004be4037e
tl;dr See D81784 for the 'tombstone value' concept. This patch changes our behavior to be almost the same as GNU ld (except that we also use 1 for .debug_loc): * .debug_ranges & .debug_loc: 1 (LLD<11: 0+addend; GNU ld uses 1 for .debug_ranges) * .debug_*: 0 (LLD<11: 0+addend; GNU ld uses 0; future LLD: -1) We make the tweaks because: 1) The new tombstone is novel and needs more time to be adopted by consumers before it's the default. 2) The old (gold) strategy had problems with zero-length functions - so rather than going back that, we're going to the GNU ld strategy which doesn't have that problem. 3) One slight tweak to (2) is to apply the .debug_ranges workaround to .debug_loc for the same reasons it applies to debug_ranges - to avoid terminating lists early. ----- http://lists.llvm.org/pipermail/llvm-dev/2020-July/143482.html The tombstone value -1 in .debug_line caused problems to lldb (fixed by D83957; will be included in 11.0.0) and breakpad (fixed by https://crrev.com/c/2321300). It may potentially affects other DWARF consumers. For .debug_ranges & .debug_loc: 1, an argument preferring 1 (GNU ld for .debug_ranges) over -2 is that: ``` {-1, -2} <<< base address selection entry {0, length} <<< address range ``` may create a situation where low_pc is greater than high_pc. So we use 1, the GNU ld behavior for .debug_ranges For other .debug_* sections, there haven't been many reports. One issue is that bloaty (src/dwarf.cc) can incorrectly count address ranges in .debug_ranges . To reduce similar disruption, this patch changes the tombstone values to be similar to GNU ld. This does mean another behavior change to the default trunk behavior. Sorry about it. The default trunk behavior will be similar to release/11.x while we work on a transition plan for LLD users. Reviewed By: dblaikie, echristo Differential Revision: https://reviews.llvm.org/D84825 |
||
---|---|---|
clang | ||
clang-tools-extra | ||
compiler-rt | ||
debuginfo-tests | ||
flang | ||
libc | ||
libclc | ||
libcxx | ||
libcxxabi | ||
libunwind | ||
lld | ||
lldb | ||
llvm | ||
mlir | ||
openmp | ||
parallel-libs | ||
polly | ||
pstl | ||
utils/arcanist | ||
.arcconfig | ||
.arclint | ||
.clang-format | ||
.clang-tidy | ||
.git-blame-ignore-revs | ||
.gitignore | ||
CONTRIBUTING.md | ||
README.md |
README.md
The LLVM Compiler Infrastructure
This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting Started with the LLVM System
Taken from https://llvm.org/docs/GettingStarted.html.
Overview
Welcome to the LLVM project!
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.
C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.
This is an example work-flow and configuration to get and build the LLVM source:
-
Checkout LLVM (including related sub-projects like Clang):
-
git clone https://github.com/llvm/llvm-project.git
-
Or, on windows,
git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git
-
-
Configure and build LLVM and Clang:
-
cd llvm-project
-
mkdir build
-
cd build
-
cmake -G <generator> [options] ../llvm
Some common build system generators are:
Ninja
--- for generating Ninja build files. Most llvm developers use Ninja.Unix Makefiles
--- for generating make-compatible parallel makefiles.Visual Studio
--- for generating Visual Studio projects and solutions.Xcode
--- for generating Xcode projects.
Some Common options:
-
-DLLVM_ENABLE_PROJECTS='...'
--- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.For example, to build LLVM, Clang, libcxx, and libcxxabi, use
-DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi"
. -
-DCMAKE_INSTALL_PREFIX=directory
--- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default/usr/local
). -
-DCMAKE_BUILD_TYPE=type
--- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug. -
-DLLVM_ENABLE_ASSERTIONS=On
--- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).
-
cmake --build . [-- [options] <target>]
or your build system specified above directly.-
The default target (i.e.
ninja
ormake
) will build all of LLVM. -
The
check-all
target (i.e.ninja check-all
) will run the regression tests to ensure everything is in working order. -
CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own
check-<project>
target. -
Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for
make
, use the option-j NNN
, whereNNN
is the number of parallel jobs, e.g. the number of CPUs you have.
-
-
For more information see CMake
-
Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.