
|
/*D=*/nullptr);
|
|
|
|
// Create the new alias itself, but don't set a name yet.
|
|
auto *GA = llvm::GlobalAlias::create(
|
|
DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
|
|
|
|
if (Entry) {
|
|
if (GA->getAliasee() == Entry) {
|
|
Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
|
|
return;
|
|
}
|
|
|
|
assert(Entry->isDeclaration());
|
|
|
|
// If there is a declaration in the module, then we had an extern followed
|
|
// by the alias, as in:
|
|
// extern int test6();
|
|
// ...
|
|
// int test6() __attribute__((alias("test7")));
|
|
//
|
|
// Remove it and replace uses of it with the alias.
|
|
GA->takeName(Entry);
|
|
|
|
Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
|
|
Entry->getType()));
|
|
Entry->eraseFromParent();
|
|
} else {
|
|
GA->setName(MangledName);
|
|
}
|
|
|
|
// Set attributes which are particular to an alias; this is a
|
|
// specialization of the attributes which may be set on a global
|
|
// variable/function.
|
|
if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
|
|
D->isWeakImported()) {
|
|
GA->setLinkage(llvm::Function::WeakAnyLinkage);
|
|
}
|
|
|
|
if (const auto *VD = dyn_cast<VarDecl>(D))
|
|
if (VD->getTLSKind())
|
|
setTLSMode(GA, *VD);
|
|
|
|
setAliasAttributes(D, GA);
|
|
}
|
|
|
|
void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
|
|
const auto *D = cast<ValueDecl>(GD.getDecl());
|
|
const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
|
|
assert(IFA && "Not an ifunc?");
|
|
|
|
StringRef MangledName = getMangledName(GD);
|
|
|
|
if (IFA->getResolver() == MangledName) {
|
|
Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
|
|
return;
|
|
}
|
|
|
|
// Report an error if some definition overrides ifunc.
|
|
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
|
|
if (Entry && !Entry->isDeclaration()) {
|
|
GlobalDecl OtherGD;
|
|
if (lookupRepresentativeDecl(MangledName, OtherGD) &&
|
|
DiagnosedConflictingDefinitions.insert(GD).second) {
|
|
Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
|
|
Diags.Report(OtherGD.getDecl()->getLocation(),
|
|
diag::note_previous_definition);
|
|
}
|
|
return;
|
|
}
|
|
|
|
Aliases.push_back(GD);
|
|
|
|
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
|
|
llvm::Constant *Resolver =
|
|
GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
|
|
/*ForVTable=*/false);
|
|
llvm::GlobalIFunc *GIF =
|
|
llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
|
|
"", Resolver, &getModule());
|
|
if (Entry) {
|
|
if (GIF->getResolver() == Entry) {
|
|
Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
|
|
return;
|
|
}
|
|
assert(Entry->isDeclaration());
|
|
|
|
// If there is a declaration in the module, then we had an extern followed
|
|
// by the ifunc, as in:
|
|
// extern int test();
|
|
// ...
|
|
// int test() __attribute__((ifunc("resolver")));
|
|
//
|
|
// Remove it and replace uses of it with the ifunc.
|
|
GIF->takeName(Entry);
|
|
|
|
Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
|
|
Entry->getType()));
|
|
Entry->eraseFromParent();
|
|
} else
|
|
GIF->setName(MangledName);
|
|
|
|
SetCommonAttributes(D, GIF);
|
|
}
|
|
|
|
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
|
|
ArrayRef<llvm::Type*> Tys) {
|
|
return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
|
|
Tys);
|
|
}
|
|
|
|
static llvm::StringMapEntry<llvm::GlobalVariable *> &
|
|
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
|
|
const StringLiteral *Literal, bool TargetIsLSB,
|
|
bool &IsUTF16, unsigned &StringLength) {
|
|
StringRef String = Literal->getString();
|
|
unsigned NumBytes = String.size();
|
|
|
|
// Check for simple case.
|
|
if (!Literal->containsNonAsciiOrNull()) {
|
|
StringLength = NumBytes;
|
|
return *Map.insert(std::make_pair(String, nullptr)).first;
|
|
}
|
|
|
|
// Otherwise, convert the UTF8 literals into a string of shorts.
|
|
IsUTF16 = true;
|
|
|
|
SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
|
|
const UTF8 *FromPtr = (const UTF8 *)String.data();
|
|
UTF16 *ToPtr = &ToBuf[0];
|
|
|
|
(void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
|
|
&ToPtr, ToPtr + NumBytes,
|
|
strictConversion);
|
|
|
|
// ConvertUTF8toUTF16 returns the length in ToPtr.
|
|
StringLength = ToPtr - &ToBuf[0];
|
|
|
|
// Add an explicit null.
|
|
*ToPtr = 0;
|
|
return *Map.insert(std::make_pair(
|
|
StringRef(reinterpret_cast<const char *>(ToBuf.data()),
|
|
(StringLength + 1) * 2),
|
|
nullptr)).first;
|
|
}
|
|
|
|
static llvm::StringMapEntry<llvm::GlobalVariable *> &
|
|
GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
|
|
const StringLiteral *Literal, unsigned &StringLength) {
|
|
StringRef String = Literal->getString();
|
|
StringLength = String.size();
|
|
return *Map.insert(std::make_pair(String, nullptr)).first;
|
|
}
|
|
|
|
ConstantAddress
|
|
CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
|
|
unsigned StringLength = 0;
|
|
bool isUTF16 = false;
|
|
llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
|
|
GetConstantCFStringEntry(CFConstantStringMap, Literal,
|
|
getDataLayout().isLittleEndian(), isUTF16,
|
|
StringLength);
|
|
|
|
if (auto *C = Entry.second)
|
|
return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
|
|
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
|
|
llvm::Constant *Zeros[] = { Zero, Zero };
|
|
llvm::Value *V;
|
|
|
|
// If we don't already have it, get __CFConstantStringClassReference.
|
|
if (!CFConstantStringClassRef) {
|
|
llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
|
|
Ty = llvm::ArrayType::get(Ty, 0);
|
|
llvm::Constant *GV =
|
|
CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
|
|
|
|
if (getTarget().getTriple().isOSBinFormatCOFF()) {
|
|
IdentifierInfo &II = getContext().Idents.get(GV->getName());
|
|
TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
|
|
DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
|
|
llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
|
|
|
|
const VarDecl *VD = nullptr;
|
|
for (const auto &Result : DC->lookup(&II))
|
|
if ((VD = dyn_cast<VarDecl>(Result)))
|
|
break;
|
|
|
|
if (!VD || !VD->hasAttr<DLLExportAttr>()) {
|
|
CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
|
|
CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
|
|
} else {
|
|
CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
|
|
CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
|
|
}
|
|
}
|
|
|
|
// Decay array -> ptr
|
|
V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
|
|
CFConstantStringClassRef = V;
|
|
} else {
|
|
V = CFConstantStringClassRef;
|
|
}
|
|
|
|
QualType CFTy = getContext().getCFConstantStringType();
|
|
|
|
auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
|
|
|
|
llvm::Constant *Fields[4];
|
|
|
|
// Class pointer.
|
|
Fields[0] = cast<llvm::ConstantExpr>(V);
|
|
|
|
// Flags.
|
|
llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
|
|
Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
|
|
: llvm::ConstantInt::get(Ty, 0x07C8);
|
|
|
|
// String pointer.
|
|
llvm::Constant *C = nullptr;
|
|
if (isUTF16) {
|
|
auto Arr = llvm::makeArrayRef(
|
|
reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
|
|
Entry.first().size() / 2);
|
|
C = llvm::ConstantDataArray::get(VMContext, Arr);
|
|
} else {
|
|
C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
|
|
}
|
|
|
|
// Note: -fwritable-strings doesn't make the backing store strings of
|
|
// CFStrings writable. (See <rdar://problem/10657500>)
|
|
auto *GV =
|
|
new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
|
|
llvm::GlobalValue::PrivateLinkage, C, ".str");
|
|
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
// Don't enforce the target's minimum global alignment, since the only use
|
|
// of the string is via this class initializer.
|
|
CharUnits Align = isUTF16
|
|
? getContext().getTypeAlignInChars(getContext().ShortTy)
|
|
: getContext().getTypeAlignInChars(getContext().CharTy);
|
|
GV->setAlignment(Align.getQuantity());
|
|
|
|
// FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
|
|
// Without it LLVM can merge the string with a non unnamed_addr one during
|
|
// LTO. Doing that changes the section it ends in, which surprises ld64.
|
|
if (getTarget().getTriple().isOSBinFormatMachO())
|
|
GV->setSection(isUTF16 ? "__TEXT,__ustring"
|
|
: "__TEXT,__cstring,cstring_literals");
|
|
|
|
// String.
|
|
Fields[2] =
|
|
llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
|
|
|
|
if (isUTF16)
|
|
// Cast the UTF16 string to the correct type.
|
|
Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
|
|
|
|
// String length.
|
|
Ty = getTypes().ConvertType(getContext().LongTy);
|
|
Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
|
|
|
|
CharUnits Alignment = getPointerAlign();
|
|
|
|
// The struct.
|
|
C = llvm::ConstantStruct::get(STy, Fields);
|
|
GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/false,
|
|
llvm::GlobalVariable::PrivateLinkage, C,
|
|
"_unnamed_cfstring_");
|
|
GV->setAlignment(Alignment.getQuantity());
|
|
switch (getTarget().getTriple().getObjectFormat()) {
|
|
case llvm::Triple::UnknownObjectFormat:
|
|
llvm_unreachable("unknown file format");
|
|
case llvm::Triple::COFF:
|
|
case llvm::Triple::ELF:
|
|
GV->setSection("cfstring");
|
|
break;
|
|
case llvm::Triple::MachO:
|
|
GV->setSection("__DATA,__cfstring");
|
|
break;
|
|
}
|
|
Entry.second = GV;
|
|
|
|
return ConstantAddress(GV, Alignment);
|
|
}
|
|
|
|
ConstantAddress
|
|
CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
|
|
unsigned StringLength = 0;
|
|
llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
|
|
GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
|
|
|
|
if (auto *C = Entry.second)
|
|
return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
|
|
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
|
|
llvm::Constant *Zeros[] = { Zero, Zero };
|
|
llvm::Value *V;
|
|
// If we don't already have it, get _NSConstantStringClassReference.
|
|
if (!ConstantStringClassRef) {
|
|
std::string StringClass(getLangOpts().ObjCConstantStringClass);
|
|
llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
|
|
llvm::Constant *GV;
|
|
if (LangOpts.ObjCRuntime.isNonFragile()) {
|
|
std::string str =
|
|
StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
|
|
: "OBJC_CLASS_$_" + StringClass;
|
|
GV = getObjCRuntime().GetClassGlobal(str);
|
|
// Make sure the result is of the correct type.
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
|
|
V = llvm::ConstantExpr::getBitCast(GV, PTy);
|
|
ConstantStringClassRef = V;
|
|
} else {
|
|
std::string str =
|
|
StringClass.empty() ? "_NSConstantStringClassReference"
|
|
: "_" + StringClass + "ClassReference";
|
|
llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
|
|
GV = CreateRuntimeVariable(PTy, str);
|
|
// Decay array -> ptr
|
|
V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
|
|
ConstantStringClassRef = V;
|
|
}
|
|
} else
|
|
V = ConstantStringClassRef;
|
|
|
|
if (!NSConstantStringType) {
|
|
// Construct the type for a constant NSString.
|
|
RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
|
|
D->startDefinition();
|
|
|
|
QualType FieldTypes[3];
|
|
|
|
// const int *isa;
|
|
FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
|
|
// const char *str;
|
|
FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
|
|
// unsigned int length;
|
|
FieldTypes[2] = Context.UnsignedIntTy;
|
|
|
|
// Create fields
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(Context, D,
|
|
SourceLocation(),
|
|
SourceLocation(), nullptr,
|
|
FieldTypes[i], /*TInfo=*/nullptr,
|
|
/*BitWidth=*/nullptr,
|
|
/*Mutable=*/false,
|
|
ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
D->addDecl(Field);
|
|
}
|
|
|
|
D->completeDefinition();
|
|
QualType NSTy = Context.getTagDeclType(D);
|
|
NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
|
|
}
|
|
|
|
llvm::Constant *Fields[3];
|
|
|
|
// Class pointer.
|
|
Fields[0] = cast<llvm::ConstantExpr>(V);
|
|
|
|
// String pointer.
|
|
llvm::Constant *C =
|
|
llvm::ConstantDataArray::getString(VMContext, Entry.first());
|
|
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
bool isConstant;
|
|
Linkage = llvm::GlobalValue::PrivateLinkage;
|
|
isConstant = !LangOpts.WritableStrings;
|
|
|
|
auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
|
|
Linkage, C, ".str");
|
|
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
// Don't enforce the target's minimum global alignment, since the only use
|
|
// of the string is via this class initializer.
|
|
CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
|
|
GV->setAlignment(Align.getQuantity());
|
|
Fields[1] =
|
|
llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
|
|
|
|
// String length.
|
|
llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
|
|
Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
|
|
|
|
// The struct.
|
|
CharUnits Alignment = getPointerAlign();
|
|
C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
|
|
GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
|
|
llvm::GlobalVariable::PrivateLinkage, C,
|
|
"_unnamed_nsstring_");
|
|
GV->setAlignment(Alignment.getQuantity());
|
|
const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
|
|
const char *NSStringNonFragileABISection =
|
|
"__DATA,__objc_stringobj,regular,no_dead_strip";
|
|
// FIXME. Fix section.
|
|
GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
|
|
? NSStringNonFragileABISection
|
|
: NSStringSection);
|
|
Entry.second = GV;
|
|
|
|
return ConstantAddress(GV, Alignment);
|
|
}
|
|
|
|
QualType CodeGenModule::getObjCFastEnumerationStateType() {
|
|
if (ObjCFastEnumerationStateType.isNull()) {
|
|
RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
|
|
D->startDefinition();
|
|
|
|
QualType FieldTypes[] = {
|
|
Context.UnsignedLongTy,
|
|
Context.getPointerType(Context.getObjCIdType()),
|
|
Context.getPointerType(Context.UnsignedLongTy),
|
|
Context.getConstantArrayType(Context.UnsignedLongTy,
|
|
llvm::APInt(32, 5), ArrayType::Normal, 0)
|
|
};
|
|
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(Context,
|
|
D,
|
|
SourceLocation(),
|
|
SourceLocation(), nullptr,
|
|
FieldTypes[i], /*TInfo=*/nullptr,
|
|
/*BitWidth=*/nullptr,
|
|
/*Mutable=*/false,
|
|
ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
D->addDecl(Field);
|
|
}
|
|
|
|
D->completeDefinition();
|
|
ObjCFastEnumerationStateType = Context.getTagDeclType(D);
|
|
}
|
|
|
|
return ObjCFastEnumerationStateType;
|
|
}
|
|
|
|
llvm::Constant *
|
|
CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
|
|
assert(!E->getType()->isPointerType() && "Strings are always arrays");
|
|
|
|
// Don't emit it as the address of the string, emit the string data itself
|
|
// as an inline array.
|
|
if (E->getCharByteWidth() == 1) {
|
|
SmallString<64> Str(E->getString());
|
|
|
|
// Resize the string to the right size, which is indicated by its type.
|
|
const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
|
|
Str.resize(CAT->getSize().getZExtValue());
|
|
return llvm::ConstantDataArray::getString(VMContext, Str, false);
|
|
}
|
|
|
|
auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
|
|
llvm::Type *ElemTy = AType->getElementType();
|
|
unsigned NumElements = AType->getNumElements();
|
|
|
|
// Wide strings have either 2-byte or 4-byte elements.
|
|
if (ElemTy->getPrimitiveSizeInBits() == 16) {
|
|
SmallVector<uint16_t, 32> Elements;
|
|
Elements.reserve(NumElements);
|
|
|
|
for(unsigned i = 0, e = E->getLength(); i != e; ++i)
|
|
Elements.push_back(E->getCodeUnit(i));
|
|
Elements.resize(NumElements);
|
|
return llvm::ConstantDataArray::get(VMContext, Elements);
|
|
}
|
|
|
|
assert(ElemTy->getPrimitiveSizeInBits() == 32);
|
|
SmallVector<uint32_t, 32> Elements;
|
|
Elements.reserve(NumElements);
|
|
|
|
for(unsigned i = 0, e = E->getLength(); i != e; ++i)
|
|
Elements.push_back(E->getCodeUnit(i));
|
|
Elements.resize(NumElements);
|
|
return llvm::ConstantDataArray::get(VMContext, Elements);
|
|
}
|
|
|
|
static llvm::GlobalVariable *
|
|
GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
|
|
CodeGenModule &CGM, StringRef GlobalName,
|
|
CharUnits Alignment) {
|
|
// OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
|
|
unsigned AddrSpace = 0;
|
|
if (CGM.getLangOpts().OpenCL)
|
|
AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
|
|
|
|
llvm::Module &M = CGM.getModule();
|
|
// Create a global variable for this string
|
|
auto *GV = new llvm::GlobalVariable(
|
|
M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
|
|
nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
|
|
GV->setAlignment(Alignment.getQuantity());
|
|
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
if (GV->isWeakForLinker()) {
|
|
assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
|
|
GV->setComdat(M.getOrInsertComdat(GV->getName()));
|
|
}
|
|
|
|
return GV;
|
|
}
|
|
|
|
/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
|
|
/// constant array for the given string literal.
|
|
ConstantAddress
|
|
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
|
|
StringRef Name) {
|
|
CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
|
|
|
|
llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
|
|
llvm::GlobalVariable **Entry = nullptr;
|
|
if (!LangOpts.WritableStrings) {
|
|
Entry = &ConstantStringMap[C];
|
|
if (auto GV = *Entry) {
|
|
if (Alignment.getQuantity() > GV->getAlignment())
|
|
GV->setAlignment(Alignment.getQuantity());
|
|
return ConstantAddress(GV, Alignment);
|
|
}
|
|
}
|
|
|
|
SmallString<256> MangledNameBuffer;
|
|
StringRef GlobalVariableName;
|
|
llvm::GlobalValue::LinkageTypes LT;
|
|
|
|
// Mangle the string literal if the ABI allows for it. However, we cannot
|
|
// do this if we are compiling with ASan or -fwritable-strings because they
|
|
// rely on strings having normal linkage.
|
|
if (!LangOpts.WritableStrings &&
|
|
!LangOpts.Sanitize.has(SanitizerKind::Address) &&
|
|
getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
|
|
llvm::raw_svector_ostream Out(MangledNameBuffer);
|
|
getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
|
|
|
|
LT = llvm::GlobalValue::LinkOnceODRLinkage;
|
|
GlobalVariableName = MangledNameBuffer;
|
|
} else {
|
|
LT = llvm::GlobalValue::PrivateLinkage;
|
|
GlobalVariableName = Name;
|
|
}
|
|
|
|
auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
|
|
if (Entry)
|
|
*Entry = GV;
|
|
|
|
SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
|
|
QualType());
|
|
return ConstantAddress(GV, Alignment);
|
|
}
|
|
|
|
/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
|
|
/// array for the given ObjCEncodeExpr node.
|
|
ConstantAddress
|
|
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
|
|
std::string Str;
|
|
getContext().getObjCEncodingForType(E->getEncodedType(), Str);
|
|
|
|
return GetAddrOfConstantCString(Str);
|
|
}
|
|
|
|
/// GetAddrOfConstantCString - Returns a pointer to a character array containing
|
|
/// the literal and a terminating '\0' character.
|
|
/// The result has pointer to array type.
|
|
ConstantAddress CodeGenModule::GetAddrOfConstantCString(
|
|
const std::string &Str, const char *GlobalName) {
|
|
StringRef StrWithNull(Str.c_str(), Str.size() + 1);
|
|
CharUnits Alignment =
|
|
getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
|
|
|
|
llvm::Constant *C =
|
|
llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
|
|
|
|
// Don't share any string literals if strings aren't constant.
|
|
llvm::GlobalVariable **Entry = nullptr;
|
|
if (!LangOpts.WritableStrings) {
|
|
Entry = &ConstantStringMap[C];
|
|
if (auto GV = *Entry) {
|
|
if (Alignment.getQuantity() > GV->getAlignment())
|
|
GV->setAlignment(Alignment.getQuantity());
|
|
return ConstantAddress(GV, Alignment);
|
|
}
|
|
}
|
|
|
|
// Get the default prefix if a name wasn't specified.
|
|
if (!GlobalName)
|
|
GlobalName = ".str";
|
|
// Create a global variable for this.
|
|
auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
|
|
GlobalName, Alignment);
|
|
if (Entry)
|
|
*Entry = GV;
|
|
return ConstantAddress(GV, Alignment);
|
|
}
|
|
|
|
ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
|
|
const MaterializeTemporaryExpr *E, const Expr *Init) {
|
|
assert((E->getStorageDuration() == SD_Static ||
|
|
E->getStorageDuration() == SD_Thread) && "not a global temporary");
|
|
const auto *VD = cast<VarDecl>(E->getExtendingDecl());
|
|
|
|
// If we're not materializing a subobject of the temporary, keep the
|
|
// cv-qualifiers from the type of the MaterializeTemporaryExpr.
|
|
QualType MaterializedType = Init->getType();
|
|
if (Init == E->GetTemporaryExpr())
|
|
MaterializedType = E->getType();
|
|
|
|
CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
|
|
|
|
if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
|
|
return ConstantAddress(Slot, Align);
|
|
|
|
// FIXME: If an externally-visible declaration extends multiple temporaries,
|
|
// we need to give each temporary the same name in every translation unit (and
|
|
// we also need to make the temporaries externally-visible).
|
|
SmallString<256> Name;
|
|
llvm::raw_svector_ostream Out(Name);
|
|
getCXXABI().getMangleContext().mangleReferenceTemporary(
|
|
VD, E->getManglingNumber(), Out);
|
|
|
|
APValue *Value = nullptr;
|
|
if (E->getStorageDuration() == SD_Static) {
|
|
// We might have a cached constant initializer for this temporary. Note
|
|
// that this might have a different value from the value computed by
|
|
// evaluating the initializer if the surrounding constant expression
|
|
// modifies the temporary.
|
|
Value = getContext().getMaterializedTemporaryValue(E, false);
|
|
if (Value && Value->isUninit())
|
|
Value = nullptr;
|
|
}
|
|
|
|
// Try evaluating it now, it might have a constant initializer.
|
|
Expr::EvalResult EvalResult;
|
|
if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
|
|
!EvalResult.hasSideEffects())
|
|
Value = &EvalResult.Val;
|
|
|
|
llvm::Constant *InitialValue = nullptr;
|
|
bool Constant = false;
|
|
llvm::Type *Type;
|
|
if (Value) {
|
|
// The temporary has a constant initializer, use it.
|
|
InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
|
|
Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
|
|
Type = InitialValue->getType();
|
|
} else {
|
|
// No initializer, the initialization will be provided when we
|
|
// initialize the declaration which performed lifetime extension.
|
|
Type = getTypes().ConvertTypeForMem(MaterializedType);
|
|
}
|
|
|
|
// Create a global variable for this lifetime-extended temporary.
|
|
llvm::GlobalValue::LinkageTypes Linkage =
|
|
getLLVMLinkageVarDefinition(VD, Constant);
|
|
if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
|
|
const VarDecl *InitVD;
|
|
if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
|
|
isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
|
|
// Temporaries defined inside a class get linkonce_odr linkage because the
|
|
// class can be defined in multipe translation units.
|
|
Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
|
|
} else {
|
|
// There is no need for this temporary to have external linkage if the
|
|
// VarDecl has external linkage.
|
|
Linkage = llvm::GlobalVariable::InternalLinkage;
|
|
}
|
|
}
|
|
unsigned AddrSpace = GetGlobalVarAddressSpace(
|
|
VD, getContext().getTargetAddressSpace(MaterializedType));
|
|
auto *GV = new llvm::GlobalVariable(
|
|
getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
|
|
/*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
|
|
AddrSpace);
|
|
setGlobalVisibility(GV, VD);
|
|
GV->setAlignment(Align.getQuantity());
|
|
if (supportsCOMDAT() && GV->isWeakForLinker())
|
|
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
|
|
if (VD->getTLSKind())
|
|
setTLSMode(GV, *VD);
|
|
MaterializedGlobalTemporaryMap[E] = GV;
|
|
return ConstantAddress(GV, Align);
|
|
}
|
|
|
|
/// EmitObjCPropertyImplementations - Emit information for synthesized
|
|
/// properties for an implementation.
|
|
void CodeGenModule::EmitObjCPropertyImplementations(const
|
|
ObjCImplementationDecl *D) {
|
|
for (const auto *PID : D->property_impls()) {
|
|
// Dynamic is just for type-checking.
|
|
if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
|
|
ObjCPropertyDecl *PD = PID->getPropertyDecl();
|
|
|
|
// Determine which methods need to be implemented, some may have
|
|
// been overridden. Note that ::isPropertyAccessor is not the method
|
|
// we want, that just indicates if the decl came from a
|
|
// property. What we want to know is if the method is defined in
|
|
// this implementation.
|
|
if (!D->getInstanceMethod(PD->getGetterName()))
|
|
CodeGenFunction(*this).GenerateObjCGetter(
|
|
const_cast<ObjCImplementationDecl *>(D), PID);
|
|
if (!PD->isReadOnly() &&
|
|
!D->getInstanceMethod(PD->getSetterName()))
|
|
CodeGenFunction(*this).GenerateObjCSetter(
|
|
const_cast<ObjCImplementationDecl *>(D), PID);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool needsDestructMethod(ObjCImplementationDecl *impl) {
|
|
const ObjCInterfaceDecl *iface = impl->getClassInterface();
|
|
for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
|
|
ivar; ivar = ivar->getNextIvar())
|
|
if (ivar->getType().isDestructedType())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool AllTrivialInitializers(CodeGenModule &CGM,
|
|
ObjCImplementationDecl *D) {
|
|
CodeGenFunction CGF(CGM);
|
|
for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
|
|
E = D->init_end(); B != E; ++B) {
|
|
CXXCtorInitializer *CtorInitExp = *B;
|
|
Expr *Init = CtorInitExp->getInit();
|
|
if (!CGF.isTrivialInitializer(Init))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// EmitObjCIvarInitializations - Emit information for ivar initialization
|
|
/// for an implementation.
|
|
void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
|
|
// We might need a .cxx_destruct even if we don't have any ivar initializers.
|
|
if (needsDestructMethod(D)) {
|
|
IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
|
|
Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
|
|
ObjCMethodDecl *DTORMethod =
|
|
ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
|
|
cxxSelector, getContext().VoidTy, nullptr, D,
|
|
/*isInstance=*/true, /*isVariadic=*/false,
|
|
/*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
|
|
/*isDefined=*/false, ObjCMethodDecl::Required);
|
|
D->addInstanceMethod(DTORMethod);
|
|
CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
|
|
D->setHasDestructors(true);
|
|
}
|
|
|
|
// If the implementation doesn't have any ivar initializers, we don't need
|
|
// a .cxx_construct.
|
|
if (D->getNumIvarInitializers() == 0 ||
|
|
AllTrivialInitializers(*this, D))
|
|
return;
|
|
|
|
IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
|
|
Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
|
|
// The constructor returns 'self'.
|
|
ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
|
|
D->getLocation(),
|
|
D->getLocation(),
|
|
cxxSelector,
|
|
getContext().getObjCIdType(),
|
|
nullptr, D, /*isInstance=*/true,
|
|
/*isVariadic=*/false,
|
|
/*isPropertyAccessor=*/true,
|
|
/*isImplicitlyDeclared=*/true,
|
|
/*isDefined=*/false,
|
|
ObjCMethodDecl::Required);
|
|
D->addInstanceMethod(CTORMethod);
|
|
CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
|
|
D->setHasNonZeroConstructors(true);
|
|
}
|
|
|
|
/// EmitNamespace - Emit all declarations in a namespace.
|
|
void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
|
|
for (auto *I : ND->decls()) {
|
|
if (const auto *VD = dyn_cast<VarDecl>(I))
|
|
if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
|
|
VD->getTemplateSpecializationKind() != TSK_Undeclared)
|
|
continue;
|
|
EmitTopLevelDecl(I);
|
|
}
|
|
}
|
|
|
|
// EmitLinkageSpec - Emit all declarations in a linkage spec.
|
|
void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
|
|
if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
|
|
LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
|
|
ErrorUnsupported(LSD, "linkage spec");
|
|
return;
|
|
}
|
|
|
|
for (auto *I : LSD->decls()) {
|
|
// Meta-data for ObjC class includes references to implemented methods.
|
|
// Generate class's method definitions first.
|
|
if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
|
|
for (auto *M : OID->methods())
|
|
EmitTopLevelDecl(M);
|
|
}
|
|
EmitTopLevelDecl(I);
|
|
}
|
|
}
|
|
|
|
/// EmitTopLevelDecl - Emit code for a single top level declaration.
|
|
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
|
|
// Ignore dependent declarations.
|
|
if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
|
|
return;
|
|
|
|
switch (D->getKind()) {
|
|
case Decl::CXXConversion:
|
|
case Decl::CXXMethod:
|
|
case Decl::Function:
|
|
// Skip function templates
|
|
if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
|
|
cast<FunctionDecl>(D)->isLateTemplateParsed())
|
|
return;
|
|
|
|
EmitGlobal(cast<FunctionDecl>(D));
|
|
// Always provide some coverage mapping
|
|
// even for the functions that aren't emitted.
|
|
AddDeferredUnusedCoverageMapping(D);
|
|
break;
|
|
|
|
case Decl::Var:
|
|
case Decl::Decomposition:
|
|
// Skip variable templates
|
|
if (cast<VarDecl>(D)->getDescribedVarTemplate())
|
|
return;
|
|
case Decl::VarTemplateSpecialization:
|
|
EmitGlobal(cast<VarDecl>(D));
|
|
if (auto *DD = dyn_cast<DecompositionDecl>(D))
|
|
for (auto *B : DD->bindings())
|
|
if (auto *HD = B->getHoldingVar())
|
|
EmitGlobal(HD);
|
|
break;
|
|
|
|
// Indirect fields from global anonymous structs and unions can be
|
|
// ignored; only the actual variable requires IR gen support.
|
|
case Decl::IndirectField:
|
|
break;
|
|
|
|
// C++ Decls
|
|
case Decl::Namespace:
|
|
EmitNamespace(cast<NamespaceDecl>(D));
|
|
break;
|
|
case Decl::CXXRecord:
|
|
// Emit any static data members, they may be definitions.
|
|
for (auto *I : cast<CXXRecordDecl>(D)->decls())
|
|
if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
|
|
EmitTopLevelDecl(I);
|
|
break;
|
|
// No code generation needed.
|
|
case Decl::UsingShadow:
|
|
case Decl::ClassTemplate:
|
|
case Decl::VarTemplate:
|
|
case Decl::VarTemplatePartialSpecialization:
|
|
case Decl::FunctionTemplate:
|
|
case Decl::TypeAliasTemplate:
|
|
case Decl::Block:
|
|
case Decl::Empty:
|
|
break;
|
|
case Decl::Using: // using X; [C++]
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
DI->EmitUsingDecl(cast<UsingDecl>(*D));
|
|
return;
|
|
case Decl::NamespaceAlias:
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
|
|
return;
|
|
case Decl::UsingDirective: // using namespace X; [C++]
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
|
|
return;
|
|
case Decl::CXXConstructor:
|
|
// Skip function templates
|
|
if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
|
|
cast<FunctionDecl>(D)->isLateTemplateParsed())
|
|
return;
|
|
|
|
getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
|
|
break;
|
|
case Decl::CXXDestructor:
|
|
if (cast<FunctionDecl>(D)->isLateTemplateParsed())
|
|
return;
|
|
getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
|
|
break;
|
|
|
|
case Decl::StaticAssert:
|
|
// Nothing to do.
|
|
break;
|
|
|
|
// Objective-C Decls
|
|
|
|
// Forward declarations, no (immediate) code generation.
|
|
case Decl::ObjCInterface:
|
|
case Decl::ObjCCategory:
|
|
break;
|
|
|
|
case Decl::ObjCProtocol: {
|
|
auto *Proto = cast<ObjCProtocolDecl>(D);
|
|
if (Proto->isThisDeclarationADefinition())
|
|
ObjCRuntime->GenerateProtocol(Proto);
|
|
break;
|
|
}
|
|
|
|
case Decl::ObjCCategoryImpl:
|
|
// Categories have properties but don't support synthesize so we
|
|
// can ignore them here.
|
|
ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
|
|
break;
|
|
|
|
case Decl::ObjCImplementation: {
|
|
auto *OMD = cast<ObjCImplementationDecl>(D);
|
|
EmitObjCPropertyImplementations(OMD);
|
|
EmitObjCIvarInitializations(OMD);
|
|
ObjCRuntime->GenerateClass(OMD);
|
|
// Emit global variable debug information.
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
|
|
DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
|
|
OMD->getClassInterface()), OMD->getLocation());
|
|
break;
|
|
}
|
|
case Decl::ObjCMethod: {
|
|
auto *OMD = cast<ObjCMethodDecl>(D);
|
|
// If this is not a prototype, emit the body.
|
|
if (OMD->getBody())
|
|
CodeGenFunction(*this).GenerateObjCMethod(OMD);
|
|
break;
|
|
}
|
|
case Decl::ObjCCompatibleAlias:
|
|
ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
|
|
break;
|
|
|
|
case Decl::PragmaComment: {
|
|
const auto *PCD = cast<PragmaCommentDecl>(D);
|
|
switch (PCD->getCommentKind()) {
|
|
case PCK_Unknown:
|
|
llvm_unreachable("unexpected pragma comment kind");
|
|
case PCK_Linker:
|
|
AppendLinkerOptions(PCD->getArg());
|
|
break;
|
|
case PCK_Lib:
|
|
AddDependentLib(PCD->getArg());
|
|
break;
|
|
case PCK_Compiler:
|
|
case PCK_ExeStr:
|
|
case PCK_User:
|
|
break; // We ignore all of these.
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Decl::PragmaDetectMismatch: {
|
|
const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
|
|
AddDetectMismatch(PDMD->getName(), PDMD->getValue());
|
|
break;
|
|
}
|
|
|
|
case Decl::LinkageSpec:
|
|
EmitLinkageSpec(cast<LinkageSpecDecl>(D));
|
|
break;
|
|
|
|
case Decl::FileScopeAsm: {
|
|
// File-scope asm is ignored during device-side CUDA compilation.
|
|
if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
|
|
break;
|
|
// File-scope asm is ignored during device-side OpenMP compilation.
|
|
if (LangOpts.OpenMPIsDevice)
|
|
break;
|
|
auto *AD = cast<FileScopeAsmDecl>(D);
|
|
getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
|
|
break;
|
|
}
|
|
|
|
case Decl::Import: {
|
|
auto *Import = cast<ImportDecl>(D);
|
|
|
|
// If we've already imported this module, we're done.
|
|
if (!ImportedModules.insert(Import->getImportedModule()))
|
|
break;
|
|
|
|
// Emit debug information for direct imports.
|
|
if (!Import->getImportedOwningModule()) {
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
DI->EmitImportDecl(*Import);
|
|
}
|
|
|
|
// Emit the module initializers.
|
|
for (auto *D : Context.getModuleInitializers(Import->getImportedModule()))
|
|
EmitTopLevelDecl(D);
|
|
break;
|
|
}
|
|
|
|
case Decl::OMPThreadPrivate:
|
|
EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
|
|
break;
|
|
|
|
case Decl::ClassTemplateSpecialization: {
|
|
const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
|
|
if (DebugInfo &&
|
|
Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
|
|
Spec->hasDefinition())
|
|
DebugInfo->completeTemplateDefinition(*Spec);
|
|
break;
|
|
}
|
|
|
|
case Decl::OMPDeclareReduction:
|
|
EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
|
|
break;
|
|
|
|
default:
|
|
// Make sure we handled everything we should, every other kind is a
|
|
// non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
|
|
// function. Need to recode Decl::Kind to do that easily.
|
|
assert(isa<TypeDecl>(D) && "Unsupported decl kind");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
|
|
// Do we need to generate coverage mapping?
|
|
if (!CodeGenOpts.CoverageMapping)
|
|
return;
|
|
switch (D->getKind()) {
|
|
case Decl::CXXConversion:
|
|
case Decl::CXXMethod:
|
|
case Decl::Function:
|
|
case Decl::ObjCMethod:
|
|
case Decl::CXXConstructor:
|
|
case Decl::CXXDestructor: {
|
|
if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
|
|
return;
|
|
auto I = DeferredEmptyCoverageMappingDecls.find(D);
|
|
if (I == DeferredEmptyCoverageMappingDecls.end())
|
|
DeferredEmptyCoverageMappingDecls[D] = true;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
};
|
|
}
|
|
|
|
void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
|
|
// Do we need to generate coverage mapping?
|
|
if (!CodeGenOpts.CoverageMapping)
|
|
return;
|
|
if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
|
|
if (Fn->isTemplateInstantiation())
|
|
ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
|
|
}
|
|
auto I = DeferredEmptyCoverageMappingDecls.find(D);
|
|
if (I == DeferredEmptyCoverageMappingDecls.end())
|
|
DeferredEmptyCoverageMappingDecls[D] = false;
|
|
else
|
|
I->second = false;
|
|
}
|
|
|
|
void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
|
|
std::vector<const Decl *> DeferredDecls;
|
|
for (const auto &I : DeferredEmptyCoverageMappingDecls) {
|
|
if (!I.second)
|
|
continue;
|
|
DeferredDecls.push_back(I.first);
|
|
}
|
|
// Sort the declarations by their location to make sure that the tests get a
|
|
// predictable order for the coverage mapping for the unused declarations.
|
|
if (CodeGenOpts.DumpCoverageMapping)
|
|
std::sort(DeferredDecls.begin(), DeferredDecls.end(),
|
|
[] (const Decl *LHS, const Decl *RHS) {
|
|
return LHS->getLocStart() < RHS->getLocStart();
|
|
});
|
|
for (const auto *D : DeferredDecls) {
|
|
switch (D->getKind()) {
|
|
case Decl::CXXConversion:
|
|
case Decl::CXXMethod:
|
|
case Decl::Function:
|
|
case Decl::ObjCMethod: {
|
|
CodeGenPGO PGO(*this);
|
|
GlobalDecl GD(cast<FunctionDecl>(D));
|
|
PGO.emitEmptyCounterMapping(D, getMangledName(GD),
|
|
getFunctionLinkage(GD));
|
|
break;
|
|
}
|
|
case Decl::CXXConstructor: {
|
|
CodeGenPGO PGO(*this);
|
|
GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
|
|
PGO.emitEmptyCounterMapping(D, getMangledName(GD),
|
|
getFunctionLinkage(GD));
|
|
break;
|
|
}
|
|
case Decl::CXXDestructor: {
|
|
CodeGenPGO PGO(*this);
|
|
GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
|
|
PGO.emitEmptyCounterMapping(D, getMangledName(GD),
|
|
getFunctionLinkage(GD));
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
};
|
|
}
|
|
}
|
|
|
|
/// Turns the given pointer into a constant.
|
|
static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
|
|
const void *Ptr) {
|
|
uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
|
|
llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
|
|
return llvm::ConstantInt::get(i64, PtrInt);
|
|
}
|
|
|
|
static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
|
|
llvm::NamedMDNode *&GlobalMetadata,
|
|
GlobalDecl D,
|
|
llvm::GlobalValue *Addr) {
|
|
if (!GlobalMetadata)
|
|
GlobalMetadata =
|
|
CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
|
|
|
|
// TODO: should we report variant information for ctors/dtors?
|
|
llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
|
|
llvm::ConstantAsMetadata::get(GetPointerConstant(
|
|
CGM.getLLVMContext(), D.getDecl()))};
|
|
GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
|
|
}
|
|
|
|
/// For each function which is declared within an extern "C" region and marked
|
|
/// as 'used', but has internal linkage, create an alias from the unmangled
|
|
/// name to the mangled name if possible. People expect to be able to refer
|
|
/// to such functions with an unmangled name from inline assembly within the
|
|
/// same translation unit.
|
|
void CodeGenModule::EmitStaticExternCAliases() {
|
|
// Don't do anything if we're generating CUDA device code -- the NVPTX
|
|
// assembly target doesn't support aliases.
|
|
if (Context.getTargetInfo().getTriple().isNVPTX())
|
|
return;
|
|
for (auto &I : StaticExternCValues) {
|
|
IdentifierInfo *Name = I.first;
|
|
llvm::GlobalValue *Val = I.second;
|
|
if (Val && !getModule().getNamedValue(Name->getName()))
|
|
addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
|
|
}
|
|
}
|
|
|
|
bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
|
|
GlobalDecl &Result) const {
|
|
auto Res = Manglings.find(MangledName);
|
|
if (Res == Manglings.end())
|
|
return false;
|
|
Result = Res->getValue();
|
|
return true;
|
|
}
|
|
|
|
/// Emits metadata nodes associating all the global values in the
|
|
/// current module with the Decls they came from. This is useful for
|
|
/// projects using IR gen as a subroutine.
|
|
///
|
|
/// Since there's currently no way to associate an MDNode directly
|
|
/// with an llvm::GlobalValue, we create a global named metadata
|
|
/// with the name 'clang.global.decl.ptrs'.
|
|
void CodeGenModule::EmitDeclMetadata() {
|
|
llvm::NamedMDNode *GlobalMetadata = nullptr;
|
|
|
|
for (auto &I : MangledDeclNames) {
|
|
llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
|
|
// Some mangled names don't necessarily have an associated GlobalValue
|
|
// in this module, e.g. if we mangled it for DebugInfo.
|
|
if (Addr)
|
|
EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
|
|
}
|
|
}
|
|
|
|
/// Emits metadata nodes for all the local variables in the current
|
|
/// function.
|
|
void CodeGenFunction::EmitDeclMetadata() {
|
|
if (LocalDeclMap.empty()) return;
|
|
|
|
llvm::LLVMContext &Context = getLLVMContext();
|
|
|
|
// Find the unique metadata ID for this name.
|
|
unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
|
|
|
|
llvm::NamedMDNode *GlobalMetadata = nullptr;
|
|
|
|
for (auto &I : LocalDeclMap) {
|
|
const Decl *D = I.first;
|
|
llvm::Value *Addr = I.second.getPointer();
|
|
if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
|
|
llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
|
|
Alloca->setMetadata(
|
|
DeclPtrKind, llvm::MDNode::get(
|
|
Context, llvm::ValueAsMetadata::getConstant(DAddr)));
|
|
} else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
|
|
GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
|
|
EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitVersionIdentMetadata() {
|
|
llvm::NamedMDNode *IdentMetadata =
|
|
TheModule.getOrInsertNamedMetadata("llvm.ident");
|
|
std::string Version = getClangFullVersion();
|
|
llvm::LLVMContext &Ctx = TheModule.getContext();
|
|
|
|
llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
|
|
IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
|
|
}
|
|
|
|
void CodeGenModule::EmitTargetMetadata() {
|
|
// Warning, new MangledDeclNames may be appended within this loop.
|
|
// We rely on MapVector insertions adding new elements to the end
|
|
// of the container.
|
|
// FIXME: Move this loop into the one target that needs it, and only
|
|
// loop over those declarations for which we couldn't emit the target
|
|
// metadata when we emitted the declaration.
|
|
for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
|
|
auto Val = *(MangledDeclNames.begin() + I);
|
|
const Decl *D = Val.first.getDecl()->getMostRecentDecl();
|
|
llvm::GlobalValue *GV = GetGlobalValue(Val.second);
|
|
getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitCoverageFile() {
|
|
if (getCodeGenOpts().CoverageDataFile.empty() &&
|
|
getCodeGenOpts().CoverageNotesFile.empty())
|
|
return;
|
|
|
|
llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
|
|
if (!CUNode)
|
|
return;
|
|
|
|
llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
|
|
llvm::LLVMContext &Ctx = TheModule.getContext();
|
|
auto *CoverageDataFile =
|
|
llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
|
|
auto *CoverageNotesFile =
|
|
llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
|
|
for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
|
|
llvm::MDNode *CU = CUNode->getOperand(i);
|
|
llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
|
|
GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
|
|
}
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
|
|
// Sema has checked that all uuid strings are of the form
|
|
// "12345678-1234-1234-1234-1234567890ab".
|
|
assert(Uuid.size() == 36);
|
|
for (unsigned i = 0; i < 36; ++i) {
|
|
if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
|
|
else assert(isHexDigit(Uuid[i]));
|
|
}
|
|
|
|
// The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
|
|
const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
|
|
|
|
llvm::Constant *Field3[8];
|
|
for (unsigned Idx = 0; Idx < 8; ++Idx)
|
|
Field3[Idx] = llvm::ConstantInt::get(
|
|
Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
|
|
|
|
llvm::Constant *Fields[4] = {
|
|
llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
|
|
llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
|
|
llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
|
|
llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
|
|
};
|
|
|
|
return llvm::ConstantStruct::getAnon(Fields);
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
|
|
bool ForEH) {
|
|
// Return a bogus pointer if RTTI is disabled, unless it's for EH.
|
|
// FIXME: should we even be calling this method if RTTI is disabled
|
|
// and it's not for EH?
|
|
if (!ForEH && !getLangOpts().RTTI)
|
|
return llvm::Constant::getNullValue(Int8PtrTy);
|
|
|
|
if (ForEH && Ty->isObjCObjectPointerType() &&
|
|
LangOpts.ObjCRuntime.isGNUFamily())
|
|
return ObjCRuntime->GetEHType(Ty);
|
|
|
|
return getCXXABI().getAddrOfRTTIDescriptor(Ty);
|
|
}
|
|
|
|
void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
|
|
for (auto RefExpr : D->varlists()) {
|
|
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
|
|
bool PerformInit =
|
|
VD->getAnyInitializer() &&
|
|
!VD->getAnyInitializer()->isConstantInitializer(getContext(),
|
|
/*ForRef=*/false);
|
|
|
|
Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
|
|
if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
|
|
VD, Addr, RefExpr->getLocStart(), PerformInit))
|
|
CXXGlobalInits.push_back(InitFunction);
|
|
}
|
|
}
|
|
|
|
llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
|
|
llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
|
|
if (InternalId)
|
|
return InternalId;
|
|
|
|
if (isExternallyVisible(T->getLinkage())) {
|
|
std::string OutName;
|
|
llvm::raw_string_ostream Out(OutName);
|
|
getCXXABI().getMangleContext().mangleTypeName(T, Out);
|
|
|
|
InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
|
|
} else {
|
|
InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
|
|
llvm::ArrayRef<llvm::Metadata *>());
|
|
}
|
|
|
|
return InternalId;
|
|
}
|
|
|
|
/// Returns whether this module needs the "all-vtables" type identifier.
|
|
bool CodeGenModule::NeedAllVtablesTypeId() const {
|
|
// Returns true if at least one of vtable-based CFI checkers is enabled and
|
|
// is not in the trapping mode.
|
|
return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
|
|
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
|
|
(LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
|
|
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
|
|
(LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
|
|
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
|
|
(LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
|
|
!CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
|
|
}
|
|
|
|
void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
|
|
CharUnits Offset,
|
|
const CXXRecordDecl *RD) {
|
|
llvm::Metadata *MD =
|
|
CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
|
|
VTable->addTypeMetadata(Offset.getQuantity(), MD);
|
|
|
|
if (CodeGenOpts.SanitizeCfiCrossDso)
|
|
if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
|
|
VTable->addTypeMetadata(Offset.getQuantity(),
|
|
llvm::ConstantAsMetadata::get(CrossDsoTypeId));
|
|
|
|
if (NeedAllVtablesTypeId()) {
|
|
llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
|
|
VTable->addTypeMetadata(Offset.getQuantity(), MD);
|
|
}
|
|
}
|
|
|
|
// Fills in the supplied string map with the set of target features for the
|
|
// passed in function.
|
|
void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
|
|
const FunctionDecl *FD) {
|
|
StringRef TargetCPU = Target.getTargetOpts().CPU;
|
|
if (const auto *TD = FD->getAttr<TargetAttr>()) {
|
|
// If we have a TargetAttr build up the feature map based on that.
|
|
TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
|
|
|
|
// Make a copy of the features as passed on the command line into the
|
|
// beginning of the additional features from the function to override.
|
|
ParsedAttr.first.insert(ParsedAttr.first.begin(),
|
|
Target.getTargetOpts().FeaturesAsWritten.begin(),
|
|
Target.getTargetOpts().FeaturesAsWritten.end());
|
|
|
|
if (ParsedAttr.second != "")
|
|
TargetCPU = ParsedAttr.second;
|
|
|
|
// Now populate the feature map, first with the TargetCPU which is either
|
|
// the default or a new one from the target attribute string. Then we'll use
|
|
// the passed in features (FeaturesAsWritten) along with the new ones from
|
|
// the attribute.
|
|
Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
|
|
} else {
|
|
Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
|
|
Target.getTargetOpts().Features);
|
|
}
|
|
}
|
|
|
|
llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
|
|
if (!SanStats)
|
|
SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
|
|
|
|
return *SanStats;
|
|
}
|
|
llvm::Value *
|
|
CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
|
|
CodeGenFunction &CGF) {
|
|
llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
|
|
auto SamplerT = getOpenCLRuntime().getSamplerType();
|
|
auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
|
|
return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
|
|
"__translate_sampler_initializer"),
|
|
{C});
|
|
}
|