llvm-project/llvm/lib/Transforms/Instrumentation/MemProfiler.cpp

639 lines
23 KiB
C++

//===- MemProfiler.cpp - memory allocation and access profiler ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemProfiler. Memory accesses are instrumented
// to increment the access count held in a shadow memory location, or
// alternatively to call into the runtime. Memory intrinsic calls (memmove,
// memcpy, memset) are changed to call the memory profiling runtime version
// instead.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/MemProfiler.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
#define DEBUG_TYPE "memprof"
constexpr int LLVM_MEM_PROFILER_VERSION = 1;
// Size of memory mapped to a single shadow location.
constexpr uint64_t DefaultShadowGranularity = 64;
// Scale from granularity down to shadow size.
constexpr uint64_t DefaultShadowScale = 3;
constexpr char MemProfModuleCtorName[] = "memprof.module_ctor";
constexpr uint64_t MemProfCtorAndDtorPriority = 1;
// On Emscripten, the system needs more than one priorities for constructors.
constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50;
constexpr char MemProfInitName[] = "__memprof_init";
constexpr char MemProfVersionCheckNamePrefix[] =
"__memprof_version_mismatch_check_v";
constexpr char MemProfShadowMemoryDynamicAddress[] =
"__memprof_shadow_memory_dynamic_address";
constexpr char MemProfFilenameVar[] = "__memprof_profile_filename";
// Command-line flags.
static cl::opt<bool> ClInsertVersionCheck(
"memprof-guard-against-version-mismatch",
cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
cl::init(true));
// This flag may need to be replaced with -f[no-]memprof-reads.
static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads",
cl::desc("instrument read instructions"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClInstrumentWrites("memprof-instrument-writes",
cl::desc("instrument write instructions"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClInstrumentAtomics(
"memprof-instrument-atomics",
cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClUseCalls(
"memprof-use-callbacks",
cl::desc("Use callbacks instead of inline instrumentation sequences."),
cl::Hidden, cl::init(false));
static cl::opt<std::string>
ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix",
cl::desc("Prefix for memory access callbacks"),
cl::Hidden, cl::init("__memprof_"));
// These flags allow to change the shadow mapping.
// The shadow mapping looks like
// Shadow = ((Mem & mask) >> scale) + offset
static cl::opt<int> ClMappingScale("memprof-mapping-scale",
cl::desc("scale of memprof shadow mapping"),
cl::Hidden, cl::init(DefaultShadowScale));
static cl::opt<int>
ClMappingGranularity("memprof-mapping-granularity",
cl::desc("granularity of memprof shadow mapping"),
cl::Hidden, cl::init(DefaultShadowGranularity));
// Debug flags.
static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden,
cl::init(0));
static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden,
cl::desc("Debug func"));
static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"),
cl::Hidden, cl::init(-1));
static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"),
cl::Hidden, cl::init(-1));
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
namespace {
/// This struct defines the shadow mapping using the rule:
/// shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset.
struct ShadowMapping {
ShadowMapping() {
Scale = ClMappingScale;
Granularity = ClMappingGranularity;
Mask = ~(Granularity - 1);
}
int Scale;
int Granularity;
uint64_t Mask; // Computed as ~(Granularity-1)
};
static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) {
return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority
: MemProfCtorAndDtorPriority;
}
struct InterestingMemoryAccess {
Value *Addr = nullptr;
bool IsWrite;
unsigned Alignment;
uint64_t TypeSize;
Value *MaybeMask = nullptr;
};
/// Instrument the code in module to profile memory accesses.
class MemProfiler {
public:
MemProfiler(Module &M) {
C = &(M.getContext());
LongSize = M.getDataLayout().getPointerSizeInBits();
IntptrTy = Type::getIntNTy(*C, LongSize);
}
/// If it is an interesting memory access, populate information
/// about the access and return a InterestingMemoryAccess struct.
/// Otherwise return None.
Optional<InterestingMemoryAccess>
isInterestingMemoryAccess(Instruction *I) const;
void instrumentMop(Instruction *I, const DataLayout &DL,
InterestingMemoryAccess &Access);
void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
Value *Addr, uint32_t TypeSize, bool IsWrite);
void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
Instruction *I, Value *Addr,
unsigned Alignment, uint32_t TypeSize,
bool IsWrite);
void instrumentMemIntrinsic(MemIntrinsic *MI);
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
bool instrumentFunction(Function &F);
bool maybeInsertMemProfInitAtFunctionEntry(Function &F);
bool insertDynamicShadowAtFunctionEntry(Function &F);
private:
void initializeCallbacks(Module &M);
LLVMContext *C;
int LongSize;
Type *IntptrTy;
ShadowMapping Mapping;
// These arrays is indexed by AccessIsWrite
FunctionCallee MemProfMemoryAccessCallback[2];
FunctionCallee MemProfMemoryAccessCallbackSized[2];
FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset;
Value *DynamicShadowOffset = nullptr;
};
class MemProfilerLegacyPass : public FunctionPass {
public:
static char ID;
explicit MemProfilerLegacyPass() : FunctionPass(ID) {
initializeMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "MemProfilerFunctionPass"; }
bool runOnFunction(Function &F) override {
MemProfiler Profiler(*F.getParent());
return Profiler.instrumentFunction(F);
}
};
class ModuleMemProfiler {
public:
ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); }
bool instrumentModule(Module &);
private:
Triple TargetTriple;
ShadowMapping Mapping;
Function *MemProfCtorFunction = nullptr;
};
class ModuleMemProfilerLegacyPass : public ModulePass {
public:
static char ID;
explicit ModuleMemProfilerLegacyPass() : ModulePass(ID) {
initializeModuleMemProfilerLegacyPassPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "ModuleMemProfiler"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {}
bool runOnModule(Module &M) override {
ModuleMemProfiler MemProfiler(M);
return MemProfiler.instrumentModule(M);
}
};
} // end anonymous namespace
MemProfilerPass::MemProfilerPass() {}
PreservedAnalyses MemProfilerPass::run(Function &F,
AnalysisManager<Function> &AM) {
Module &M = *F.getParent();
MemProfiler Profiler(M);
if (Profiler.instrumentFunction(F))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
return PreservedAnalyses::all();
}
ModuleMemProfilerPass::ModuleMemProfilerPass() {}
PreservedAnalyses ModuleMemProfilerPass::run(Module &M,
AnalysisManager<Module> &AM) {
ModuleMemProfiler Profiler(M);
if (Profiler.instrumentModule(M))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
char MemProfilerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(MemProfilerLegacyPass, "memprof",
"MemProfiler: profile memory allocations and accesses.",
false, false)
INITIALIZE_PASS_END(MemProfilerLegacyPass, "memprof",
"MemProfiler: profile memory allocations and accesses.",
false, false)
FunctionPass *llvm::createMemProfilerFunctionPass() {
return new MemProfilerLegacyPass();
}
char ModuleMemProfilerLegacyPass::ID = 0;
INITIALIZE_PASS(ModuleMemProfilerLegacyPass, "memprof-module",
"MemProfiler: profile memory allocations and accesses."
"ModulePass",
false, false)
ModulePass *llvm::createModuleMemProfilerLegacyPassPass() {
return new ModuleMemProfilerLegacyPass();
}
Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
// (Shadow & mask) >> scale
Shadow = IRB.CreateAnd(Shadow, Mapping.Mask);
Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
// (Shadow >> scale) | offset
assert(DynamicShadowOffset);
return IRB.CreateAdd(Shadow, DynamicShadowOffset);
}
// Instrument memset/memmove/memcpy
void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) {
IRBuilder<> IRB(MI);
if (isa<MemTransferInst>(MI)) {
IRB.CreateCall(
isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy,
{IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
} else if (isa<MemSetInst>(MI)) {
IRB.CreateCall(
MemProfMemset,
{IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
}
MI->eraseFromParent();
}
Optional<InterestingMemoryAccess>
MemProfiler::isInterestingMemoryAccess(Instruction *I) const {
// Do not instrument the load fetching the dynamic shadow address.
if (DynamicShadowOffset == I)
return None;
InterestingMemoryAccess Access;
const DataLayout &DL = I->getModule()->getDataLayout();
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!ClInstrumentReads)
return None;
Access.IsWrite = false;
Access.TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
Access.Alignment = LI->getAlignment();
Access.Addr = LI->getPointerOperand();
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (!ClInstrumentWrites)
return None;
Access.IsWrite = true;
Access.TypeSize =
DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
Access.Alignment = SI->getAlignment();
Access.Addr = SI->getPointerOperand();
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
if (!ClInstrumentAtomics)
return None;
Access.IsWrite = true;
Access.TypeSize =
DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
Access.Alignment = 0;
Access.Addr = RMW->getPointerOperand();
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
if (!ClInstrumentAtomics)
return None;
Access.IsWrite = true;
Access.TypeSize =
DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
Access.Alignment = 0;
Access.Addr = XCHG->getPointerOperand();
} else if (auto *CI = dyn_cast<CallInst>(I)) {
auto *F = CI->getCalledFunction();
if (F && (F->getIntrinsicID() == Intrinsic::masked_load ||
F->getIntrinsicID() == Intrinsic::masked_store)) {
unsigned OpOffset = 0;
if (F->getIntrinsicID() == Intrinsic::masked_store) {
if (!ClInstrumentWrites)
return None;
// Masked store has an initial operand for the value.
OpOffset = 1;
Access.IsWrite = true;
} else {
if (!ClInstrumentReads)
return None;
Access.IsWrite = false;
}
auto *BasePtr = CI->getOperand(0 + OpOffset);
auto *Ty = cast<PointerType>(BasePtr->getType())->getElementType();
Access.TypeSize = DL.getTypeStoreSizeInBits(Ty);
if (auto *AlignmentConstant =
dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
Access.Alignment = (unsigned)AlignmentConstant->getZExtValue();
else
Access.Alignment = 1; // No alignment guarantees. We probably got Undef
Access.MaybeMask = CI->getOperand(2 + OpOffset);
Access.Addr = BasePtr;
}
}
if (!Access.Addr)
return None;
// Do not instrument acesses from different address spaces; we cannot deal
// with them.
Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType());
if (PtrTy->getPointerAddressSpace() != 0)
return None;
// Ignore swifterror addresses.
// swifterror memory addresses are mem2reg promoted by instruction
// selection. As such they cannot have regular uses like an instrumentation
// function and it makes no sense to track them as memory.
if (Access.Addr->isSwiftError())
return None;
return Access;
}
void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
Instruction *I, Value *Addr,
unsigned Alignment,
uint32_t TypeSize, bool IsWrite) {
auto *VTy = cast<FixedVectorType>(
cast<PointerType>(Addr->getType())->getElementType());
uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
unsigned Num = VTy->getNumElements();
auto *Zero = ConstantInt::get(IntptrTy, 0);
for (unsigned Idx = 0; Idx < Num; ++Idx) {
Value *InstrumentedAddress = nullptr;
Instruction *InsertBefore = I;
if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
// dyn_cast as we might get UndefValue
if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
if (Masked->isZero())
// Mask is constant false, so no instrumentation needed.
continue;
// If we have a true or undef value, fall through to instrumentAddress.
// with InsertBefore == I
}
} else {
IRBuilder<> IRB(I);
Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
InsertBefore = ThenTerm;
}
IRBuilder<> IRB(InsertBefore);
InstrumentedAddress =
IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
instrumentAddress(I, InsertBefore, InstrumentedAddress, ElemTypeSize,
IsWrite);
}
}
void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL,
InterestingMemoryAccess &Access) {
if (Access.IsWrite)
NumInstrumentedWrites++;
else
NumInstrumentedReads++;
if (Access.MaybeMask) {
instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr,
Access.Alignment, Access.TypeSize,
Access.IsWrite);
} else {
// Since the access counts will be accumulated across the entire allocation,
// we only update the shadow access count for the first location and thus
// don't need to worry about alignment and type size.
instrumentAddress(I, I, Access.Addr, Access.TypeSize, Access.IsWrite);
}
}
void MemProfiler::instrumentAddress(Instruction *OrigIns,
Instruction *InsertBefore, Value *Addr,
uint32_t TypeSize, bool IsWrite) {
IRBuilder<> IRB(InsertBefore);
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
if (ClUseCalls) {
IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong);
return;
}
// Create an inline sequence to compute shadow location, and increment the
// value by one.
Type *ShadowTy = Type::getInt64Ty(*C);
Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
Value *ShadowPtr = memToShadow(AddrLong, IRB);
Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy);
Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr);
Value *Inc = ConstantInt::get(Type::getInt64Ty(*C), 1);
ShadowValue = IRB.CreateAdd(ShadowValue, Inc);
IRB.CreateStore(ShadowValue, ShadowAddr);
}
// Create the variable for the profile file name.
void createProfileFileNameVar(Module &M) {
const MDString *MemProfFilename =
dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename"));
if (!MemProfFilename)
return;
assert(!MemProfFilename->getString().empty() &&
"Unexpected MemProfProfileFilename metadata with empty string");
Constant *ProfileNameConst = ConstantDataArray::getString(
M.getContext(), MemProfFilename->getString(), true);
GlobalVariable *ProfileNameVar = new GlobalVariable(
M, ProfileNameConst->getType(), /*isConstant=*/true,
GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar);
Triple TT(M.getTargetTriple());
if (TT.supportsCOMDAT()) {
ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar));
}
}
bool ModuleMemProfiler::instrumentModule(Module &M) {
// Create a module constructor.
std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION);
std::string VersionCheckName =
ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion)
: "";
std::tie(MemProfCtorFunction, std::ignore) =
createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName,
MemProfInitName, /*InitArgTypes=*/{},
/*InitArgs=*/{}, VersionCheckName);
const uint64_t Priority = getCtorAndDtorPriority(TargetTriple);
appendToGlobalCtors(M, MemProfCtorFunction, Priority);
createProfileFileNameVar(M);
return true;
}
void MemProfiler::initializeCallbacks(Module &M) {
IRBuilder<> IRB(*C);
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
const std::string TypeStr = AccessIsWrite ? "store" : "load";
SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
SmallVector<Type *, 2> Args1{1, IntptrTy};
MemProfMemoryAccessCallbackSized[AccessIsWrite] =
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr + "N",
FunctionType::get(IRB.getVoidTy(), Args2, false));
MemProfMemoryAccessCallback[AccessIsWrite] =
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr,
FunctionType::get(IRB.getVoidTy(), Args1, false));
}
MemProfMemmove = M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy",
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), IntptrTy);
MemProfMemset = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset",
IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt32Ty(), IntptrTy);
}
bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) {
// For each NSObject descendant having a +load method, this method is invoked
// by the ObjC runtime before any of the static constructors is called.
// Therefore we need to instrument such methods with a call to __memprof_init
// at the beginning in order to initialize our runtime before any access to
// the shadow memory.
// We cannot just ignore these methods, because they may call other
// instrumented functions.
if (F.getName().find(" load]") != std::string::npos) {
FunctionCallee MemProfInitFunction =
declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {});
IRBuilder<> IRB(&F.front(), F.front().begin());
IRB.CreateCall(MemProfInitFunction, {});
return true;
}
return false;
}
bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) {
IRBuilder<> IRB(&F.front().front());
Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
MemProfShadowMemoryDynamicAddress, IntptrTy);
if (F.getParent()->getPICLevel() == PICLevel::NotPIC)
cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true);
DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
return true;
}
bool MemProfiler::instrumentFunction(Function &F) {
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage)
return false;
if (ClDebugFunc == F.getName())
return false;
if (F.getName().startswith("__memprof_"))
return false;
bool FunctionModified = false;
// If needed, insert __memprof_init.
// This function needs to be called even if the function body is not
// instrumented.
if (maybeInsertMemProfInitAtFunctionEntry(F))
FunctionModified = true;
LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n");
initializeCallbacks(*F.getParent());
FunctionModified |= insertDynamicShadowAtFunctionEntry(F);
SmallVector<Instruction *, 16> ToInstrument;
// Fill the set of memory operations to instrument.
for (auto &BB : F) {
for (auto &Inst : BB) {
if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst))
ToInstrument.push_back(&Inst);
}
}
int NumInstrumented = 0;
for (auto *Inst : ToInstrument) {
if (ClDebugMin < 0 || ClDebugMax < 0 ||
(NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
Optional<InterestingMemoryAccess> Access =
isInterestingMemoryAccess(Inst);
if (Access)
instrumentMop(Inst, F.getParent()->getDataLayout(), *Access);
else
instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
}
NumInstrumented++;
}
if (NumInstrumented > 0)
FunctionModified = true;
LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " "
<< F << "\n");
return FunctionModified;
}