llvm-project/clang/lib/StaticAnalyzer/Checkers/ExprEngine.cpp

3233 lines
108 KiB
C++

//=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a meta-engine for path-sensitive dataflow analysis that
// is built on GREngine, but provides the boilerplate to execute transfer
// functions and build the ExplodedGraph at the expression level.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngineBuilders.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/DeclCXX.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/ImmutableList.h"
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#endif
using namespace clang;
using namespace ento;
using llvm::dyn_cast;
using llvm::dyn_cast_or_null;
using llvm::cast;
using llvm::APSInt;
namespace {
// Trait class for recording returned expression in the state.
struct ReturnExpr {
static int TagInt;
typedef const Stmt *data_type;
};
int ReturnExpr::TagInt;
}
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(0, &II);
}
//===----------------------------------------------------------------------===//
// Engine construction and deletion.
//===----------------------------------------------------------------------===//
ExprEngine::ExprEngine(AnalysisManager &mgr, TransferFuncs *tf)
: AMgr(mgr),
Engine(*this),
G(Engine.getGraph()),
Builder(NULL),
StateMgr(getContext(), mgr.getStoreManagerCreator(),
mgr.getConstraintManagerCreator(), G.getAllocator(),
*this),
SymMgr(StateMgr.getSymbolManager()),
svalBuilder(StateMgr.getSValBuilder()),
EntryNode(NULL), currentStmt(NULL),
NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL),
RaiseSel(GetNullarySelector("raise", getContext())),
BR(mgr, *this), TF(tf) {
// FIXME: Eventually remove the TF object entirely.
TF->RegisterChecks(*this);
TF->RegisterPrinters(getStateManager().Printers);
if (mgr.shouldEagerlyTrimExplodedGraph()) {
// Enable eager node reclaimation when constructing the ExplodedGraph.
G.enableNodeReclamation();
}
}
ExprEngine::~ExprEngine() {
BR.FlushReports();
delete [] NSExceptionInstanceRaiseSelectors;
}
//===----------------------------------------------------------------------===//
// Utility methods.
//===----------------------------------------------------------------------===//
const GRState* ExprEngine::getInitialState(const LocationContext *InitLoc) {
const GRState *state = StateMgr.getInitialState(InitLoc);
// Preconditions.
// FIXME: It would be nice if we had a more general mechanism to add
// such preconditions. Some day.
do {
const Decl *D = InitLoc->getDecl();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
// Precondition: the first argument of 'main' is an integer guaranteed
// to be > 0.
const IdentifierInfo *II = FD->getIdentifier();
if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
break;
const ParmVarDecl *PD = FD->getParamDecl(0);
QualType T = PD->getType();
if (!T->isIntegerType())
break;
const MemRegion *R = state->getRegion(PD, InitLoc);
if (!R)
break;
SVal V = state->getSVal(loc::MemRegionVal(R));
SVal Constraint_untested = evalBinOp(state, BO_GT, V,
svalBuilder.makeZeroVal(T),
getContext().IntTy);
DefinedOrUnknownSVal *Constraint =
dyn_cast<DefinedOrUnknownSVal>(&Constraint_untested);
if (!Constraint)
break;
if (const GRState *newState = state->assume(*Constraint, true))
state = newState;
break;
}
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
// Precondition: 'self' is always non-null upon entry to an Objective-C
// method.
const ImplicitParamDecl *SelfD = MD->getSelfDecl();
const MemRegion *R = state->getRegion(SelfD, InitLoc);
SVal V = state->getSVal(loc::MemRegionVal(R));
if (const Loc *LV = dyn_cast<Loc>(&V)) {
// Assume that the pointer value in 'self' is non-null.
state = state->assume(*LV, true);
assert(state && "'self' cannot be null");
}
}
} while (0);
return state;
}
//===----------------------------------------------------------------------===//
// Top-level transfer function logic (Dispatcher).
//===----------------------------------------------------------------------===//
/// evalAssume - Called by ConstraintManager. Used to call checker-specific
/// logic for handling assumptions on symbolic values.
const GRState *ExprEngine::processAssume(const GRState *state, SVal cond,
bool assumption) {
state = getCheckerManager().runCheckersForEvalAssume(state, cond, assumption);
// If the state is infeasible at this point, bail out.
if (!state)
return NULL;
return TF->evalAssume(state, cond, assumption);
}
bool ExprEngine::wantsRegionChangeUpdate(const GRState* state) {
return getCheckerManager().wantsRegionChangeUpdate(state);
}
const GRState *
ExprEngine::processRegionChanges(const GRState *state,
const MemRegion * const *Begin,
const MemRegion * const *End) {
return getCheckerManager().runCheckersForRegionChanges(state, Begin, End);
}
void ExprEngine::processEndWorklist(bool hasWorkRemaining) {
getCheckerManager().runCheckersForEndAnalysis(G, BR, *this);
}
void ExprEngine::processCFGElement(const CFGElement E,
StmtNodeBuilder& builder) {
switch (E.getKind()) {
case CFGElement::Statement:
ProcessStmt(E.getAs<CFGStmt>(), builder);
break;
case CFGElement::Initializer:
ProcessInitializer(E.getAs<CFGInitializer>(), builder);
break;
case CFGElement::ImplicitDtor:
ProcessImplicitDtor(E.getAs<CFGImplicitDtor>(), builder);
break;
default:
// Suppress compiler warning.
llvm_unreachable("Unexpected CFGElement kind.");
}
}
void ExprEngine::ProcessStmt(const CFGStmt S, StmtNodeBuilder& builder) {
// Reclaim any unnecessary nodes in the ExplodedGraph.
G.reclaimRecentlyAllocatedNodes();
// Recycle any unused states in the GRStateManager.
StateMgr.recycleUnusedStates();
currentStmt = S.getStmt();
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
currentStmt->getLocStart(),
"Error evaluating statement");
Builder = &builder;
EntryNode = builder.getPredecessor();
// Create the cleaned state.
const LocationContext *LC = EntryNode->getLocationContext();
SymbolReaper SymReaper(LC, currentStmt, SymMgr);
if (AMgr.shouldPurgeDead()) {
const GRState *St = EntryNode->getState();
getCheckerManager().runCheckersForLiveSymbols(St, SymReaper);
const StackFrameContext *SFC = LC->getCurrentStackFrame();
CleanedState = StateMgr.removeDeadBindings(St, SFC, SymReaper);
} else {
CleanedState = EntryNode->getState();
}
// Process any special transfer function for dead symbols.
ExplodedNodeSet Tmp;
if (!SymReaper.hasDeadSymbols())
Tmp.Add(EntryNode);
else {
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
SaveOr OldHasGen(Builder->hasGeneratedNode);
SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols);
Builder->PurgingDeadSymbols = true;
// FIXME: This should soon be removed.
ExplodedNodeSet Tmp2;
getTF().evalDeadSymbols(Tmp2, *this, *Builder, EntryNode,
CleanedState, SymReaper);
getCheckerManager().runCheckersForDeadSymbols(Tmp, Tmp2,
SymReaper, currentStmt, *this);
if (!Builder->BuildSinks && !Builder->hasGeneratedNode)
Tmp.Add(EntryNode);
}
bool HasAutoGenerated = false;
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
ExplodedNodeSet Dst;
// Set the cleaned state.
Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I));
// Visit the statement.
Visit(currentStmt, *I, Dst);
// Do we need to auto-generate a node? We only need to do this to generate
// a node with a "cleaned" state; CoreEngine will actually handle
// auto-transitions for other cases.
if (Dst.size() == 1 && *Dst.begin() == EntryNode
&& !Builder->hasGeneratedNode && !HasAutoGenerated) {
HasAutoGenerated = true;
builder.generateNode(currentStmt, GetState(EntryNode), *I);
}
}
// NULL out these variables to cleanup.
CleanedState = NULL;
EntryNode = NULL;
currentStmt = 0;
Builder = NULL;
}
void ExprEngine::ProcessInitializer(const CFGInitializer Init,
StmtNodeBuilder &builder) {
// We don't set EntryNode and currentStmt. And we don't clean up state.
const CXXCtorInitializer *BMI = Init.getInitializer();
ExplodedNode *pred = builder.getPredecessor();
const StackFrameContext *stackFrame = cast<StackFrameContext>(pred->getLocationContext());
const CXXConstructorDecl *decl = cast<CXXConstructorDecl>(stackFrame->getDecl());
const CXXThisRegion *thisReg = getCXXThisRegion(decl, stackFrame);
SVal thisVal = pred->getState()->getSVal(thisReg);
if (BMI->isAnyMemberInitializer()) {
ExplodedNodeSet Dst;
// Evaluate the initializer.
Visit(BMI->getInit(), pred, Dst);
for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end(); I != E; ++I){
ExplodedNode *Pred = *I;
const GRState *state = Pred->getState();
const FieldDecl *FD = BMI->getAnyMember();
SVal FieldLoc = state->getLValue(FD, thisVal);
SVal InitVal = state->getSVal(BMI->getInit());
state = state->bindLoc(FieldLoc, InitVal);
// Use a custom node building process.
PostInitializer PP(BMI, stackFrame);
// Builder automatically add the generated node to the deferred set,
// which are processed in the builder's dtor.
builder.generateNode(PP, state, Pred);
}
return;
}
assert(BMI->isBaseInitializer());
// Get the base class declaration.
const CXXConstructExpr *ctorExpr = cast<CXXConstructExpr>(BMI->getInit());
// Create the base object region.
SVal baseVal =
getStoreManager().evalDerivedToBase(thisVal, ctorExpr->getType());
const MemRegion *baseReg = baseVal.getAsRegion();
assert(baseReg);
Builder = &builder;
ExplodedNodeSet dst;
VisitCXXConstructExpr(ctorExpr, baseReg, pred, dst);
}
void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D,
StmtNodeBuilder &builder) {
Builder = &builder;
switch (D.getDtorKind()) {
case CFGElement::AutomaticObjectDtor:
ProcessAutomaticObjDtor(cast<CFGAutomaticObjDtor>(D), builder);
break;
case CFGElement::BaseDtor:
ProcessBaseDtor(cast<CFGBaseDtor>(D), builder);
break;
case CFGElement::MemberDtor:
ProcessMemberDtor(cast<CFGMemberDtor>(D), builder);
break;
case CFGElement::TemporaryDtor:
ProcessTemporaryDtor(cast<CFGTemporaryDtor>(D), builder);
break;
default:
llvm_unreachable("Unexpected dtor kind.");
}
}
void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor dtor,
StmtNodeBuilder &builder) {
ExplodedNode *pred = builder.getPredecessor();
const GRState *state = pred->getState();
const VarDecl *varDecl = dtor.getVarDecl();
QualType varType = varDecl->getType();
if (const ReferenceType *refType = varType->getAs<ReferenceType>())
varType = refType->getPointeeType();
const CXXRecordDecl *recordDecl = varType->getAsCXXRecordDecl();
assert(recordDecl && "get CXXRecordDecl fail");
const CXXDestructorDecl *dtorDecl = recordDecl->getDestructor();
Loc dest = state->getLValue(varDecl, pred->getLocationContext());
ExplodedNodeSet dstSet;
VisitCXXDestructor(dtorDecl, cast<loc::MemRegionVal>(dest).getRegion(),
dtor.getTriggerStmt(), pred, dstSet);
}
void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D,
StmtNodeBuilder &builder) {
}
void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D,
StmtNodeBuilder &builder) {
}
void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D,
StmtNodeBuilder &builder) {
}
void ExprEngine::Visit(const Stmt* S, ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
S->getLocStart(),
"Error evaluating statement");
// Expressions to ignore.
if (const Expr *Ex = dyn_cast<Expr>(S))
S = Ex->IgnoreParens();
// FIXME: add metadata to the CFG so that we can disable
// this check when we KNOW that there is no block-level subexpression.
// The motivation is that this check requires a hashtable lookup.
if (S != currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) {
Dst.Add(Pred);
return;
}
switch (S->getStmtClass()) {
// C++ stuff we don't support yet.
case Stmt::CXXBindTemporaryExprClass:
case Stmt::CXXCatchStmtClass:
case Stmt::CXXDefaultArgExprClass:
case Stmt::CXXDependentScopeMemberExprClass:
case Stmt::ExprWithCleanupsClass:
case Stmt::CXXNullPtrLiteralExprClass:
case Stmt::CXXPseudoDestructorExprClass:
case Stmt::CXXTemporaryObjectExprClass:
case Stmt::CXXThrowExprClass:
case Stmt::CXXTryStmtClass:
case Stmt::CXXTypeidExprClass:
case Stmt::CXXUuidofExprClass:
case Stmt::CXXUnresolvedConstructExprClass:
case Stmt::CXXScalarValueInitExprClass:
case Stmt::DependentScopeDeclRefExprClass:
case Stmt::UnaryTypeTraitExprClass:
case Stmt::BinaryTypeTraitExprClass:
case Stmt::UnresolvedLookupExprClass:
case Stmt::UnresolvedMemberExprClass:
case Stmt::CXXNoexceptExprClass:
case Stmt::PackExpansionExprClass:
case Stmt::SubstNonTypeTemplateParmPackExprClass:
{
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
Builder->BuildSinks = true;
MakeNode(Dst, S, Pred, GetState(Pred));
break;
}
case Stmt::ParenExprClass:
llvm_unreachable("ParenExprs already handled.");
// Cases that should never be evaluated simply because they shouldn't
// appear in the CFG.
case Stmt::BreakStmtClass:
case Stmt::CaseStmtClass:
case Stmt::CompoundStmtClass:
case Stmt::ContinueStmtClass:
case Stmt::DefaultStmtClass:
case Stmt::DoStmtClass:
case Stmt::GotoStmtClass:
case Stmt::IndirectGotoStmtClass:
case Stmt::LabelStmtClass:
case Stmt::NoStmtClass:
case Stmt::NullStmtClass:
llvm_unreachable("Stmt should not be in analyzer evaluation loop");
break;
case Stmt::GNUNullExprClass: {
MakeNode(Dst, S, Pred, GetState(Pred)->BindExpr(S, svalBuilder.makeNull()));
break;
}
case Stmt::ObjCAtSynchronizedStmtClass:
VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst);
break;
case Stmt::ObjCPropertyRefExprClass:
VisitObjCPropertyRefExpr(cast<ObjCPropertyRefExpr>(S), Pred, Dst);
break;
// Cases not handled yet; but will handle some day.
case Stmt::DesignatedInitExprClass:
case Stmt::ExtVectorElementExprClass:
case Stmt::ImaginaryLiteralClass:
case Stmt::ImplicitValueInitExprClass:
case Stmt::ObjCAtCatchStmtClass:
case Stmt::ObjCAtFinallyStmtClass:
case Stmt::ObjCAtTryStmtClass:
case Stmt::ObjCEncodeExprClass:
case Stmt::ObjCIsaExprClass:
case Stmt::ObjCProtocolExprClass:
case Stmt::ObjCSelectorExprClass:
case Stmt::ObjCStringLiteralClass:
case Stmt::ParenListExprClass:
case Stmt::PredefinedExprClass:
case Stmt::ShuffleVectorExprClass:
case Stmt::VAArgExprClass:
case Stmt::CUDAKernelCallExprClass:
case Stmt::OpaqueValueExprClass:
// Fall through.
// Cases we intentionally don't evaluate, since they don't need
// to be explicitly evaluated.
case Stmt::AddrLabelExprClass:
case Stmt::IntegerLiteralClass:
case Stmt::CharacterLiteralClass:
case Stmt::CXXBoolLiteralExprClass:
case Stmt::FloatingLiteralClass:
case Stmt::SizeOfPackExprClass:
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
break;
case Stmt::ArraySubscriptExprClass:
VisitLvalArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst);
break;
case Stmt::AsmStmtClass:
VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst);
break;
case Stmt::BlockDeclRefExprClass: {
const BlockDeclRefExpr *BE = cast<BlockDeclRefExpr>(S);
VisitCommonDeclRefExpr(BE, BE->getDecl(), Pred, Dst);
break;
}
case Stmt::BlockExprClass:
VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
break;
case Stmt::BinaryOperatorClass: {
const BinaryOperator* B = cast<BinaryOperator>(S);
if (B->isLogicalOp()) {
VisitLogicalExpr(B, Pred, Dst);
break;
}
else if (B->getOpcode() == BO_Comma) {
const GRState* state = GetState(Pred);
MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS())));
break;
}
if (AMgr.shouldEagerlyAssume() &&
(B->isRelationalOp() || B->isEqualityOp())) {
ExplodedNodeSet Tmp;
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
evalEagerlyAssume(Dst, Tmp, cast<Expr>(S));
}
else
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
}
case Stmt::CallExprClass: {
const CallExpr* C = cast<CallExpr>(S);
VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst);
break;
}
case Stmt::CXXConstructExprClass: {
const CXXConstructExpr *C = cast<CXXConstructExpr>(S);
// For block-level CXXConstructExpr, we don't have a destination region.
// Let VisitCXXConstructExpr() create one.
VisitCXXConstructExpr(C, 0, Pred, Dst);
break;
}
case Stmt::CXXMemberCallExprClass: {
const CXXMemberCallExpr *MCE = cast<CXXMemberCallExpr>(S);
VisitCXXMemberCallExpr(MCE, Pred, Dst);
break;
}
case Stmt::CXXOperatorCallExprClass: {
const CXXOperatorCallExpr *C = cast<CXXOperatorCallExpr>(S);
VisitCXXOperatorCallExpr(C, Pred, Dst);
break;
}
case Stmt::CXXNewExprClass: {
const CXXNewExpr *NE = cast<CXXNewExpr>(S);
VisitCXXNewExpr(NE, Pred, Dst);
break;
}
case Stmt::CXXDeleteExprClass: {
const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S);
VisitCXXDeleteExpr(CDE, Pred, Dst);
break;
}
// FIXME: ChooseExpr is really a constant. We need to fix
// the CFG do not model them as explicit control-flow.
case Stmt::ChooseExprClass: { // __builtin_choose_expr
const ChooseExpr* C = cast<ChooseExpr>(S);
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::CompoundAssignOperatorClass:
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
case Stmt::CompoundLiteralExprClass:
VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst);
break;
case Stmt::BinaryConditionalOperatorClass:
case Stmt::ConditionalOperatorClass: { // '?' operator
const AbstractConditionalOperator *C
= cast<AbstractConditionalOperator>(S);
VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst);
break;
}
case Stmt::CXXThisExprClass:
VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
break;
case Stmt::DeclRefExprClass: {
const DeclRefExpr *DE = cast<DeclRefExpr>(S);
VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst);
break;
}
case Stmt::DeclStmtClass:
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
break;
case Stmt::ForStmtClass:
// This case isn't for branch processing, but for handling the
// initialization of a condition variable.
VisitCondInit(cast<ForStmt>(S)->getConditionVariable(), S, Pred, Dst);
break;
case Stmt::ImplicitCastExprClass:
case Stmt::CStyleCastExprClass:
case Stmt::CXXStaticCastExprClass:
case Stmt::CXXDynamicCastExprClass:
case Stmt::CXXReinterpretCastExprClass:
case Stmt::CXXConstCastExprClass:
case Stmt::CXXFunctionalCastExprClass: {
const CastExpr* C = cast<CastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::IfStmtClass:
// This case isn't for branch processing, but for handling the
// initialization of a condition variable.
VisitCondInit(cast<IfStmt>(S)->getConditionVariable(), S, Pred, Dst);
break;
case Stmt::InitListExprClass:
VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
break;
case Stmt::MemberExprClass:
VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst);
break;
case Stmt::ObjCIvarRefExprClass:
VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst);
break;
case Stmt::ObjCForCollectionStmtClass:
VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
break;
case Stmt::ObjCMessageExprClass:
VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst);
break;
case Stmt::ObjCAtThrowStmtClass: {
// FIXME: This is not complete. We basically treat @throw as
// an abort.
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
Builder->BuildSinks = true;
MakeNode(Dst, S, Pred, GetState(Pred));
break;
}
case Stmt::ReturnStmtClass:
VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
break;
case Stmt::OffsetOfExprClass:
VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst);
break;
case Stmt::SizeOfAlignOfExprClass:
VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), Pred, Dst);
break;
case Stmt::StmtExprClass: {
const StmtExpr* SE = cast<StmtExpr>(S);
if (SE->getSubStmt()->body_empty()) {
// Empty statement expression.
assert(SE->getType() == getContext().VoidTy
&& "Empty statement expression must have void type.");
Dst.Add(Pred);
break;
}
if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
const GRState* state = GetState(Pred);
MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr)));
}
else
Dst.Add(Pred);
break;
}
case Stmt::StringLiteralClass: {
const GRState* state = GetState(Pred);
SVal V = state->getLValue(cast<StringLiteral>(S));
MakeNode(Dst, S, Pred, state->BindExpr(S, V));
return;
}
case Stmt::SwitchStmtClass:
// This case isn't for branch processing, but for handling the
// initialization of a condition variable.
VisitCondInit(cast<SwitchStmt>(S)->getConditionVariable(), S, Pred, Dst);
break;
case Stmt::UnaryOperatorClass: {
const UnaryOperator *U = cast<UnaryOperator>(S);
if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UO_LNot)) {
ExplodedNodeSet Tmp;
VisitUnaryOperator(U, Pred, Tmp);
evalEagerlyAssume(Dst, Tmp, U);
}
else
VisitUnaryOperator(U, Pred, Dst);
break;
}
case Stmt::WhileStmtClass:
// This case isn't for branch processing, but for handling the
// initialization of a condition variable.
VisitCondInit(cast<WhileStmt>(S)->getConditionVariable(), S, Pred, Dst);
break;
}
}
//===----------------------------------------------------------------------===//
// Block entrance. (Update counters).
//===----------------------------------------------------------------------===//
void ExprEngine::processCFGBlockEntrance(ExplodedNodeSet &dstNodes,
GenericNodeBuilder<BlockEntrance> &nodeBuilder){
// FIXME: Refactor this into a checker.
const CFGBlock *block = nodeBuilder.getProgramPoint().getBlock();
ExplodedNode *pred = nodeBuilder.getPredecessor();
if (nodeBuilder.getBlockCounter().getNumVisited(
pred->getLocationContext()->getCurrentStackFrame(),
block->getBlockID()) >= AMgr.getMaxVisit()) {
static int tag = 0;
nodeBuilder.generateNode(pred->getState(), pred, &tag, true);
}
}
//===----------------------------------------------------------------------===//
// Generic node creation.
//===----------------------------------------------------------------------===//
ExplodedNode* ExprEngine::MakeNode(ExplodedNodeSet& Dst, const Stmt* S,
ExplodedNode* Pred, const GRState* St,
ProgramPoint::Kind K, const void *tag) {
assert (Builder && "StmtNodeBuilder not present.");
SaveAndRestore<const void*> OldTag(Builder->Tag);
Builder->Tag = tag;
return Builder->MakeNode(Dst, S, Pred, St, K);
}
//===----------------------------------------------------------------------===//
// Branch processing.
//===----------------------------------------------------------------------===//
const GRState* ExprEngine::MarkBranch(const GRState* state,
const Stmt* Terminator,
bool branchTaken) {
switch (Terminator->getStmtClass()) {
default:
return state;
case Stmt::BinaryOperatorClass: { // '&&' and '||'
const BinaryOperator* B = cast<BinaryOperator>(Terminator);
BinaryOperator::Opcode Op = B->getOpcode();
assert (Op == BO_LAnd || Op == BO_LOr);
// For &&, if we take the true branch, then the value of the whole
// expression is that of the RHS expression.
//
// For ||, if we take the false branch, then the value of the whole
// expression is that of the RHS expression.
const Expr* Ex = (Op == BO_LAnd && branchTaken) ||
(Op == BO_LOr && !branchTaken)
? B->getRHS() : B->getLHS();
return state->BindExpr(B, UndefinedVal(Ex));
}
case Stmt::BinaryConditionalOperatorClass:
case Stmt::ConditionalOperatorClass: { // ?:
const AbstractConditionalOperator* C
= cast<AbstractConditionalOperator>(Terminator);
// For ?, if branchTaken == true then the value is either the LHS or
// the condition itself. (GNU extension).
const Expr* Ex;
if (branchTaken)
Ex = C->getTrueExpr();
else
Ex = C->getFalseExpr();
return state->BindExpr(C, UndefinedVal(Ex));
}
case Stmt::ChooseExprClass: { // ?:
const ChooseExpr* C = cast<ChooseExpr>(Terminator);
const Expr* Ex = branchTaken ? C->getLHS() : C->getRHS();
return state->BindExpr(C, UndefinedVal(Ex));
}
}
}
/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
/// to try to recover some path-sensitivity for casts of symbolic
/// integers that promote their values (which are currently not tracked well).
/// This function returns the SVal bound to Condition->IgnoreCasts if all the
// cast(s) did was sign-extend the original value.
static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state,
const Stmt* Condition, ASTContext& Ctx) {
const Expr *Ex = dyn_cast<Expr>(Condition);
if (!Ex)
return UnknownVal();
uint64_t bits = 0;
bool bitsInit = false;
while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
QualType T = CE->getType();
if (!T->isIntegerType())
return UnknownVal();
uint64_t newBits = Ctx.getTypeSize(T);
if (!bitsInit || newBits < bits) {
bitsInit = true;
bits = newBits;
}
Ex = CE->getSubExpr();
}
// We reached a non-cast. Is it a symbolic value?
QualType T = Ex->getType();
if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits)
return UnknownVal();
return state->getSVal(Ex);
}
void ExprEngine::processBranch(const Stmt* Condition, const Stmt* Term,
BranchNodeBuilder& builder) {
// Check for NULL conditions; e.g. "for(;;)"
if (!Condition) {
builder.markInfeasible(false);
return;
}
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
Condition->getLocStart(),
"Error evaluating branch");
getCheckerManager().runCheckersForBranchCondition(Condition, builder, *this);
// If the branch condition is undefined, return;
if (!builder.isFeasible(true) && !builder.isFeasible(false))
return;
const GRState* PrevState = builder.getState();
SVal X = PrevState->getSVal(Condition);
if (X.isUnknownOrUndef()) {
// Give it a chance to recover from unknown.
if (const Expr *Ex = dyn_cast<Expr>(Condition)) {
if (Ex->getType()->isIntegerType()) {
// Try to recover some path-sensitivity. Right now casts of symbolic
// integers that promote their values are currently not tracked well.
// If 'Condition' is such an expression, try and recover the
// underlying value and use that instead.
SVal recovered = RecoverCastedSymbol(getStateManager(),
builder.getState(), Condition,
getContext());
if (!recovered.isUnknown()) {
X = recovered;
}
}
}
// If the condition is still unknown, give up.
if (X.isUnknownOrUndef()) {
builder.generateNode(MarkBranch(PrevState, Term, true), true);
builder.generateNode(MarkBranch(PrevState, Term, false), false);
return;
}
}
DefinedSVal V = cast<DefinedSVal>(X);
// Process the true branch.
if (builder.isFeasible(true)) {
if (const GRState *state = PrevState->assume(V, true))
builder.generateNode(MarkBranch(state, Term, true), true);
else
builder.markInfeasible(true);
}
// Process the false branch.
if (builder.isFeasible(false)) {
if (const GRState *state = PrevState->assume(V, false))
builder.generateNode(MarkBranch(state, Term, false), false);
else
builder.markInfeasible(false);
}
}
/// processIndirectGoto - Called by CoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a computed goto jump.
void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) {
const GRState *state = builder.getState();
SVal V = state->getSVal(builder.getTarget());
// Three possibilities:
//
// (1) We know the computed label.
// (2) The label is NULL (or some other constant), or Undefined.
// (3) We have no clue about the label. Dispatch to all targets.
//
typedef IndirectGotoNodeBuilder::iterator iterator;
if (isa<loc::GotoLabel>(V)) {
const LabelDecl *L = cast<loc::GotoLabel>(V).getLabel();
for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) {
if (I.getLabel() == L) {
builder.generateNode(I, state);
return;
}
}
assert(false && "No block with label.");
return;
}
if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) {
// Dispatch to the first target and mark it as a sink.
//ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
// FIXME: add checker visit.
// UndefBranches.insert(N);
return;
}
// This is really a catch-all. We don't support symbolics yet.
// FIXME: Implement dispatch for symbolic pointers.
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
builder.generateNode(I, state);
}
void ExprEngine::VisitGuardedExpr(const Expr* Ex, const Expr* L,
const Expr* R,
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
assert(Ex == currentStmt &&
Pred->getLocationContext()->getCFG()->isBlkExpr(Ex));
const GRState* state = GetState(Pred);
SVal X = state->getSVal(Ex);
assert (X.isUndef());
const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData();
assert(SE);
X = state->getSVal(SE);
// Make sure that we invalidate the previous binding.
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true));
}
/// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path
/// nodes when the control reaches the end of a function.
void ExprEngine::processEndOfFunction(EndOfFunctionNodeBuilder& builder) {
getTF().evalEndPath(*this, builder);
StateMgr.EndPath(builder.getState());
getCheckerManager().runCheckersForEndPath(builder, *this);
}
/// ProcessSwitch - Called by CoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a switch statement.
void ExprEngine::processSwitch(SwitchNodeBuilder& builder) {
typedef SwitchNodeBuilder::iterator iterator;
const GRState* state = builder.getState();
const Expr* CondE = builder.getCondition();
SVal CondV_untested = state->getSVal(CondE);
if (CondV_untested.isUndef()) {
//ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
// FIXME: add checker
//UndefBranches.insert(N);
return;
}
DefinedOrUnknownSVal CondV = cast<DefinedOrUnknownSVal>(CondV_untested);
const GRState *DefaultSt = state;
iterator I = builder.begin(), EI = builder.end();
bool defaultIsFeasible = I == EI;
for ( ; I != EI; ++I) {
const CaseStmt* Case = I.getCase();
// Evaluate the LHS of the case value.
Expr::EvalResult V1;
bool b = Case->getLHS()->Evaluate(V1, getContext());
// Sanity checks. These go away in Release builds.
assert(b && V1.Val.isInt() && !V1.HasSideEffects
&& "Case condition must evaluate to an integer constant.");
(void)b; // silence unused variable warning
assert(V1.Val.getInt().getBitWidth() ==
getContext().getTypeSize(CondE->getType()));
// Get the RHS of the case, if it exists.
Expr::EvalResult V2;
if (const Expr* E = Case->getRHS()) {
b = E->Evaluate(V2, getContext());
assert(b && V2.Val.isInt() && !V2.HasSideEffects
&& "Case condition must evaluate to an integer constant.");
(void)b; // silence unused variable warning
}
else
V2 = V1;
// FIXME: Eventually we should replace the logic below with a range
// comparison, rather than concretize the values within the range.
// This should be easy once we have "ranges" for NonLVals.
do {
nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt()));
DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state,
CondV, CaseVal);
// Now "assume" that the case matches.
if (const GRState* stateNew = state->assume(Res, true)) {
builder.generateCaseStmtNode(I, stateNew);
// If CondV evaluates to a constant, then we know that this
// is the *only* case that we can take, so stop evaluating the
// others.
if (isa<nonloc::ConcreteInt>(CondV))
return;
}
// Now "assume" that the case doesn't match. Add this state
// to the default state (if it is feasible).
if (DefaultSt) {
if (const GRState *stateNew = DefaultSt->assume(Res, false)) {
defaultIsFeasible = true;
DefaultSt = stateNew;
}
else {
defaultIsFeasible = false;
DefaultSt = NULL;
}
}
// Concretize the next value in the range.
if (V1.Val.getInt() == V2.Val.getInt())
break;
++V1.Val.getInt();
assert (V1.Val.getInt() <= V2.Val.getInt());
} while (true);
}
if (!defaultIsFeasible)
return;
// If we have switch(enum value), the default branch is not
// feasible if all of the enum constants not covered by 'case:' statements
// are not feasible values for the switch condition.
//
// Note that this isn't as accurate as it could be. Even if there isn't
// a case for a particular enum value as long as that enum value isn't
// feasible then it shouldn't be considered for making 'default:' reachable.
const SwitchStmt *SS = builder.getSwitch();
const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts();
if (CondExpr->getType()->getAs<EnumType>()) {
if (SS->isAllEnumCasesCovered())
return;
}
builder.generateDefaultCaseNode(DefaultSt);
}
void ExprEngine::processCallEnter(CallEnterNodeBuilder &B) {
const GRState *state = B.getState()->enterStackFrame(B.getCalleeContext());
B.generateNode(state);
}
void ExprEngine::processCallExit(CallExitNodeBuilder &B) {
const GRState *state = B.getState();
const ExplodedNode *Pred = B.getPredecessor();
const StackFrameContext *calleeCtx =
cast<StackFrameContext>(Pred->getLocationContext());
const Stmt *CE = calleeCtx->getCallSite();
// If the callee returns an expression, bind its value to CallExpr.
const Stmt *ReturnedExpr = state->get<ReturnExpr>();
if (ReturnedExpr) {
SVal RetVal = state->getSVal(ReturnedExpr);
state = state->BindExpr(CE, RetVal);
// Clear the return expr GDM.
state = state->remove<ReturnExpr>();
}
// Bind the constructed object value to CXXConstructExpr.
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
const CXXThisRegion *ThisR =
getCXXThisRegion(CCE->getConstructor()->getParent(), calleeCtx);
SVal ThisV = state->getSVal(ThisR);
// Always bind the region to the CXXConstructExpr.
state = state->BindExpr(CCE, ThisV);
}
B.generateNode(state);
}
//===----------------------------------------------------------------------===//
// Transfer functions: logical operations ('&&', '||').
//===----------------------------------------------------------------------===//
void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
assert(B->getOpcode() == BO_LAnd ||
B->getOpcode() == BO_LOr);
assert(B==currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(B));
const GRState* state = GetState(Pred);
SVal X = state->getSVal(B);
assert(X.isUndef());
const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData();
assert(Ex);
if (Ex == B->getRHS()) {
X = state->getSVal(Ex);
// Handle undefined values.
if (X.isUndef()) {
MakeNode(Dst, B, Pred, state->BindExpr(B, X));
return;
}
DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X);
// We took the RHS. Because the value of the '&&' or '||' expression must
// evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
// or 1. Alternatively, we could take a lazy approach, and calculate this
// value later when necessary. We don't have the machinery in place for
// this right now, and since most logical expressions are used for branches,
// the payoff is not likely to be large. Instead, we do eager evaluation.
if (const GRState *newState = state->assume(XD, true))
MakeNode(Dst, B, Pred,
newState->BindExpr(B, svalBuilder.makeIntVal(1U, B->getType())));
if (const GRState *newState = state->assume(XD, false))
MakeNode(Dst, B, Pred,
newState->BindExpr(B, svalBuilder.makeIntVal(0U, B->getType())));
}
else {
// We took the LHS expression. Depending on whether we are '&&' or
// '||' we know what the value of the expression is via properties of
// the short-circuiting.
X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U,
B->getType());
MakeNode(Dst, B, Pred, state->BindExpr(B, X));
}
}
//===----------------------------------------------------------------------===//
// Transfer functions: Loads and stores.
//===----------------------------------------------------------------------===//
void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
ExplodedNodeSet Tmp;
CanQualType T = getContext().getCanonicalType(BE->getType());
SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
Pred->getLocationContext());
MakeNode(Tmp, BE, Pred, GetState(Pred)->BindExpr(BE, V),
ProgramPoint::PostLValueKind);
// Post-visit the BlockExpr.
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
}
void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
const GRState *state = GetState(Pred);
if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
assert(Ex->isLValue());
SVal V = state->getLValue(VD, Pred->getLocationContext());
// For references, the 'lvalue' is the pointer address stored in the
// reference region.
if (VD->getType()->isReferenceType()) {
if (const MemRegion *R = V.getAsRegion())
V = state->getSVal(R);
else
V = UnknownVal();
}
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V),
ProgramPoint::PostLValueKind);
return;
}
if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) {
assert(!Ex->isLValue());
SVal V = svalBuilder.makeIntVal(ED->getInitVal());
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V));
return;
}
if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) {
SVal V = svalBuilder.getFunctionPointer(FD);
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V),
ProgramPoint::PostLValueKind);
return;
}
assert (false &&
"ValueDecl support for this ValueDecl not implemented.");
}
/// VisitArraySubscriptExpr - Transfer function for array accesses
void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr* A,
ExplodedNode* Pred,
ExplodedNodeSet& Dst){
const Expr* Base = A->getBase()->IgnoreParens();
const Expr* Idx = A->getIdx()->IgnoreParens();
// Evaluate the base.
ExplodedNodeSet Tmp;
Visit(Base, Pred, Tmp);
for (ExplodedNodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) {
ExplodedNodeSet Tmp2;
Visit(Idx, *I1, Tmp2); // Evaluate the index.
ExplodedNodeSet Tmp3;
getCheckerManager().runCheckersForPreStmt(Tmp3, Tmp2, A, *this);
for (ExplodedNodeSet::iterator I2=Tmp3.begin(),E2=Tmp3.end();I2!=E2; ++I2) {
const GRState* state = GetState(*I2);
SVal V = state->getLValue(A->getType(), state->getSVal(Idx),
state->getSVal(Base));
assert(A->isLValue());
MakeNode(Dst, A, *I2, state->BindExpr(A, V), ProgramPoint::PostLValueKind);
}
}
}
/// VisitMemberExpr - Transfer function for member expressions.
void ExprEngine::VisitMemberExpr(const MemberExpr* M, ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
Expr *baseExpr = M->getBase()->IgnoreParens();
ExplodedNodeSet dstBase;
Visit(baseExpr, Pred, dstBase);
FieldDecl *field = dyn_cast<FieldDecl>(M->getMemberDecl());
if (!field) // FIXME: skipping member expressions for non-fields
return;
for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end();
I != E; ++I) {
const GRState* state = GetState(*I);
SVal baseExprVal = state->getSVal(baseExpr);
if (isa<nonloc::LazyCompoundVal>(baseExprVal) ||
isa<nonloc::CompoundVal>(baseExprVal) ||
// FIXME: This can originate by conjuring a symbol for an unknown
// temporary struct object, see test/Analysis/fields.c:
// (p = getit()).x
isa<nonloc::SymbolVal>(baseExprVal)) {
MakeNode(Dst, M, *I, state->BindExpr(M, UnknownVal()));
continue;
}
// FIXME: Should we insert some assumption logic in here to determine
// if "Base" is a valid piece of memory? Before we put this assumption
// later when using FieldOffset lvals (which we no longer have).
// For all other cases, compute an lvalue.
SVal L = state->getLValue(field, baseExprVal);
if (M->isLValue())
MakeNode(Dst, M, *I, state->BindExpr(M, L), ProgramPoint::PostLValueKind);
else
evalLoad(Dst, M, *I, state, L);
}
}
/// evalBind - Handle the semantics of binding a value to a specific location.
/// This method is used by evalStore and (soon) VisitDeclStmt, and others.
void ExprEngine::evalBind(ExplodedNodeSet& Dst, const Stmt* StoreE,
ExplodedNode* Pred, const GRState* state,
SVal location, SVal Val, bool atDeclInit) {
// Do a previsit of the bind.
ExplodedNodeSet CheckedSet, Src;
Src.Add(Pred);
getCheckerManager().runCheckersForBind(CheckedSet, Src, location, Val, StoreE,
*this);
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
I!=E; ++I) {
if (Pred != *I)
state = GetState(*I);
const GRState* newState = 0;
if (atDeclInit) {
const VarRegion *VR =
cast<VarRegion>(cast<loc::MemRegionVal>(location).getRegion());
newState = state->bindDecl(VR, Val);
}
else {
if (location.isUnknown()) {
// We know that the new state will be the same as the old state since
// the location of the binding is "unknown". Consequently, there
// is no reason to just create a new node.
newState = state;
}
else {
// We are binding to a value other than 'unknown'. Perform the binding
// using the StoreManager.
newState = state->bindLoc(cast<Loc>(location), Val);
}
}
// The next thing to do is check if the TransferFuncs object wants to
// update the state based on the new binding. If the GRTransferFunc object
// doesn't do anything, just auto-propagate the current state.
// NOTE: We use 'AssignE' for the location of the PostStore if 'AssignE'
// is non-NULL. Checkers typically care about
StmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, newState, StoreE,
true);
getTF().evalBind(BuilderRef, location, Val);
}
}
/// evalStore - Handle the semantics of a store via an assignment.
/// @param Dst The node set to store generated state nodes
/// @param AssignE The assignment expression if the store happens in an
/// assignment.
/// @param LocatioinE The location expression that is stored to.
/// @param state The current simulation state
/// @param location The location to store the value
/// @param Val The value to be stored
void ExprEngine::evalStore(ExplodedNodeSet& Dst, const Expr *AssignE,
const Expr* LocationE,
ExplodedNode* Pred,
const GRState* state, SVal location, SVal Val,
const void *tag) {
assert(Builder && "StmtNodeBuilder must be defined.");
// Proceed with the store. We use AssignE as the anchor for the PostStore
// ProgramPoint if it is non-NULL, and LocationE otherwise.
const Expr *StoreE = AssignE ? AssignE : LocationE;
if (isa<loc::ObjCPropRef>(location)) {
loc::ObjCPropRef prop = cast<loc::ObjCPropRef>(location);
ExplodedNodeSet src = Pred;
return VisitObjCMessage(ObjCPropertySetter(prop.getPropRefExpr(),
StoreE, Val), src, Dst);
}
// Evaluate the location (checks for bad dereferences).
ExplodedNodeSet Tmp;
evalLocation(Tmp, LocationE, Pred, state, location, tag, false);
if (Tmp.empty())
return;
if (location.isUndef())
return;
SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind,
ProgramPoint::PostStoreKind);
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
evalBind(Dst, StoreE, *NI, GetState(*NI), location, Val);
}
void ExprEngine::evalLoad(ExplodedNodeSet& Dst, const Expr *Ex,
ExplodedNode* Pred,
const GRState* state, SVal location,
const void *tag, QualType LoadTy) {
assert(!isa<NonLoc>(location) && "location cannot be a NonLoc.");
if (isa<loc::ObjCPropRef>(location)) {
loc::ObjCPropRef prop = cast<loc::ObjCPropRef>(location);
ExplodedNodeSet src = Pred;
return VisitObjCMessage(ObjCPropertyGetter(prop.getPropRefExpr(), Ex),
src, Dst);
}
// Are we loading from a region? This actually results in two loads; one
// to fetch the address of the referenced value and one to fetch the
// referenced value.
if (const TypedRegion *TR =
dyn_cast_or_null<TypedRegion>(location.getAsRegion())) {
QualType ValTy = TR->getValueType();
if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) {
static int loadReferenceTag = 0;
ExplodedNodeSet Tmp;
evalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag,
getContext().getPointerType(RT->getPointeeType()));
// Perform the load from the referenced value.
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) {
state = GetState(*I);
location = state->getSVal(Ex);
evalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy);
}
return;
}
}
evalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy);
}
void ExprEngine::evalLoadCommon(ExplodedNodeSet& Dst, const Expr *Ex,
ExplodedNode* Pred,
const GRState* state, SVal location,
const void *tag, QualType LoadTy) {
// Evaluate the location (checks for bad dereferences).
ExplodedNodeSet Tmp;
evalLocation(Tmp, Ex, Pred, state, location, tag, true);
if (Tmp.empty())
return;
if (location.isUndef())
return;
SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind);
// Proceed with the load.
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
state = GetState(*NI);
if (location.isUnknown()) {
// This is important. We must nuke the old binding.
MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()),
ProgramPoint::PostLoadKind, tag);
}
else {
if (LoadTy.isNull())
LoadTy = Ex->getType();
SVal V = state->getSVal(cast<Loc>(location), LoadTy);
MakeNode(Dst, Ex, *NI, state->bindExprAndLocation(Ex, location, V),
ProgramPoint::PostLoadKind, tag);
}
}
}
void ExprEngine::evalLocation(ExplodedNodeSet &Dst, const Stmt *S,
ExplodedNode* Pred,
const GRState* state, SVal location,
const void *tag, bool isLoad) {
// Early checks for performance reason.
if (location.isUnknown()) {
Dst.Add(Pred);
return;
}
ExplodedNodeSet Src;
if (Builder->GetState(Pred) == state) {
Src.Add(Pred);
} else {
// Associate this new state with an ExplodedNode.
// FIXME: If I pass null tag, the graph is incorrect, e.g for
// int *p;
// p = 0;
// *p = 0xDEADBEEF;
// "p = 0" is not noted as "Null pointer value stored to 'p'" but
// instead "int *p" is noted as
// "Variable 'p' initialized to a null pointer value"
ExplodedNode *N = Builder->generateNode(S, state, Pred, this);
Src.Add(N ? N : Pred);
}
getCheckerManager().runCheckersForLocation(Dst, Src, location, isLoad, S,
*this);
}
bool ExprEngine::InlineCall(ExplodedNodeSet &Dst, const CallExpr *CE,
ExplodedNode *Pred) {
const GRState *state = GetState(Pred);
const Expr *Callee = CE->getCallee();
SVal L = state->getSVal(Callee);
const FunctionDecl *FD = L.getAsFunctionDecl();
if (!FD)
return false;
// Check if the function definition is in the same translation unit.
if (FD->hasBody(FD)) {
const StackFrameContext *stackFrame =
AMgr.getStackFrame(AMgr.getAnalysisContext(FD),
Pred->getLocationContext(),
CE, Builder->getBlock(), Builder->getIndex());
// Now we have the definition of the callee, create a CallEnter node.
CallEnter Loc(CE, stackFrame, Pred->getLocationContext());
ExplodedNode *N = Builder->generateNode(Loc, state, Pred);
Dst.Add(N);
return true;
}
// Check if we can find the function definition in other translation units.
if (AMgr.hasIndexer()) {
AnalysisContext *C = AMgr.getAnalysisContextInAnotherTU(FD);
if (C == 0)
return false;
const StackFrameContext *stackFrame =
AMgr.getStackFrame(C, Pred->getLocationContext(),
CE, Builder->getBlock(), Builder->getIndex());
CallEnter Loc(CE, stackFrame, Pred->getLocationContext());
ExplodedNode *N = Builder->generateNode(Loc, state, Pred);
Dst.Add(N);
return true;
}
return false;
}
void ExprEngine::VisitCall(const CallExpr* CE, ExplodedNode* Pred,
CallExpr::const_arg_iterator AI,
CallExpr::const_arg_iterator AE,
ExplodedNodeSet& Dst) {
// Determine the type of function we're calling (if available).
const FunctionProtoType *Proto = NULL;
QualType FnType = CE->getCallee()->IgnoreParens()->getType();
if (const PointerType *FnTypePtr = FnType->getAs<PointerType>())
Proto = FnTypePtr->getPointeeType()->getAs<FunctionProtoType>();
// Evaluate the arguments.
ExplodedNodeSet ArgsEvaluated;
evalArguments(CE->arg_begin(), CE->arg_end(), Proto, Pred, ArgsEvaluated);
// Now process the call itself.
ExplodedNodeSet DstTmp;
const Expr* Callee = CE->getCallee()->IgnoreParens();
for (ExplodedNodeSet::iterator NI=ArgsEvaluated.begin(),
NE=ArgsEvaluated.end(); NI != NE; ++NI) {
// Evaluate the callee.
ExplodedNodeSet DstTmp2;
Visit(Callee, *NI, DstTmp2);
// Perform the previsit of the CallExpr, storing the results in DstTmp.
getCheckerManager().runCheckersForPreStmt(DstTmp, DstTmp2, CE, *this);
}
class DefaultEval : public GraphExpander {
ExprEngine &Eng;
const CallExpr *CE;
public:
bool Inlined;
DefaultEval(ExprEngine &eng, const CallExpr *ce)
: Eng(eng), CE(ce), Inlined(false) { }
virtual void expandGraph(ExplodedNodeSet &Dst, ExplodedNode *Pred) {
if (Eng.getAnalysisManager().shouldInlineCall() &&
Eng.InlineCall(Dst, CE, Pred)) {
Inlined = true;
} else {
StmtNodeBuilder &Builder = Eng.getBuilder();
assert(&Builder && "StmtNodeBuilder must be defined.");
// Dispatch to the plug-in transfer function.
unsigned oldSize = Dst.size();
SaveOr OldHasGen(Builder.hasGeneratedNode);
// Dispatch to transfer function logic to handle the call itself.
const Expr* Callee = CE->getCallee()->IgnoreParens();
const GRState* state = Eng.GetState(Pred);
SVal L = state->getSVal(Callee);
Eng.getTF().evalCall(Dst, Eng, Builder, CE, L, Pred);
// Handle the case where no nodes where generated. Auto-generate that
// contains the updated state if we aren't generating sinks.
if (!Builder.BuildSinks && Dst.size() == oldSize &&
!Builder.hasGeneratedNode)
Eng.MakeNode(Dst, CE, Pred, state);
}
}
};
// Finally, evaluate the function call. We try each of the checkers
// to see if the can evaluate the function call.
ExplodedNodeSet DstTmp3;
DefaultEval defEval(*this, CE);
getCheckerManager().runCheckersForEvalCall(DstTmp3, DstTmp, CE,
*this, &defEval);
// Callee is inlined. We shouldn't do post call checking.
if (defEval.Inlined)
return;
// Finally, perform the post-condition check of the CallExpr and store
// the created nodes in 'Dst'.
getCheckerManager().runCheckersForPostStmt(Dst, DstTmp3, CE, *this);
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C dot-syntax to access a property.
//===----------------------------------------------------------------------===//
void ExprEngine::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Ex,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
ExplodedNodeSet dstBase;
// Visit the receiver (if any).
if (Ex->isObjectReceiver())
Visit(Ex->getBase(), Pred, dstBase);
else
dstBase = Pred;
ExplodedNodeSet dstPropRef;
// Using the base, compute the lvalue of the instance variable.
for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end();
I!=E; ++I) {
ExplodedNode *nodeBase = *I;
const GRState *state = GetState(nodeBase);
MakeNode(dstPropRef, Ex, *I, state->BindExpr(Ex, loc::ObjCPropRef(Ex)));
}
Dst.insert(dstPropRef);
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C ivar references.
//===----------------------------------------------------------------------===//
static std::pair<const void*,const void*> EagerlyAssumeTag
= std::pair<const void*,const void*>(&EagerlyAssumeTag,static_cast<void*>(0));
void ExprEngine::evalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src,
const Expr *Ex) {
for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) {
ExplodedNode *Pred = *I;
// Test if the previous node was as the same expression. This can happen
// when the expression fails to evaluate to anything meaningful and
// (as an optimization) we don't generate a node.
ProgramPoint P = Pred->getLocation();
if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) {
Dst.Add(Pred);
continue;
}
const GRState* state = GetState(Pred);
SVal V = state->getSVal(Ex);
if (nonloc::SymExprVal *SEV = dyn_cast<nonloc::SymExprVal>(&V)) {
// First assume that the condition is true.
if (const GRState *stateTrue = state->assume(*SEV, true)) {
stateTrue = stateTrue->BindExpr(Ex,
svalBuilder.makeIntVal(1U, Ex->getType()));
Dst.Add(Builder->generateNode(PostStmtCustom(Ex,
&EagerlyAssumeTag, Pred->getLocationContext()),
stateTrue, Pred));
}
// Next, assume that the condition is false.
if (const GRState *stateFalse = state->assume(*SEV, false)) {
stateFalse = stateFalse->BindExpr(Ex,
svalBuilder.makeIntVal(0U, Ex->getType()));
Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag,
Pred->getLocationContext()),
stateFalse, Pred));
}
}
else
Dst.Add(Pred);
}
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C @synchronized.
//===----------------------------------------------------------------------===//
void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
// The mutex expression is a CFGElement, so we don't need to explicitly
// visit it since it will already be processed.
// Pre-visit the ObjCAtSynchronizedStmt.
ExplodedNodeSet Tmp;
Tmp.Add(Pred);
getCheckerManager().runCheckersForPreStmt(Dst, Tmp, S, *this);
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C ivar references.
//===----------------------------------------------------------------------===//
void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr* Ex,
ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
// Visit the base expression, which is needed for computing the lvalue
// of the ivar.
ExplodedNodeSet dstBase;
const Expr *baseExpr = Ex->getBase();
Visit(baseExpr, Pred, dstBase);
ExplodedNodeSet dstIvar;
// Using the base, compute the lvalue of the instance variable.
for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end();
I!=E; ++I) {
ExplodedNode *nodeBase = *I;
const GRState *state = GetState(nodeBase);
SVal baseVal = state->getSVal(baseExpr);
SVal location = state->getLValue(Ex->getDecl(), baseVal);
MakeNode(dstIvar, Ex, *I, state->BindExpr(Ex, location));
}
// Perform the post-condition check of the ObjCIvarRefExpr and store
// the created nodes in 'Dst'.
getCheckerManager().runCheckersForPostStmt(Dst, dstIvar, Ex, *this);
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C fast enumeration 'for' statements.
//===----------------------------------------------------------------------===//
void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt* S,
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
// ObjCForCollectionStmts are processed in two places. This method
// handles the case where an ObjCForCollectionStmt* occurs as one of the
// statements within a basic block. This transfer function does two things:
//
// (1) binds the next container value to 'element'. This creates a new
// node in the ExplodedGraph.
//
// (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating
// whether or not the container has any more elements. This value
// will be tested in ProcessBranch. We need to explicitly bind
// this value because a container can contain nil elements.
//
// FIXME: Eventually this logic should actually do dispatches to
// 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration).
// This will require simulating a temporary NSFastEnumerationState, either
// through an SVal or through the use of MemRegions. This value can
// be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop
// terminates we reclaim the temporary (it goes out of scope) and we
// we can test if the SVal is 0 or if the MemRegion is null (depending
// on what approach we take).
//
// For now: simulate (1) by assigning either a symbol or nil if the
// container is empty. Thus this transfer function will by default
// result in state splitting.
const Stmt* elem = S->getElement();
SVal ElementV;
if (const DeclStmt* DS = dyn_cast<DeclStmt>(elem)) {
const VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl());
assert (ElemD->getInit() == 0);
ElementV = GetState(Pred)->getLValue(ElemD, Pred->getLocationContext());
VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV);
return;
}
ExplodedNodeSet Tmp;
Visit(cast<Expr>(elem), Pred, Tmp);
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem));
}
}
void ExprEngine::VisitObjCForCollectionStmtAux(const ObjCForCollectionStmt* S,
ExplodedNode* Pred, ExplodedNodeSet& Dst,
SVal ElementV) {
// Check if the location we are writing back to is a null pointer.
const Stmt* elem = S->getElement();
ExplodedNodeSet Tmp;
evalLocation(Tmp, elem, Pred, GetState(Pred), ElementV, NULL, false);
if (Tmp.empty())
return;
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
Pred = *NI;
const GRState *state = GetState(Pred);
// Handle the case where the container still has elements.
SVal TrueV = svalBuilder.makeTruthVal(1);
const GRState *hasElems = state->BindExpr(S, TrueV);
// Handle the case where the container has no elements.
SVal FalseV = svalBuilder.makeTruthVal(0);
const GRState *noElems = state->BindExpr(S, FalseV);
if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV))
if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) {
// FIXME: The proper thing to do is to really iterate over the
// container. We will do this with dispatch logic to the store.
// For now, just 'conjure' up a symbolic value.
QualType T = R->getValueType();
assert(Loc::isLocType(T));
unsigned Count = Builder->getCurrentBlockCount();
SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count);
SVal V = svalBuilder.makeLoc(Sym);
hasElems = hasElems->bindLoc(ElementV, V);
// Bind the location to 'nil' on the false branch.
SVal nilV = svalBuilder.makeIntVal(0, T);
noElems = noElems->bindLoc(ElementV, nilV);
}
// Create the new nodes.
MakeNode(Dst, S, Pred, hasElems);
MakeNode(Dst, S, Pred, noElems);
}
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C message expressions.
//===----------------------------------------------------------------------===//
namespace {
class ObjCMsgWLItem {
public:
ObjCMessageExpr::const_arg_iterator I;
ExplodedNode *N;
ObjCMsgWLItem(const ObjCMessageExpr::const_arg_iterator &i, ExplodedNode *n)
: I(i), N(n) {}
};
} // end anonymous namespace
void ExprEngine::VisitObjCMessageExpr(const ObjCMessageExpr* ME,
ExplodedNode* Pred,
ExplodedNodeSet& Dst){
// Create a worklist to process both the arguments.
llvm::SmallVector<ObjCMsgWLItem, 20> WL;
// But first evaluate the receiver (if any).
ObjCMessageExpr::const_arg_iterator AI = ME->arg_begin(), AE = ME->arg_end();
if (const Expr *Receiver = ME->getInstanceReceiver()) {
ExplodedNodeSet Tmp;
Visit(Receiver, Pred, Tmp);
if (Tmp.empty())
return;
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I)
WL.push_back(ObjCMsgWLItem(AI, *I));
}
else
WL.push_back(ObjCMsgWLItem(AI, Pred));
// Evaluate the arguments.
ExplodedNodeSet ArgsEvaluated;
while (!WL.empty()) {
ObjCMsgWLItem Item = WL.back();
WL.pop_back();
if (Item.I == AE) {
ArgsEvaluated.insert(Item.N);
continue;
}
// Evaluate the subexpression.
ExplodedNodeSet Tmp;
// FIXME: [Objective-C++] handle arguments that are references
Visit(*Item.I, Item.N, Tmp);
// Enqueue evaluating the next argument on the worklist.
++(Item.I);
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
WL.push_back(ObjCMsgWLItem(Item.I, *NI));
}
// Now that the arguments are processed, handle the ObjC message.
VisitObjCMessage(ME, ArgsEvaluated, Dst);
}
void ExprEngine::VisitObjCMessage(const ObjCMessage &msg,
ExplodedNodeSet &Src, ExplodedNodeSet& Dst) {
// Handle the previsits checks.
ExplodedNodeSet DstPrevisit;
getCheckerManager().runCheckersForPreObjCMessage(DstPrevisit, Src, msg,*this);
// Proceed with evaluate the message expression.
ExplodedNodeSet dstEval;
for (ExplodedNodeSet::iterator DI = DstPrevisit.begin(),
DE = DstPrevisit.end(); DI != DE; ++DI) {
ExplodedNode *Pred = *DI;
bool RaisesException = false;
unsigned oldSize = dstEval.size();
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
SaveOr OldHasGen(Builder->hasGeneratedNode);
if (const Expr *Receiver = msg.getInstanceReceiver()) {
const GRState *state = GetState(Pred);
SVal recVal = state->getSVal(Receiver);
if (!recVal.isUndef()) {
// Bifurcate the state into nil and non-nil ones.
DefinedOrUnknownSVal receiverVal = cast<DefinedOrUnknownSVal>(recVal);
const GRState *notNilState, *nilState;
llvm::tie(notNilState, nilState) = state->assume(receiverVal);
// There are three cases: can be nil or non-nil, must be nil, must be
// non-nil. We ignore must be nil, and merge the rest two into non-nil.
if (nilState && !notNilState) {
dstEval.insert(Pred);
continue;
}
// Check if the "raise" message was sent.
assert(notNilState);
if (msg.getSelector() == RaiseSel)
RaisesException = true;
// Check if we raise an exception. For now treat these as sinks.
// Eventually we will want to handle exceptions properly.
if (RaisesException)
Builder->BuildSinks = true;
// Dispatch to plug-in transfer function.
evalObjCMessage(dstEval, msg, Pred, notNilState);
}
}
else if (const ObjCInterfaceDecl *Iface = msg.getReceiverInterface()) {
IdentifierInfo* ClsName = Iface->getIdentifier();
Selector S = msg.getSelector();
// Check for special instance methods.
if (!NSExceptionII) {
ASTContext& Ctx = getContext();
NSExceptionII = &Ctx.Idents.get("NSException");
}
if (ClsName == NSExceptionII) {
enum { NUM_RAISE_SELECTORS = 2 };
// Lazily create a cache of the selectors.
if (!NSExceptionInstanceRaiseSelectors) {
ASTContext& Ctx = getContext();
NSExceptionInstanceRaiseSelectors =
new Selector[NUM_RAISE_SELECTORS];
llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II;
unsigned idx = 0;
// raise:format:
II.push_back(&Ctx.Idents.get("raise"));
II.push_back(&Ctx.Idents.get("format"));
NSExceptionInstanceRaiseSelectors[idx++] =
Ctx.Selectors.getSelector(II.size(), &II[0]);
// raise:format::arguments:
II.push_back(&Ctx.Idents.get("arguments"));
NSExceptionInstanceRaiseSelectors[idx++] =
Ctx.Selectors.getSelector(II.size(), &II[0]);
}
for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i)
if (S == NSExceptionInstanceRaiseSelectors[i]) {
RaisesException = true;
break;
}
}
// Check if we raise an exception. For now treat these as sinks.
// Eventually we will want to handle exceptions properly.
if (RaisesException)
Builder->BuildSinks = true;
// Dispatch to plug-in transfer function.
evalObjCMessage(dstEval, msg, Pred, Builder->GetState(Pred));
}
// Handle the case where no nodes where generated. Auto-generate that
// contains the updated state if we aren't generating sinks.
if (!Builder->BuildSinks && dstEval.size() == oldSize &&
!Builder->hasGeneratedNode)
MakeNode(dstEval, msg.getOriginExpr(), Pred, GetState(Pred));
}
// Finally, perform the post-condition check of the ObjCMessageExpr and store
// the created nodes in 'Dst'.
getCheckerManager().runCheckersForPostObjCMessage(Dst, dstEval, msg, *this);
}
//===----------------------------------------------------------------------===//
// Transfer functions: Miscellaneous statements.
//===----------------------------------------------------------------------===//
void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
ExplodedNodeSet S1;
Visit(Ex, Pred, S1);
ExplodedNodeSet S2;
getCheckerManager().runCheckersForPreStmt(S2, S1, CastE, *this);
if (CastE->getCastKind() == CK_LValueToRValue ||
CastE->getCastKind() == CK_GetObjCProperty) {
for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I!=E; ++I) {
ExplodedNode *subExprNode = *I;
const GRState *state = GetState(subExprNode);
evalLoad(Dst, CastE, subExprNode, state, state->getSVal(Ex));
}
return;
}
// All other casts.
QualType T = CastE->getType();
QualType ExTy = Ex->getType();
if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
T = ExCast->getTypeAsWritten();
#if 0
// If we are evaluating the cast in an lvalue context, we implicitly want
// the cast to evaluate to a location.
if (asLValue) {
ASTContext &Ctx = getContext();
T = Ctx.getPointerType(Ctx.getCanonicalType(T));
ExTy = Ctx.getPointerType(Ctx.getCanonicalType(ExTy));
}
#endif
switch (CastE->getCastKind()) {
case CK_ToVoid:
for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I)
Dst.Add(*I);
return;
case CK_LValueToRValue:
case CK_NoOp:
case CK_FunctionToPointerDecay:
for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) {
// Copy the SVal of Ex to CastE.
ExplodedNode *N = *I;
const GRState *state = GetState(N);
SVal V = state->getSVal(Ex);
state = state->BindExpr(CastE, V);
MakeNode(Dst, CastE, N, state);
}
return;
case CK_GetObjCProperty:
case CK_Dependent:
case CK_ArrayToPointerDecay:
case CK_BitCast:
case CK_LValueBitCast:
case CK_IntegralCast:
case CK_NullToPointer:
case CK_IntegralToPointer:
case CK_PointerToIntegral:
case CK_PointerToBoolean:
case CK_IntegralToBoolean:
case CK_IntegralToFloating:
case CK_FloatingToIntegral:
case CK_FloatingToBoolean:
case CK_FloatingCast:
case CK_FloatingRealToComplex:
case CK_FloatingComplexToReal:
case CK_FloatingComplexToBoolean:
case CK_FloatingComplexCast:
case CK_FloatingComplexToIntegralComplex:
case CK_IntegralRealToComplex:
case CK_IntegralComplexToReal:
case CK_IntegralComplexToBoolean:
case CK_IntegralComplexCast:
case CK_IntegralComplexToFloatingComplex:
case CK_AnyPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
case CK_ObjCObjectLValueCast: {
// Delegate to SValBuilder to process.
for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) {
ExplodedNode* N = *I;
const GRState* state = GetState(N);
SVal V = state->getSVal(Ex);
V = svalBuilder.evalCast(V, T, ExTy);
state = state->BindExpr(CastE, V);
MakeNode(Dst, CastE, N, state);
}
return;
}
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
// For DerivedToBase cast, delegate to the store manager.
for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) {
ExplodedNode *node = *I;
const GRState *state = GetState(node);
SVal val = state->getSVal(Ex);
val = getStoreManager().evalDerivedToBase(val, T);
state = state->BindExpr(CastE, val);
MakeNode(Dst, CastE, node, state);
}
return;
// Various C++ casts that are not handled yet.
case CK_Dynamic:
case CK_ToUnion:
case CK_BaseToDerived:
case CK_NullToMemberPointer:
case CK_BaseToDerivedMemberPointer:
case CK_DerivedToBaseMemberPointer:
case CK_UserDefinedConversion:
case CK_ConstructorConversion:
case CK_VectorSplat:
case CK_MemberPointerToBoolean: {
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
Builder->BuildSinks = true;
MakeNode(Dst, CastE, Pred, GetState(Pred));
return;
}
}
}
void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr* CL,
ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
const InitListExpr* ILE
= cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
ExplodedNodeSet Tmp;
Visit(ILE, Pred, Tmp);
for (ExplodedNodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) {
const GRState* state = GetState(*I);
SVal ILV = state->getSVal(ILE);
const LocationContext *LC = (*I)->getLocationContext();
state = state->bindCompoundLiteral(CL, LC, ILV);
if (CL->isLValue()) {
MakeNode(Dst, CL, *I, state->BindExpr(CL, state->getLValue(CL, LC)));
}
else
MakeNode(Dst, CL, *I, state->BindExpr(CL, ILV));
}
}
void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
ExplodedNodeSet& Dst) {
// The CFG has one DeclStmt per Decl.
const Decl* D = *DS->decl_begin();
if (!D || !isa<VarDecl>(D))
return;
const VarDecl* VD = dyn_cast<VarDecl>(D);
const Expr* InitEx = VD->getInit();
// FIXME: static variables may have an initializer, but the second
// time a function is called those values may not be current.
ExplodedNodeSet Tmp;
if (InitEx) {
if (VD->getType()->isReferenceType() && !InitEx->isLValue()) {
// If the initializer is C++ record type, it should already has a
// temp object.
if (!InitEx->getType()->isRecordType())
CreateCXXTemporaryObject(InitEx, Pred, Tmp);
else
Tmp.Add(Pred);
} else
Visit(InitEx, Pred, Tmp);
} else
Tmp.Add(Pred);
ExplodedNodeSet Tmp2;
getCheckerManager().runCheckersForPreStmt(Tmp2, Tmp, DS, *this);
for (ExplodedNodeSet::iterator I=Tmp2.begin(), E=Tmp2.end(); I!=E; ++I) {
ExplodedNode *N = *I;
const GRState *state = GetState(N);
// Decls without InitExpr are not initialized explicitly.
const LocationContext *LC = N->getLocationContext();
if (InitEx) {
SVal InitVal = state->getSVal(InitEx);
// We bound the temp obj region to the CXXConstructExpr. Now recover
// the lazy compound value when the variable is not a reference.
if (AMgr.getLangOptions().CPlusPlus && VD->getType()->isRecordType() &&
!VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
assert(isa<nonloc::LazyCompoundVal>(InitVal));
}
// Recover some path-sensitivity if a scalar value evaluated to
// UnknownVal.
if ((InitVal.isUnknown() ||
!getConstraintManager().canReasonAbout(InitVal)) &&
!VD->getType()->isReferenceType()) {
InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx,
Builder->getCurrentBlockCount());
}
evalBind(Dst, DS, *I, state,
loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true);
}
else {
state = state->bindDeclWithNoInit(state->getRegion(VD, LC));
MakeNode(Dst, DS, *I, state);
}
}
}
void ExprEngine::VisitCondInit(const VarDecl *VD, const Stmt *S,
ExplodedNode *Pred, ExplodedNodeSet& Dst) {
const Expr* InitEx = VD->getInit();
ExplodedNodeSet Tmp;
Visit(InitEx, Pred, Tmp);
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
ExplodedNode *N = *I;
const GRState *state = GetState(N);
const LocationContext *LC = N->getLocationContext();
SVal InitVal = state->getSVal(InitEx);
// Recover some path-sensitivity if a scalar value evaluated to
// UnknownVal.
if (InitVal.isUnknown() ||
!getConstraintManager().canReasonAbout(InitVal)) {
InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx,
Builder->getCurrentBlockCount());
}
evalBind(Dst, S, N, state,
loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true);
}
}
namespace {
// This class is used by VisitInitListExpr as an item in a worklist
// for processing the values contained in an InitListExpr.
class InitListWLItem {
public:
llvm::ImmutableList<SVal> Vals;
ExplodedNode* N;
InitListExpr::const_reverse_iterator Itr;
InitListWLItem(ExplodedNode* n, llvm::ImmutableList<SVal> vals,
InitListExpr::const_reverse_iterator itr)
: Vals(vals), N(n), Itr(itr) {}
};
}
void ExprEngine::VisitInitListExpr(const InitListExpr* E, ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
const GRState* state = GetState(Pred);
QualType T = getContext().getCanonicalType(E->getType());
unsigned NumInitElements = E->getNumInits();
if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList();
// Handle base case where the initializer has no elements.
// e.g: static int* myArray[] = {};
if (NumInitElements == 0) {
SVal V = svalBuilder.makeCompoundVal(T, StartVals);
MakeNode(Dst, E, Pred, state->BindExpr(E, V));
return;
}
// Create a worklist to process the initializers.
llvm::SmallVector<InitListWLItem, 10> WorkList;
WorkList.reserve(NumInitElements);
WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin()));
InitListExpr::const_reverse_iterator ItrEnd = E->rend();
assert(!(E->rbegin() == E->rend()));
// Process the worklist until it is empty.
while (!WorkList.empty()) {
InitListWLItem X = WorkList.back();
WorkList.pop_back();
ExplodedNodeSet Tmp;
Visit(*X.Itr, X.N, Tmp);
InitListExpr::const_reverse_iterator NewItr = X.Itr + 1;
for (ExplodedNodeSet::iterator NI=Tmp.begin(),NE=Tmp.end();NI!=NE;++NI) {
// Get the last initializer value.
state = GetState(*NI);
SVal InitV = state->getSVal(cast<Expr>(*X.Itr));
// Construct the new list of values by prepending the new value to
// the already constructed list.
llvm::ImmutableList<SVal> NewVals =
getBasicVals().consVals(InitV, X.Vals);
if (NewItr == ItrEnd) {
// Now we have a list holding all init values. Make CompoundValData.
SVal V = svalBuilder.makeCompoundVal(T, NewVals);
// Make final state and node.
MakeNode(Dst, E, *NI, state->BindExpr(E, V));
}
else {
// Still some initializer values to go. Push them onto the worklist.
WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr));
}
}
}
return;
}
if (Loc::isLocType(T) || T->isIntegerType()) {
assert (E->getNumInits() == 1);
ExplodedNodeSet Tmp;
const Expr* Init = E->getInit(0);
Visit(Init, Pred, Tmp);
for (ExplodedNodeSet::iterator I=Tmp.begin(), EI=Tmp.end(); I != EI; ++I) {
state = GetState(*I);
MakeNode(Dst, E, *I, state->BindExpr(E, state->getSVal(Init)));
}
return;
}
assert(0 && "unprocessed InitListExpr type");
}
/// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type).
void ExprEngine::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr* Ex,
ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
QualType T = Ex->getTypeOfArgument();
CharUnits amt;
if (Ex->isSizeOf()) {
if (T == getContext().VoidTy) {
// sizeof(void) == 1 byte.
amt = CharUnits::One();
}
else if (!T->isConstantSizeType()) {
assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
// FIXME: Add support for VLA type arguments, not just VLA expressions.
// When that happens, we should probably refactor VLASizeChecker's code.
if (Ex->isArgumentType()) {
Dst.Add(Pred);
return;
}
// Get the size by getting the extent of the sub-expression.
// First, visit the sub-expression to find its region.
const Expr *Arg = Ex->getArgumentExpr();
ExplodedNodeSet Tmp;
Visit(Arg, Pred, Tmp);
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
const MemRegion *MR = state->getSVal(Arg).getAsRegion();
// If the subexpression can't be resolved to a region, we don't know
// anything about its size. Just leave the state as is and continue.
if (!MR) {
Dst.Add(*I);
continue;
}
// The result is the extent of the VLA.
SVal Extent = cast<SubRegion>(MR)->getExtent(svalBuilder);
MakeNode(Dst, Ex, *I, state->BindExpr(Ex, Extent));
}
return;
}
else if (T->getAs<ObjCObjectType>()) {
// Some code tries to take the sizeof an ObjCObjectType, relying that
// the compiler has laid out its representation. Just report Unknown
// for these.
Dst.Add(Pred);
return;
}
else {
// All other cases.
amt = getContext().getTypeSizeInChars(T);
}
}
else // Get alignment of the type.
amt = getContext().getTypeAlignInChars(T);
MakeNode(Dst, Ex, Pred,
GetState(Pred)->BindExpr(Ex,
svalBuilder.makeIntVal(amt.getQuantity(), Ex->getType())));
}
void ExprEngine::VisitOffsetOfExpr(const OffsetOfExpr* OOE,
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
Expr::EvalResult Res;
if (OOE->Evaluate(Res, getContext()) && Res.Val.isInt()) {
const APSInt &IV = Res.Val.getInt();
assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
assert(OOE->getType()->isIntegerType());
assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
SVal X = svalBuilder.makeIntVal(IV);
MakeNode(Dst, OOE, Pred, GetState(Pred)->BindExpr(OOE, X));
return;
}
// FIXME: Handle the case where __builtin_offsetof is not a constant.
Dst.Add(Pred);
}
void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
switch (U->getOpcode()) {
default:
break;
case UO_Real: {
const Expr* Ex = U->getSubExpr()->IgnoreParens();
ExplodedNodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
// FIXME: We don't have complex SValues yet.
if (Ex->getType()->isAnyComplexType()) {
// Just report "Unknown."
Dst.Add(*I);
continue;
}
// For all other types, UO_Real is an identity operation.
assert (U->getType() == Ex->getType());
const GRState* state = GetState(*I);
MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex)));
}
return;
}
case UO_Imag: {
const Expr* Ex = U->getSubExpr()->IgnoreParens();
ExplodedNodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
// FIXME: We don't have complex SValues yet.
if (Ex->getType()->isAnyComplexType()) {
// Just report "Unknown."
Dst.Add(*I);
continue;
}
// For all other types, UO_Imag returns 0.
const GRState* state = GetState(*I);
SVal X = svalBuilder.makeZeroVal(Ex->getType());
MakeNode(Dst, U, *I, state->BindExpr(U, X));
}
return;
}
case UO_Plus:
assert(!U->isLValue());
// FALL-THROUGH.
case UO_Deref:
case UO_AddrOf:
case UO_Extension: {
// Unary "+" is a no-op, similar to a parentheses. We still have places
// where it may be a block-level expression, so we need to
// generate an extra node that just propagates the value of the
// subexpression.
const Expr* Ex = U->getSubExpr()->IgnoreParens();
ExplodedNodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex)));
}
return;
}
case UO_LNot:
case UO_Minus:
case UO_Not: {
assert (!U->isLValue());
const Expr* Ex = U->getSubExpr()->IgnoreParens();
ExplodedNodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
// Get the value of the subexpression.
SVal V = state->getSVal(Ex);
if (V.isUnknownOrUndef()) {
MakeNode(Dst, U, *I, state->BindExpr(U, V));
continue;
}
// QualType DstT = getContext().getCanonicalType(U->getType());
// QualType SrcT = getContext().getCanonicalType(Ex->getType());
//
// if (DstT != SrcT) // Perform promotions.
// V = evalCast(V, DstT);
//
// if (V.isUnknownOrUndef()) {
// MakeNode(Dst, U, *I, BindExpr(St, U, V));
// continue;
// }
switch (U->getOpcode()) {
default:
assert(false && "Invalid Opcode.");
break;
case UO_Not:
// FIXME: Do we need to handle promotions?
state = state->BindExpr(U, evalComplement(cast<NonLoc>(V)));
break;
case UO_Minus:
// FIXME: Do we need to handle promotions?
state = state->BindExpr(U, evalMinus(cast<NonLoc>(V)));
break;
case UO_LNot:
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
//
// Note: technically we do "E == 0", but this is the same in the
// transfer functions as "0 == E".
SVal Result;
if (isa<Loc>(V)) {
Loc X = svalBuilder.makeNull();
Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
U->getType());
}
else {
nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
U->getType());
}
state = state->BindExpr(U, Result);
break;
}
MakeNode(Dst, U, *I, state);
}
return;
}
}
// Handle ++ and -- (both pre- and post-increment).
assert (U->isIncrementDecrementOp());
ExplodedNodeSet Tmp;
const Expr* Ex = U->getSubExpr()->IgnoreParens();
Visit(Ex, Pred, Tmp);
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
const GRState* state = GetState(*I);
SVal loc = state->getSVal(Ex);
// Perform a load.
ExplodedNodeSet Tmp2;
evalLoad(Tmp2, Ex, *I, state, loc);
for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) {
state = GetState(*I2);
SVal V2_untested = state->getSVal(Ex);
// Propagate unknown and undefined values.
if (V2_untested.isUnknownOrUndef()) {
MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested));
continue;
}
DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
// Handle all other values.
BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add
: BO_Sub;
// If the UnaryOperator has non-location type, use its type to create the
// constant value. If the UnaryOperator has location type, create the
// constant with int type and pointer width.
SVal RHS;
if (U->getType()->isAnyPointerType())
RHS = svalBuilder.makeArrayIndex(1);
else
RHS = svalBuilder.makeIntVal(1, U->getType());
SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
// Conjure a new symbol if necessary to recover precision.
if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){
DefinedOrUnknownSVal SymVal =
svalBuilder.getConjuredSymbolVal(NULL, Ex,
Builder->getCurrentBlockCount());
Result = SymVal;
// If the value is a location, ++/-- should always preserve
// non-nullness. Check if the original value was non-null, and if so
// propagate that constraint.
if (Loc::isLocType(U->getType())) {
DefinedOrUnknownSVal Constraint =
svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
if (!state->assume(Constraint, true)) {
// It isn't feasible for the original value to be null.
// Propagate this constraint.
Constraint = svalBuilder.evalEQ(state, SymVal,
svalBuilder.makeZeroVal(U->getType()));
state = state->assume(Constraint, false);
assert(state);
}
}
}
// Since the lvalue-to-rvalue conversion is explicit in the AST,
// we bind an l-value if the operator is prefix and an lvalue (in C++).
if (U->isLValue())
state = state->BindExpr(U, loc);
else
state = state->BindExpr(U, V2);
// Perform the store.
evalStore(Dst, NULL, U, *I2, state, loc, Result);
}
}
}
void ExprEngine::VisitAsmStmt(const AsmStmt* A, ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst);
}
void ExprEngine::VisitAsmStmtHelperOutputs(const AsmStmt* A,
AsmStmt::const_outputs_iterator I,
AsmStmt::const_outputs_iterator E,
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
if (I == E) {
VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst);
return;
}
ExplodedNodeSet Tmp;
Visit(*I, Pred, Tmp);
++I;
for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI)
VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst);
}
void ExprEngine::VisitAsmStmtHelperInputs(const AsmStmt* A,
AsmStmt::const_inputs_iterator I,
AsmStmt::const_inputs_iterator E,
ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
if (I == E) {
// We have processed both the inputs and the outputs. All of the outputs
// should evaluate to Locs. Nuke all of their values.
// FIXME: Some day in the future it would be nice to allow a "plug-in"
// which interprets the inline asm and stores proper results in the
// outputs.
const GRState* state = GetState(Pred);
for (AsmStmt::const_outputs_iterator OI = A->begin_outputs(),
OE = A->end_outputs(); OI != OE; ++OI) {
SVal X = state->getSVal(*OI);
assert (!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef.
if (isa<Loc>(X))
state = state->bindLoc(cast<Loc>(X), UnknownVal());
}
MakeNode(Dst, A, Pred, state);
return;
}
ExplodedNodeSet Tmp;
Visit(*I, Pred, Tmp);
++I;
for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI)
VisitAsmStmtHelperInputs(A, I, E, *NI, Dst);
}
void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
ExplodedNodeSet Src;
if (const Expr *RetE = RS->getRetValue()) {
// Record the returned expression in the state. It will be used in
// processCallExit to bind the return value to the call expr.
{
static int tag = 0;
const GRState *state = GetState(Pred);
state = state->set<ReturnExpr>(RetE);
Pred = Builder->generateNode(RetE, state, Pred, &tag);
}
// We may get a NULL Pred because we generated a cached node.
if (Pred)
Visit(RetE, Pred, Src);
}
else {
Src.Add(Pred);
}
ExplodedNodeSet CheckedSet;
getCheckerManager().runCheckersForPreStmt(CheckedSet, Src, RS, *this);
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
I != E; ++I) {
assert(Builder && "StmtNodeBuilder must be defined.");
Pred = *I;
unsigned size = Dst.size();
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
SaveOr OldHasGen(Builder->hasGeneratedNode);
getTF().evalReturn(Dst, *this, *Builder, RS, Pred);
// Handle the case where no nodes where generated.
if (!Builder->BuildSinks && Dst.size() == size &&
!Builder->hasGeneratedNode)
MakeNode(Dst, RS, Pred, GetState(Pred));
}
}
//===----------------------------------------------------------------------===//
// Transfer functions: Binary operators.
//===----------------------------------------------------------------------===//
void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
ExplodedNode* Pred,
ExplodedNodeSet& Dst) {
ExplodedNodeSet Tmp1;
Expr* LHS = B->getLHS()->IgnoreParens();
Expr* RHS = B->getRHS()->IgnoreParens();
Visit(LHS, Pred, Tmp1);
ExplodedNodeSet Tmp3;
for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) {
SVal LeftV = GetState(*I1)->getSVal(LHS);
ExplodedNodeSet Tmp2;
Visit(RHS, *I1, Tmp2);
ExplodedNodeSet CheckedSet;
getCheckerManager().runCheckersForPreStmt(CheckedSet, Tmp2, B, *this);
// With both the LHS and RHS evaluated, process the operation itself.
for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end();
I2 != E2; ++I2) {
const GRState *state = GetState(*I2);
SVal RightV = state->getSVal(RHS);
BinaryOperator::Opcode Op = B->getOpcode();
if (Op == BO_Assign) {
// EXPERIMENTAL: "Conjured" symbols.
// FIXME: Handle structs.
if (RightV.isUnknown() ||!getConstraintManager().canReasonAbout(RightV))
{
unsigned Count = Builder->getCurrentBlockCount();
RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), Count);
}
SVal ExprVal = B->isLValue() ? LeftV : RightV;
// Simulate the effects of a "store": bind the value of the RHS
// to the L-Value represented by the LHS.
evalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV);
continue;
}
if (!B->isAssignmentOp()) {
// Process non-assignments except commas or short-circuited
// logical expressions (LAnd and LOr).
SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
if (Result.isUnknown()) {
MakeNode(Tmp3, B, *I2, state);
continue;
}
state = state->BindExpr(B, Result);
MakeNode(Tmp3, B, *I2, state);
continue;
}
assert (B->isCompoundAssignmentOp());
switch (Op) {
default:
assert(0 && "Invalid opcode for compound assignment.");
case BO_MulAssign: Op = BO_Mul; break;
case BO_DivAssign: Op = BO_Div; break;
case BO_RemAssign: Op = BO_Rem; break;
case BO_AddAssign: Op = BO_Add; break;
case BO_SubAssign: Op = BO_Sub; break;
case BO_ShlAssign: Op = BO_Shl; break;
case BO_ShrAssign: Op = BO_Shr; break;
case BO_AndAssign: Op = BO_And; break;
case BO_XorAssign: Op = BO_Xor; break;
case BO_OrAssign: Op = BO_Or; break;
}
// Perform a load (the LHS). This performs the checks for
// null dereferences, and so on.
ExplodedNodeSet Tmp4;
SVal location = state->getSVal(LHS);
evalLoad(Tmp4, LHS, *I2, state, location);
for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4;
++I4) {
state = GetState(*I4);
SVal V = state->getSVal(LHS);
// Get the computation type.
QualType CTy =
cast<CompoundAssignOperator>(B)->getComputationResultType();
CTy = getContext().getCanonicalType(CTy);
QualType CLHSTy =
cast<CompoundAssignOperator>(B)->getComputationLHSType();
CLHSTy = getContext().getCanonicalType(CLHSTy);
QualType LTy = getContext().getCanonicalType(LHS->getType());
// Promote LHS.
V = svalBuilder.evalCast(V, CLHSTy, LTy);
// Compute the result of the operation.
SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
B->getType(), CTy);
// EXPERIMENTAL: "Conjured" symbols.
// FIXME: Handle structs.
SVal LHSVal;
if (Result.isUnknown() ||
!getConstraintManager().canReasonAbout(Result)) {
unsigned Count = Builder->getCurrentBlockCount();
// The symbolic value is actually for the type of the left-hand side
// expression, not the computation type, as this is the value the
// LValue on the LHS will bind to.
LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count);
// However, we need to convert the symbol to the computation type.
Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
}
else {
// The left-hand side may bind to a different value then the
// computation type.
LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
}
// In C++, assignment and compound assignment operators return an
// lvalue.
if (B->isLValue())
state = state->BindExpr(B, location);
else
state = state->BindExpr(B, Result);
evalStore(Tmp3, B, LHS, *I4, state, location, LHSVal);
}
}
}
getCheckerManager().runCheckersForPostStmt(Dst, Tmp3, B, *this);
}
//===----------------------------------------------------------------------===//
// Visualization.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static ExprEngine* GraphPrintCheckerState;
static SourceManager* GraphPrintSourceManager;
namespace llvm {
template<>
struct DOTGraphTraits<ExplodedNode*> :
public DefaultDOTGraphTraits {
DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
// FIXME: Since we do not cache error nodes in ExprEngine now, this does not
// work.
static std::string getNodeAttributes(const ExplodedNode* N, void*) {
#if 0
// FIXME: Replace with a general scheme to tell if the node is
// an error node.
if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
GraphPrintCheckerState->isExplicitNullDeref(N) ||
GraphPrintCheckerState->isUndefDeref(N) ||
GraphPrintCheckerState->isUndefStore(N) ||
GraphPrintCheckerState->isUndefControlFlow(N) ||
GraphPrintCheckerState->isUndefResult(N) ||
GraphPrintCheckerState->isBadCall(N) ||
GraphPrintCheckerState->isUndefArg(N))
return "color=\"red\",style=\"filled\"";
if (GraphPrintCheckerState->isNoReturnCall(N))
return "color=\"blue\",style=\"filled\"";
#endif
return "";
}
static std::string getNodeLabel(const ExplodedNode* N, void*){
std::string sbuf;
llvm::raw_string_ostream Out(sbuf);
// Program Location.
ProgramPoint Loc = N->getLocation();
switch (Loc.getKind()) {
case ProgramPoint::BlockEntranceKind:
Out << "Block Entrance: B"
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
break;
case ProgramPoint::BlockExitKind:
assert (false);
break;
case ProgramPoint::CallEnterKind:
Out << "CallEnter";
break;
case ProgramPoint::CallExitKind:
Out << "CallExit";
break;
default: {
if (StmtPoint *L = dyn_cast<StmtPoint>(&Loc)) {
const Stmt* S = L->getStmt();
SourceLocation SLoc = S->getLocStart();
Out << S->getStmtClassName() << ' ' << (void*) S << ' ';
LangOptions LO; // FIXME.
S->printPretty(Out, 0, PrintingPolicy(LO));
if (SLoc.isFileID()) {
Out << "\\lline="
<< GraphPrintSourceManager->getInstantiationLineNumber(SLoc)
<< " col="
<< GraphPrintSourceManager->getInstantiationColumnNumber(SLoc)
<< "\\l";
}
if (isa<PreStmt>(Loc))
Out << "\\lPreStmt\\l;";
else if (isa<PostLoad>(Loc))
Out << "\\lPostLoad\\l;";
else if (isa<PostStore>(Loc))
Out << "\\lPostStore\\l";
else if (isa<PostLValue>(Loc))
Out << "\\lPostLValue\\l";
#if 0
// FIXME: Replace with a general scheme to determine
// the name of the check.
if (GraphPrintCheckerState->isImplicitNullDeref(N))
Out << "\\|Implicit-Null Dereference.\\l";
else if (GraphPrintCheckerState->isExplicitNullDeref(N))
Out << "\\|Explicit-Null Dereference.\\l";
else if (GraphPrintCheckerState->isUndefDeref(N))
Out << "\\|Dereference of undefialied value.\\l";
else if (GraphPrintCheckerState->isUndefStore(N))
Out << "\\|Store to Undefined Loc.";
else if (GraphPrintCheckerState->isUndefResult(N))
Out << "\\|Result of operation is undefined.";
else if (GraphPrintCheckerState->isNoReturnCall(N))
Out << "\\|Call to function marked \"noreturn\".";
else if (GraphPrintCheckerState->isBadCall(N))
Out << "\\|Call to NULL/Undefined.";
else if (GraphPrintCheckerState->isUndefArg(N))
Out << "\\|Argument in call is undefined";
#endif
break;
}
const BlockEdge& E = cast<BlockEdge>(Loc);
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
<< E.getDst()->getBlockID() << ')';
if (const Stmt* T = E.getSrc()->getTerminator()) {
SourceLocation SLoc = T->getLocStart();
Out << "\\|Terminator: ";
LangOptions LO; // FIXME.
E.getSrc()->printTerminator(Out, LO);
if (SLoc.isFileID()) {
Out << "\\lline="
<< GraphPrintSourceManager->getInstantiationLineNumber(SLoc)
<< " col="
<< GraphPrintSourceManager->getInstantiationColumnNumber(SLoc);
}
if (isa<SwitchStmt>(T)) {
const Stmt* Label = E.getDst()->getLabel();
if (Label) {
if (const CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
Out << "\\lcase ";
LangOptions LO; // FIXME.
C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO));
if (const Stmt* RHS = C->getRHS()) {
Out << " .. ";
RHS->printPretty(Out, 0, PrintingPolicy(LO));
}
Out << ":";
}
else {
assert (isa<DefaultStmt>(Label));
Out << "\\ldefault:";
}
}
else
Out << "\\l(implicit) default:";
}
else if (isa<IndirectGotoStmt>(T)) {
// FIXME
}
else {
Out << "\\lCondition: ";
if (*E.getSrc()->succ_begin() == E.getDst())
Out << "true";
else
Out << "false";
}
Out << "\\l";
}
#if 0
// FIXME: Replace with a general scheme to determine
// the name of the check.
if (GraphPrintCheckerState->isUndefControlFlow(N)) {
Out << "\\|Control-flow based on\\lUndefined value.\\l";
}
#endif
}
}
const GRState *state = N->getState();
Out << "\\|StateID: " << (void*) state
<< " NodeID: " << (void*) N << "\\|";
state->printDOT(Out, *N->getLocationContext()->getCFG());
Out << "\\l";
return Out.str();
}
};
} // end llvm namespace
#endif
#ifndef NDEBUG
template <typename ITERATOR>
ExplodedNode* GetGraphNode(ITERATOR I) { return *I; }
template <> ExplodedNode*
GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator>
(llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) {
return I->first;
}
#endif
void ExprEngine::ViewGraph(bool trim) {
#ifndef NDEBUG
if (trim) {
std::vector<ExplodedNode*> Src;
// Flush any outstanding reports to make sure we cover all the nodes.
// This does not cause them to get displayed.
for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I)
const_cast<BugType*>(*I)->FlushReports(BR);
// Iterate through the reports and get their nodes.
for (BugReporter::EQClasses_iterator
EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) {
BugReportEquivClass& EQ = *EI;
const BugReport &R = **EQ.begin();
ExplodedNode *N = const_cast<ExplodedNode*>(R.getErrorNode());
if (N) Src.push_back(N);
}
ViewGraph(&Src[0], &Src[0]+Src.size());
}
else {
GraphPrintCheckerState = this;
GraphPrintSourceManager = &getContext().getSourceManager();
llvm::ViewGraph(*G.roots_begin(), "ExprEngine");
GraphPrintCheckerState = NULL;
GraphPrintSourceManager = NULL;
}
#endif
}
void ExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) {
#ifndef NDEBUG
GraphPrintCheckerState = this;
GraphPrintSourceManager = &getContext().getSourceManager();
std::auto_ptr<ExplodedGraph> TrimmedG(G.Trim(Beg, End).first);
if (!TrimmedG.get())
llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
else
llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine");
GraphPrintCheckerState = NULL;
GraphPrintSourceManager = NULL;
#endif
}