forked from OSchip/llvm-project
756 lines
32 KiB
C++
756 lines
32 KiB
C++
//===- LowerAffine.cpp - Lower affine constructs to primitives ------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file lowers affine constructs (If and For statements, AffineApply
|
|
// operations) within a function into their lower level CFG equivalent blocks.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/LowerAffine.h"
|
|
#include "mlir/AffineOps/AffineOps.h"
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/StandardOps/Ops.h"
|
|
#include "mlir/Support/Functional.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
// Visit affine expressions recursively and build the sequence of operations
|
|
// that correspond to it. Visitation functions return an Value of the
|
|
// expression subtree they visited or `nullptr` on error.
|
|
class AffineApplyExpander
|
|
: public AffineExprVisitor<AffineApplyExpander, Value *> {
|
|
public:
|
|
// This internal class expects arguments to be non-null, checks must be
|
|
// performed at the call site.
|
|
AffineApplyExpander(OpBuilder &builder, ArrayRef<Value *> dimValues,
|
|
ArrayRef<Value *> symbolValues, Location loc)
|
|
: builder(builder), dimValues(dimValues), symbolValues(symbolValues),
|
|
loc(loc) {}
|
|
|
|
template <typename OpTy> Value *buildBinaryExpr(AffineBinaryOpExpr expr) {
|
|
auto lhs = visit(expr.getLHS());
|
|
auto rhs = visit(expr.getRHS());
|
|
if (!lhs || !rhs)
|
|
return nullptr;
|
|
auto op = builder.create<OpTy>(loc, lhs, rhs);
|
|
return op.getResult();
|
|
}
|
|
|
|
Value *visitAddExpr(AffineBinaryOpExpr expr) {
|
|
return buildBinaryExpr<AddIOp>(expr);
|
|
}
|
|
|
|
Value *visitMulExpr(AffineBinaryOpExpr expr) {
|
|
return buildBinaryExpr<MulIOp>(expr);
|
|
}
|
|
|
|
// Euclidean modulo operation: negative RHS is not allowed.
|
|
// Remainder of the euclidean integer division is always non-negative.
|
|
//
|
|
// Implemented as
|
|
//
|
|
// a mod b =
|
|
// let remainder = srem a, b;
|
|
// negative = a < 0 in
|
|
// select negative, remainder + b, remainder.
|
|
Value *visitModExpr(AffineBinaryOpExpr expr) {
|
|
auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
|
|
if (!rhsConst) {
|
|
emitError(
|
|
loc,
|
|
"semi-affine expressions (modulo by non-const) are not supported");
|
|
return nullptr;
|
|
}
|
|
if (rhsConst.getValue() <= 0) {
|
|
emitError(loc, "modulo by non-positive value is not supported");
|
|
return nullptr;
|
|
}
|
|
|
|
auto lhs = visit(expr.getLHS());
|
|
auto rhs = visit(expr.getRHS());
|
|
assert(lhs && rhs && "unexpected affine expr lowering failure");
|
|
|
|
Value *remainder = builder.create<RemISOp>(loc, lhs, rhs);
|
|
Value *zeroCst = builder.create<ConstantIndexOp>(loc, 0);
|
|
Value *isRemainderNegative =
|
|
builder.create<CmpIOp>(loc, CmpIPredicate::SLT, remainder, zeroCst);
|
|
Value *correctedRemainder = builder.create<AddIOp>(loc, remainder, rhs);
|
|
Value *result = builder.create<SelectOp>(loc, isRemainderNegative,
|
|
correctedRemainder, remainder);
|
|
return result;
|
|
}
|
|
|
|
// Floor division operation (rounds towards negative infinity).
|
|
//
|
|
// For positive divisors, it can be implemented without branching and with a
|
|
// single division operation as
|
|
//
|
|
// a floordiv b =
|
|
// let negative = a < 0 in
|
|
// let absolute = negative ? -a - 1 : a in
|
|
// let quotient = absolute / b in
|
|
// negative ? -quotient - 1 : quotient
|
|
Value *visitFloorDivExpr(AffineBinaryOpExpr expr) {
|
|
auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
|
|
if (!rhsConst) {
|
|
emitError(
|
|
loc,
|
|
"semi-affine expressions (division by non-const) are not supported");
|
|
return nullptr;
|
|
}
|
|
if (rhsConst.getValue() <= 0) {
|
|
emitError(loc, "division by non-positive value is not supported");
|
|
return nullptr;
|
|
}
|
|
|
|
auto lhs = visit(expr.getLHS());
|
|
auto rhs = visit(expr.getRHS());
|
|
assert(lhs && rhs && "unexpected affine expr lowering failure");
|
|
|
|
Value *zeroCst = builder.create<ConstantIndexOp>(loc, 0);
|
|
Value *noneCst = builder.create<ConstantIndexOp>(loc, -1);
|
|
Value *negative =
|
|
builder.create<CmpIOp>(loc, CmpIPredicate::SLT, lhs, zeroCst);
|
|
Value *negatedDecremented = builder.create<SubIOp>(loc, noneCst, lhs);
|
|
Value *dividend =
|
|
builder.create<SelectOp>(loc, negative, negatedDecremented, lhs);
|
|
Value *quotient = builder.create<DivISOp>(loc, dividend, rhs);
|
|
Value *correctedQuotient = builder.create<SubIOp>(loc, noneCst, quotient);
|
|
Value *result =
|
|
builder.create<SelectOp>(loc, negative, correctedQuotient, quotient);
|
|
return result;
|
|
}
|
|
|
|
// Ceiling division operation (rounds towards positive infinity).
|
|
//
|
|
// For positive divisors, it can be implemented without branching and with a
|
|
// single division operation as
|
|
//
|
|
// a ceildiv b =
|
|
// let negative = a <= 0 in
|
|
// let absolute = negative ? -a : a - 1 in
|
|
// let quotient = absolute / b in
|
|
// negative ? -quotient : quotient + 1
|
|
Value *visitCeilDivExpr(AffineBinaryOpExpr expr) {
|
|
auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
|
|
if (!rhsConst) {
|
|
emitError(loc) << "semi-affine expressions (division by non-const) are "
|
|
"not supported";
|
|
return nullptr;
|
|
}
|
|
if (rhsConst.getValue() <= 0) {
|
|
emitError(loc, "division by non-positive value is not supported");
|
|
return nullptr;
|
|
}
|
|
auto lhs = visit(expr.getLHS());
|
|
auto rhs = visit(expr.getRHS());
|
|
assert(lhs && rhs && "unexpected affine expr lowering failure");
|
|
|
|
Value *zeroCst = builder.create<ConstantIndexOp>(loc, 0);
|
|
Value *oneCst = builder.create<ConstantIndexOp>(loc, 1);
|
|
Value *nonPositive =
|
|
builder.create<CmpIOp>(loc, CmpIPredicate::SLE, lhs, zeroCst);
|
|
Value *negated = builder.create<SubIOp>(loc, zeroCst, lhs);
|
|
Value *decremented = builder.create<SubIOp>(loc, lhs, oneCst);
|
|
Value *dividend =
|
|
builder.create<SelectOp>(loc, nonPositive, negated, decremented);
|
|
Value *quotient = builder.create<DivISOp>(loc, dividend, rhs);
|
|
Value *negatedQuotient = builder.create<SubIOp>(loc, zeroCst, quotient);
|
|
Value *incrementedQuotient = builder.create<AddIOp>(loc, quotient, oneCst);
|
|
Value *result = builder.create<SelectOp>(loc, nonPositive, negatedQuotient,
|
|
incrementedQuotient);
|
|
return result;
|
|
}
|
|
|
|
Value *visitConstantExpr(AffineConstantExpr expr) {
|
|
auto valueAttr =
|
|
builder.getIntegerAttr(builder.getIndexType(), expr.getValue());
|
|
auto op =
|
|
builder.create<ConstantOp>(loc, builder.getIndexType(), valueAttr);
|
|
return op.getResult();
|
|
}
|
|
|
|
Value *visitDimExpr(AffineDimExpr expr) {
|
|
assert(expr.getPosition() < dimValues.size() &&
|
|
"affine dim position out of range");
|
|
return dimValues[expr.getPosition()];
|
|
}
|
|
|
|
Value *visitSymbolExpr(AffineSymbolExpr expr) {
|
|
assert(expr.getPosition() < symbolValues.size() &&
|
|
"symbol dim position out of range");
|
|
return symbolValues[expr.getPosition()];
|
|
}
|
|
|
|
private:
|
|
OpBuilder &builder;
|
|
ArrayRef<Value *> dimValues;
|
|
ArrayRef<Value *> symbolValues;
|
|
|
|
Location loc;
|
|
};
|
|
} // namespace
|
|
|
|
// Create a sequence of operations that implement the `expr` applied to the
|
|
// given dimension and symbol values.
|
|
mlir::Value *mlir::expandAffineExpr(OpBuilder &builder, Location loc,
|
|
AffineExpr expr,
|
|
ArrayRef<Value *> dimValues,
|
|
ArrayRef<Value *> symbolValues) {
|
|
return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr);
|
|
}
|
|
|
|
// Create a sequence of operations that implement the `affineMap` applied to
|
|
// the given `operands` (as it it were an AffineApplyOp).
|
|
Optional<SmallVector<Value *, 8>> static expandAffineMap(
|
|
OpBuilder &builder, Location loc, AffineMap affineMap,
|
|
ArrayRef<Value *> operands) {
|
|
auto numDims = affineMap.getNumDims();
|
|
auto expanded = functional::map(
|
|
[numDims, &builder, loc, operands](AffineExpr expr) {
|
|
return expandAffineExpr(builder, loc, expr,
|
|
operands.take_front(numDims),
|
|
operands.drop_front(numDims));
|
|
},
|
|
affineMap.getResults());
|
|
if (llvm::all_of(expanded, [](Value *v) { return v; }))
|
|
return expanded;
|
|
return None;
|
|
}
|
|
|
|
// Given a range of values, emit the code that reduces them with "min" or "max"
|
|
// depending on the provided comparison predicate. The predicate defines which
|
|
// comparison to perform, "lt" for "min", "gt" for "max" and is used for the
|
|
// `cmpi` operation followed by the `select` operation:
|
|
//
|
|
// %cond = cmpi "predicate" %v0, %v1
|
|
// %result = select %cond, %v0, %v1
|
|
//
|
|
// Multiple values are scanned in a linear sequence. This creates a data
|
|
// dependences that wouldn't exist in a tree reduction, but is easier to
|
|
// recognize as a reduction by the subsequent passes.
|
|
static Value *buildMinMaxReductionSeq(Location loc, CmpIPredicate predicate,
|
|
ArrayRef<Value *> values,
|
|
OpBuilder &builder) {
|
|
assert(!llvm::empty(values) && "empty min/max chain");
|
|
|
|
auto valueIt = values.begin();
|
|
Value *value = *valueIt++;
|
|
for (; valueIt != values.end(); ++valueIt) {
|
|
auto cmpOp = builder.create<CmpIOp>(loc, predicate, value, *valueIt);
|
|
value = builder.create<SelectOp>(loc, cmpOp.getResult(), value, *valueIt);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
// Emit instructions that correspond to the affine map in the lower bound
|
|
// applied to the respective operands, and compute the maximum value across
|
|
// the results.
|
|
Value *mlir::lowerAffineLowerBound(AffineForOp op, OpBuilder &builder) {
|
|
SmallVector<Value *, 8> boundOperands(op.getLowerBoundOperands());
|
|
auto lbValues = expandAffineMap(builder, op.getLoc(), op.getLowerBoundMap(),
|
|
boundOperands);
|
|
if (!lbValues)
|
|
return nullptr;
|
|
return buildMinMaxReductionSeq(op.getLoc(), CmpIPredicate::SGT, *lbValues,
|
|
builder);
|
|
}
|
|
|
|
// Emit instructions that correspond to the affine map in the upper bound
|
|
// applied to the respective operands, and compute the minimum value across
|
|
// the results.
|
|
Value *mlir::lowerAffineUpperBound(AffineForOp op, OpBuilder &builder) {
|
|
SmallVector<Value *, 8> boundOperands(op.getUpperBoundOperands());
|
|
auto ubValues = expandAffineMap(builder, op.getLoc(), op.getUpperBoundMap(),
|
|
boundOperands);
|
|
if (!ubValues)
|
|
return nullptr;
|
|
return buildMinMaxReductionSeq(op.getLoc(), CmpIPredicate::SLT, *ubValues,
|
|
builder);
|
|
}
|
|
|
|
namespace {
|
|
// Affine terminators are removed.
|
|
class AffineTerminatorLowering : public ConversionPattern {
|
|
public:
|
|
AffineTerminatorLowering(MLIRContext *ctx)
|
|
: ConversionPattern(AffineTerminatorOp::getOperationName(), 1, ctx) {}
|
|
|
|
virtual PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
PatternRewriter &rewriter) const override {
|
|
rewriter.replaceOp(op, {});
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
// Create a CFG subgraph for the loop around its body blocks (if the body
|
|
// contained other loops, they have been already lowered to a flow of blocks).
|
|
// Maintain the invariants that a CFG subgraph created for any loop has a single
|
|
// entry and a single exit, and that the entry/exit blocks are respectively
|
|
// first/last blocks in the parent region. The original loop operation is
|
|
// replaced by the initialization operations that set up the initial value of
|
|
// the loop induction variable (%iv) and computes the loop bounds that are loop-
|
|
// invariant for affine loops. The operations following the original affine.for
|
|
// are split out into a separate continuation (exit) block. A condition block is
|
|
// created before the continuation block. It checks the exit condition of the
|
|
// loop and branches either to the continuation block, or to the first block of
|
|
// the body. Induction variable modification is appended to the last block of
|
|
// the body (which is the exit block from the body subgraph thanks to the
|
|
// invariant we maintain) along with a branch that loops back to the condition
|
|
// block.
|
|
//
|
|
// NOTE: this relies on the DialectConversion infrastructure knowing how to undo
|
|
// the creation of operations if the conversion fails. In particular, lowering
|
|
// of the affine maps may insert operations and then fail on a semi-affine map.
|
|
//
|
|
// +---------------------------------+
|
|
// | <code before the AffineForOp> |
|
|
// | <compute initial %iv value> |
|
|
// | br cond(%iv) |
|
|
// +---------------------------------+
|
|
// |
|
|
// -------| |
|
|
// | v v
|
|
// | +--------------------------------+
|
|
// | | cond(%iv): |
|
|
// | | <compare %iv to upper bound> |
|
|
// | | cond_br %r, body, end |
|
|
// | +--------------------------------+
|
|
// | | |
|
|
// | | -------------|
|
|
// | v |
|
|
// | +--------------------------------+ |
|
|
// | | body-first: | |
|
|
// | | <body contents> | |
|
|
// | +--------------------------------+ |
|
|
// | | |
|
|
// | ... |
|
|
// | | |
|
|
// | +--------------------------------+ |
|
|
// | | body-last: | |
|
|
// | | <body contents> | |
|
|
// | | %new_iv =<add step to %iv> | |
|
|
// | | br cond(%new_iv) | |
|
|
// | +--------------------------------+ |
|
|
// | | |
|
|
// |----------- |--------------------
|
|
// v
|
|
// +--------------------------------+
|
|
// | end: |
|
|
// | <code after the AffineForOp> |
|
|
// +--------------------------------+
|
|
//
|
|
class AffineForLowering : public ConversionPattern {
|
|
public:
|
|
AffineForLowering(MLIRContext *ctx)
|
|
: ConversionPattern(AffineForOp::getOperationName(), 1, ctx) {}
|
|
|
|
virtual PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
PatternRewriter &rewriter) const override {
|
|
auto forOp = cast<AffineForOp>(op);
|
|
Location loc = op->getLoc();
|
|
|
|
// Start by splitting the block containing the 'affine.for' into two parts.
|
|
// The part before will get the init code, the part after will be the end
|
|
// point.
|
|
auto *initBlock = rewriter.getInsertionBlock();
|
|
auto initPosition = rewriter.getInsertionPoint();
|
|
auto *endBlock = rewriter.splitBlock(initBlock, initPosition);
|
|
|
|
// Use the first block of the loop body as the condition block since it is
|
|
// the block that has the induction variable as its argument. Split out
|
|
// all operations from the first block into a new block. Move all body
|
|
// blocks from the loop body region to the region containing the loop.
|
|
auto *conditionBlock = &forOp.getRegion().front();
|
|
auto *firstBodyBlock =
|
|
rewriter.splitBlock(conditionBlock, conditionBlock->begin());
|
|
auto *lastBodyBlock = &forOp.getRegion().back();
|
|
rewriter.inlineRegionBefore(forOp.getRegion(), endBlock);
|
|
auto *iv = conditionBlock->getArgument(0);
|
|
|
|
// Append the induction variable stepping logic to the last body block and
|
|
// branch back to the condition block. Construct an affine expression f :
|
|
// (x -> x+step) and apply this expression to the induction variable.
|
|
rewriter.setInsertionPointToEnd(lastBodyBlock);
|
|
auto affStep = rewriter.getAffineConstantExpr(forOp.getStep());
|
|
auto affDim = rewriter.getAffineDimExpr(0);
|
|
auto stepped = expandAffineExpr(rewriter, loc, affDim + affStep, iv, {});
|
|
if (!stepped)
|
|
return matchFailure();
|
|
rewriter.create<BranchOp>(loc, conditionBlock, stepped);
|
|
|
|
// Compute loop bounds before branching to the condition.
|
|
rewriter.setInsertionPointToEnd(initBlock);
|
|
Value *lowerBound = lowerAffineLowerBound(forOp, rewriter);
|
|
Value *upperBound = lowerAffineUpperBound(forOp, rewriter);
|
|
if (!lowerBound || !upperBound)
|
|
return matchFailure();
|
|
rewriter.create<BranchOp>(loc, conditionBlock, lowerBound);
|
|
|
|
// With the body block done, we can fill in the condition block.
|
|
rewriter.setInsertionPointToEnd(conditionBlock);
|
|
auto comparison =
|
|
rewriter.create<CmpIOp>(loc, CmpIPredicate::SLT, iv, upperBound);
|
|
rewriter.create<CondBranchOp>(loc, comparison, firstBodyBlock,
|
|
ArrayRef<Value *>(), endBlock,
|
|
ArrayRef<Value *>());
|
|
// Ok, we're done!
|
|
rewriter.replaceOp(op, {});
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
// Create a CFG subgraph for the affine.if operation (including its "then" and
|
|
// optional "else" operation blocks). We maintain the invariants that the
|
|
// subgraph has a single entry and a single exit point, and that the entry/exit
|
|
// blocks are respectively the first/last block of the enclosing region. The
|
|
// operations following the affine.if are split into a continuation (subgraph
|
|
// exit) block. The condition is lowered to a chain of blocks that implement the
|
|
// short-circuit scheme. Condition blocks are created by splitting out an empty
|
|
// block from the block that contains the affine.if operation. They
|
|
// conditionally branch to either the first block of the "then" region, or to
|
|
// the first block of the "else" region. If the latter is absent, they branch
|
|
// to the continuation block instead. The last blocks of "then" and "else"
|
|
// regions (which are known to be exit blocks thanks to the invariant we
|
|
// maintain).
|
|
//
|
|
// NOTE: this relies on the DialectConversion infrastructure knowing how to undo
|
|
// the creation of operations if the conversion fails. In particular, lowering
|
|
// of the affine maps may insert operations and then fail on a semi-affine map.
|
|
//
|
|
// +--------------------------------+
|
|
// | <code before the AffineIfOp> |
|
|
// | %zero = constant 0 : index |
|
|
// | %v = affine.apply #expr1(%ops) |
|
|
// | %c = cmpi "sge" %v, %zero |
|
|
// | cond_br %c, %next, %else |
|
|
// +--------------------------------+
|
|
// | |
|
|
// | --------------|
|
|
// v |
|
|
// +--------------------------------+ |
|
|
// | next: | |
|
|
// | <repeat the check for expr2> | |
|
|
// | cond_br %c, %next2, %else | |
|
|
// +--------------------------------+ |
|
|
// | | |
|
|
// ... --------------|
|
|
// | <Per-expression checks> |
|
|
// v |
|
|
// +--------------------------------+ |
|
|
// | last: | |
|
|
// | <repeat the check for exprN> | |
|
|
// | cond_br %c, %then, %else | |
|
|
// +--------------------------------+ |
|
|
// | | |
|
|
// | --------------|
|
|
// v |
|
|
// +--------------------------------+ |
|
|
// | then: | |
|
|
// | <then contents> | |
|
|
// | br continue | |
|
|
// +--------------------------------+ |
|
|
// | |
|
|
// |---------- |-------------
|
|
// | V
|
|
// | +--------------------------------+
|
|
// | | else: |
|
|
// | | <else contents> |
|
|
// | | br continue |
|
|
// | +--------------------------------+
|
|
// | |
|
|
// ------| |
|
|
// v v
|
|
// +--------------------------------+
|
|
// | continue: |
|
|
// | <code after the AffineIfOp> |
|
|
// +--------------------------------+
|
|
//
|
|
class AffineIfLowering : public ConversionPattern {
|
|
public:
|
|
AffineIfLowering(MLIRContext *ctx)
|
|
: ConversionPattern(AffineIfOp::getOperationName(), 1, ctx) {}
|
|
|
|
virtual PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
PatternRewriter &rewriter) const override {
|
|
auto ifOp = cast<AffineIfOp>(op);
|
|
auto loc = op->getLoc();
|
|
|
|
// Start by splitting the block containing the 'affine.if' into two parts.
|
|
// The part before will contain the condition, the part after will be the
|
|
// continuation point.
|
|
auto *condBlock = rewriter.getInsertionBlock();
|
|
auto opPosition = rewriter.getInsertionPoint();
|
|
auto *continueBlock = rewriter.splitBlock(condBlock, opPosition);
|
|
|
|
// Move blocks from the "then" region to the region containing 'affine.if',
|
|
// place it before the continuation block, and branch to it.
|
|
auto *thenBlock = &ifOp.getThenBlocks().front();
|
|
rewriter.setInsertionPointToEnd(&ifOp.getThenBlocks().back());
|
|
rewriter.create<BranchOp>(loc, continueBlock);
|
|
rewriter.inlineRegionBefore(ifOp.getThenBlocks(), continueBlock);
|
|
|
|
// Move blocks from the "else" region (if present) to the region containing
|
|
// 'affine.if', place it before the continuation block and branch to it. It
|
|
// will be placed after the "then" regions.
|
|
auto *elseBlock = continueBlock;
|
|
if (!ifOp.getElseBlocks().empty()) {
|
|
elseBlock = &ifOp.getElseBlocks().front();
|
|
rewriter.setInsertionPointToEnd(&ifOp.getElseBlocks().back());
|
|
rewriter.create<BranchOp>(loc, continueBlock);
|
|
rewriter.inlineRegionBefore(ifOp.getElseBlocks(), continueBlock);
|
|
}
|
|
|
|
// Now we just have to handle the condition logic.
|
|
auto integerSet = ifOp.getIntegerSet();
|
|
|
|
// Implement short-circuit logic. For each affine expression in the
|
|
// 'affine.if' condition, convert it into an affine map and call
|
|
// `affine.apply` to obtain the resulting value. Perform the equality or
|
|
// the greater-than-or-equality test between this value and zero depending
|
|
// on the equality flag of the condition. If the test fails, jump
|
|
// immediately to the false branch, which may be the else block if it is
|
|
// present or the continuation block otherwise. If the test succeeds, jump
|
|
// to the next block testing the next conjunct of the condition in the
|
|
// similar way. When all conjuncts have been handled, jump to the 'then'
|
|
// block instead.
|
|
rewriter.setInsertionPointToEnd(condBlock);
|
|
Value *zeroConstant = rewriter.create<ConstantIndexOp>(loc, 0);
|
|
|
|
for (unsigned i = 0, e = integerSet.getNumConstraints(); i < e; ++i) {
|
|
AffineExpr constraintExpr = integerSet.getConstraint(i);
|
|
bool isEquality = integerSet.isEq(i);
|
|
|
|
// Create the fall-through block for the next condition, if present, by
|
|
// splitting an empty block out of an existing block. Otherwise treat the
|
|
// first "then" block as the block we should branch to if the (last)
|
|
// condition is true.
|
|
auto *nextBlock = (i == e - 1)
|
|
? thenBlock
|
|
: rewriter.splitBlock(condBlock, condBlock->end());
|
|
|
|
// Build and apply an affine expression
|
|
auto numDims = integerSet.getNumDims();
|
|
Value *affResult = expandAffineExpr(rewriter, loc, constraintExpr,
|
|
operands.take_front(numDims),
|
|
operands.drop_front(numDims));
|
|
if (!affResult)
|
|
return matchFailure();
|
|
auto comparisonOp = rewriter.create<CmpIOp>(
|
|
loc, isEquality ? CmpIPredicate::EQ : CmpIPredicate::SGE, affResult,
|
|
zeroConstant);
|
|
rewriter.create<CondBranchOp>(loc, comparisonOp.getResult(), nextBlock,
|
|
/*trueArgs=*/ArrayRef<Value *>(), elseBlock,
|
|
/*falseArgs=*/ArrayRef<Value *>());
|
|
rewriter.setInsertionPointToEnd(nextBlock);
|
|
condBlock = nextBlock;
|
|
}
|
|
|
|
// Ok, we're done!
|
|
rewriter.replaceOp(op, {});
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
// Convert an "affine.apply" operation into a sequence of arithmetic
|
|
// operations using the StandardOps dialect.
|
|
class AffineApplyLowering : public ConversionPattern {
|
|
public:
|
|
AffineApplyLowering(MLIRContext *ctx)
|
|
: ConversionPattern(AffineApplyOp::getOperationName(), 1, ctx) {}
|
|
|
|
virtual PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
PatternRewriter &rewriter) const override {
|
|
auto affineApplyOp = cast<AffineApplyOp>(op);
|
|
auto maybeExpandedMap = expandAffineMap(
|
|
rewriter, op->getLoc(), affineApplyOp.getAffineMap(), operands);
|
|
if (!maybeExpandedMap)
|
|
return matchFailure();
|
|
rewriter.replaceOp(op, *maybeExpandedMap);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
// Apply the affine map from an 'affine.load' operation to its operands, and
|
|
// feed the results to a newly created 'std.load' operation (which replaces the
|
|
// original 'affine.load').
|
|
class AffineLoadLowering : public ConversionPattern {
|
|
public:
|
|
AffineLoadLowering(MLIRContext *ctx)
|
|
: ConversionPattern(AffineLoadOp::getOperationName(), 1, ctx) {}
|
|
|
|
virtual PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
PatternRewriter &rewriter) const override {
|
|
auto affineLoadOp = cast<AffineLoadOp>(op);
|
|
// Expand affine map from 'affineLoadOp'.
|
|
auto maybeExpandedMap =
|
|
expandAffineMap(rewriter, op->getLoc(), affineLoadOp.getAffineMap(),
|
|
operands.drop_front());
|
|
if (!maybeExpandedMap)
|
|
return matchFailure();
|
|
// Build std.load memref[expandedMap.results].
|
|
rewriter.replaceOpWithNewOp<LoadOp>(op, operands[0], *maybeExpandedMap);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
// Apply the affine map from an 'affine.store' operation to its operands, and
|
|
// feed the results to a newly created 'std.store' operation (which replaces the
|
|
// original 'affine.store').
|
|
class AffineStoreLowering : public ConversionPattern {
|
|
public:
|
|
AffineStoreLowering(MLIRContext *ctx)
|
|
: ConversionPattern(AffineStoreOp::getOperationName(), 1, ctx) {}
|
|
|
|
virtual PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
PatternRewriter &rewriter) const override {
|
|
auto affineStoreOp = cast<AffineStoreOp>(op);
|
|
// Expand affine map from 'affineStoreOp'.
|
|
auto maybeExpandedMap =
|
|
expandAffineMap(rewriter, op->getLoc(), affineStoreOp.getAffineMap(),
|
|
operands.drop_front(2));
|
|
if (!maybeExpandedMap)
|
|
return matchFailure();
|
|
// Build std.store valutToStore, memref[expandedMap.results].
|
|
rewriter.replaceOpWithNewOp<StoreOp>(op, operands[0], operands[1],
|
|
*maybeExpandedMap);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
// Apply the affine maps from an 'affine.dma_start' operation to each of their
|
|
// respective map operands, and feed the results to a newly created
|
|
// 'std.dma_start' operation (which replaces the original 'affine.dma_start').
|
|
class AffineDmaStartLowering : public ConversionPattern {
|
|
public:
|
|
AffineDmaStartLowering(MLIRContext *ctx)
|
|
: ConversionPattern(AffineDmaStartOp::getOperationName(), 1, ctx) {}
|
|
|
|
virtual PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
PatternRewriter &rewriter) const override {
|
|
auto affineDmaStartOp = cast<AffineDmaStartOp>(op);
|
|
// Expand affine map for DMA source memref.
|
|
auto maybeExpandedSrcMap = expandAffineMap(
|
|
rewriter, op->getLoc(), affineDmaStartOp.getSrcMap(),
|
|
operands.drop_front(affineDmaStartOp.getSrcMemRefOperandIndex() + 1));
|
|
if (!maybeExpandedSrcMap)
|
|
return matchFailure();
|
|
// Expand affine map for DMA destination memref.
|
|
auto maybeExpandedDstMap = expandAffineMap(
|
|
rewriter, op->getLoc(), affineDmaStartOp.getDstMap(),
|
|
operands.drop_front(affineDmaStartOp.getDstMemRefOperandIndex() + 1));
|
|
if (!maybeExpandedDstMap)
|
|
return matchFailure();
|
|
// Expand affine map for DMA tag memref.
|
|
auto maybeExpandedTagMap = expandAffineMap(
|
|
rewriter, op->getLoc(), affineDmaStartOp.getTagMap(),
|
|
operands.drop_front(affineDmaStartOp.getTagMemRefOperandIndex() + 1));
|
|
if (!maybeExpandedTagMap)
|
|
return matchFailure();
|
|
|
|
// Build std.dma_start operation with affine map results.
|
|
auto *srcMemRef = operands[affineDmaStartOp.getSrcMemRefOperandIndex()];
|
|
auto *dstMemRef = operands[affineDmaStartOp.getDstMemRefOperandIndex()];
|
|
auto *tagMemRef = operands[affineDmaStartOp.getTagMemRefOperandIndex()];
|
|
unsigned numElementsIndex = affineDmaStartOp.getTagMemRefOperandIndex() +
|
|
1 + affineDmaStartOp.getTagMap().getNumInputs();
|
|
auto *numElements = operands[numElementsIndex];
|
|
auto *stride =
|
|
affineDmaStartOp.isStrided() ? operands[numElementsIndex + 1] : nullptr;
|
|
auto *eltsPerStride =
|
|
affineDmaStartOp.isStrided() ? operands[numElementsIndex + 2] : nullptr;
|
|
|
|
rewriter.replaceOpWithNewOp<DmaStartOp>(
|
|
op, srcMemRef, *maybeExpandedSrcMap, dstMemRef, *maybeExpandedDstMap,
|
|
numElements, tagMemRef, *maybeExpandedTagMap, stride, eltsPerStride);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
// Apply the affine map from an 'affine.dma_wait' operation tag memref,
|
|
// and feed the results to a newly created 'std.dma_wait' operation (which
|
|
// replaces the original 'affine.dma_wait').
|
|
class AffineDmaWaitLowering : public ConversionPattern {
|
|
public:
|
|
AffineDmaWaitLowering(MLIRContext *ctx)
|
|
: ConversionPattern(AffineDmaWaitOp::getOperationName(), 1, ctx) {}
|
|
|
|
virtual PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
PatternRewriter &rewriter) const override {
|
|
auto affineDmaWaitOp = cast<AffineDmaWaitOp>(op);
|
|
// Expand affine map for DMA tag memref.
|
|
auto maybeExpandedTagMap =
|
|
expandAffineMap(rewriter, op->getLoc(), affineDmaWaitOp.getTagMap(),
|
|
operands.drop_front());
|
|
if (!maybeExpandedTagMap)
|
|
return matchFailure();
|
|
|
|
// Build std.dma_wait operation with affine map results.
|
|
unsigned numElementsIndex = 1 + affineDmaWaitOp.getTagMap().getNumInputs();
|
|
rewriter.replaceOpWithNewOp<DmaWaitOp>(
|
|
op, operands[0], *maybeExpandedTagMap, operands[numElementsIndex]);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
} // end namespace
|
|
|
|
LogicalResult mlir::lowerAffineConstructs(Function function) {
|
|
OwningRewritePatternList patterns;
|
|
RewriteListBuilder<AffineApplyLowering, AffineDmaStartLowering,
|
|
AffineDmaWaitLowering, AffineLoadLowering,
|
|
AffineStoreLowering, AffineForLowering, AffineIfLowering,
|
|
AffineTerminatorLowering>::build(patterns,
|
|
function.getContext());
|
|
ConversionTarget target(*function.getContext());
|
|
target.addLegalDialect<StandardOpsDialect>();
|
|
return applyConversionPatterns(function, target, std::move(patterns));
|
|
}
|
|
|
|
namespace {
|
|
class LowerAffinePass : public FunctionPass<LowerAffinePass> {
|
|
void runOnFunction() override { lowerAffineConstructs(getFunction()); }
|
|
};
|
|
} // namespace
|
|
|
|
/// Lowers If and For operations within a function into their lower level CFG
|
|
/// equivalent blocks.
|
|
FunctionPassBase *mlir::createLowerAffinePass() {
|
|
return new LowerAffinePass();
|
|
}
|
|
|
|
static PassRegistration<LowerAffinePass>
|
|
pass("lower-affine",
|
|
"Lower If, For, AffineApply operations to primitive equivalents");
|