Add the 16 access registers as LLVM registers. This allows removing
a lot of special cases in the assembler and disassembler where we
were handling access registers; this can all just use the generic
register code now.
Also add a bunch of instructions to operate on access registers,
for assembler/disassembler use only. No change in code generation
intended.
llvm-svn: 286283
Rework patterns for branches, call & return instructions,
compare-and-branch, compare-and-trap, and conditional move
instructions.
In particular, simplify creation of patterns for the extended
opcodes of instructions that take a CC mask.
Also, use semantical instruction classes for all the instructions
instead of open-coding them in SystemZInstrInfo.td.
Adds a couple of the basic branch instructions (that are unused
for codegen) for the assembler/disassembler.
llvm-svn: 286263
This patch implements two changes:
- Move processor feature definition into a new file SystemZFeatures.td,
and provide explicit lists of supported and unsupported features for
each level of the z/Architecture. This allows specifying unsupported
features in the scheduler definition files for each processor.
- Add optional aliases for the -mcpu processor names according to the
level of the z/Architecture, for compatibility with other compilers
on the platform. The supported aliases are:
-mcpu=arch8 equals -mcpu=z10
-mcpu=arch9 equals -mcpu=z196
-mcpu=arch10 equals -mcpu=zEC12
-mcpu=arch11 equals -mcpu=z13
llvm-svn: 285577
Currently, when using an instruction that is not supported on the
currently selected architecture, the LLVM assembler is likely to
diagnose an "invalid operand" instead of a "missing feature".
This is because many operands require a custom parser in order to
be processed correctly, and if an instruction is not available
according to the current feature set, the generated parser code
will also not detect the associated custom operand parsers.
Fixed by temporarily enabling all features while parsing operands.
The missing features will then be correctly detected when actually
parsing the instruction itself.
llvm-svn: 285575
LLVM currently treats the first operand of MVCK as if it were a
regular base+index+displacement address. However, it is in fact
a base+displacement combined with a length register field.
While the two might look syntactically similar, there are two
semantic differences:
- %r0 is a valid length register, even though it cannot be used
as an index register.
- In an expression with just a single register like 0(%rX), the
register is treated as base with normal addresses, while it is
treated as the length register (with an empty base) for MVCK.
Fixed by adding a new operand parser class BDRAddr and reworking
the assembler parser to distinguish between address + length
register operands and regular addresses.
llvm-svn: 285574
Summary:
Add instruction formats E, RSI, SSd, SSE, and SSF.
Added BRXH, BRXLE, PR, MVCK, STRAG, and ECTG instructions to test out
those formats.
Reviewers: uweigand
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23179
llvm-svn: 277822
Support and generate Compare and Traps like CRT, CIT, etc.
Support Trap as legal DAG opcodes and generate "j .+2" for them by default.
Add support for Conditional Traps and use the If Converter to convert them into
the corresponding compare and trap opcodes.
Differential Revision: http://reviews.llvm.org/D21155
llvm-svn: 272419
We already exploit a number of instructions specific to z196,
but not yet POPCNT. Add support for the population-count
facility, MC support for the POPCNT instruction, CodeGen
support for using POPCNT, and implement the getPopcntSupport
TargetTransformInfo hook.
llvm-svn: 233689
Originally committed as r191661, but reverted because it changed the matching
order of comparisons on some hosts. That should have been fixed by r191735.
llvm-svn: 191738
For some reason, adding definitions for these load and store
instructions changed whether some of the build bots matched
comparisons as signed or unsigned.
llvm-svn: 191663
For some reason I never got around to adding these at the same time as
the signed versions. No idea why.
I'm not sure whether this SystemZII::BranchC* stuff is useful, or whether
it should just be replaced with an "is normal" flag. I'll leave that
for later though.
There are some boundary conditions that can be tweaked, such as preferring
unsigned comparisons for equality with [128, 256), and "<= 255" over "< 256",
but again I'll leave those for a separate patch.
llvm-svn: 190930
The main complication here is that TM and TMY (the memory forms) set
CC differently from the register forms. When the tested bits contain
some 0s and some 1s, the register forms set CC to 1 or 2 based on the
value the uppermost bit. The memory forms instead set CC to 1
regardless of the uppermost bit.
Until now, I've tried to make it so that a branch never tests for an
impossible CC value. E.g. NR only sets CC to 0 or 1, so branches on the
result will only test for 0 or 1. Originally I'd tried to do the same
thing for TM and TMY by using custom matching code in ISelDAGToDAG.
That ended up being very ugly though, and would have meant duplicating
some of the chain checks that the common isel code does.
I've therefore gone for the simpler alternative of adding an extra
operand to the TM DAG opcode to say whether a memory form would be OK.
This means that the inverse of a "TM;JE" is "TM;JNE" rather than the
more precise "TM;JNLE", just like the inverse of "TMLL;JE" is "TMLL;JNE".
I suppose that's arguably less confusing though...
llvm-svn: 190400
For now just handles simple comparisons of an ANDed value with zero.
The CC value provides enough information to do any comparison for a
2-bit mask, and some nonzero comparisons with more populated masks,
but that's all future work.
llvm-svn: 189469
The atomic tests assume the two-operand forms, so I've restricted them to z10.
Running and-01.ll, or-01.ll and xor-01.ll for z196 as well as z10 shows why
using convertToThreeAddress() is better than exposing the three-operand forms
first and then converting back to two operands where possible (which is what
I'd originally tried). Using the three-operand form first stops us from
taking advantage of NG, OG and XG for spills.
llvm-svn: 186683
This first step just adds definitions for SLLK, SRLK and SRAK.
The next patch will actually make use of them during codegen.
insn-bad.s tests that some form of error is reported when using these
instructions on z10. More work is needed to get the "instruction requires:
distinct-ops" that we'd ideally like, so I've stubbed that part out for now.
I'll come back and make it mandatory once the necessary changes are in.
llvm-svn: 186680
RISBG has three 8-bit operands (I3, I4 and I5). I'd originally
restricted all three to 6 bits, since that's the only range we intended
to use at the time. However, the top bit of I4 acts as a "zero" flag for
RISBG, while the top bit of I3 acts as a "test" flag for RNSBG & co.
This patch therefore allows them to have the full 8-bit range.
I've left the fifth operand as a 6-bit value for now since the
upper 2 bits have no defined meaning.
llvm-svn: 186070
This is the first use of D(L,B) addressing, which required a fair bit
of surgery. For that reason, the patch just adds the instruction
definition and the associated assembler and disassembler support.
A later patch will actually make use of it for codegen.
llvm-svn: 185433
This patch adds support for the CRJ and CGRJ instructions. Support for
the immediate forms will be a separate patch.
The architecture has a large number of comparison instructions. I think
it's generally better to concentrate on using the "best" comparison
instruction first and foremost, then only use something like CRJ if
CR really was the natual choice of comparison instruction. The patch
therefore opportunistically converts separate CR and BRC instructions
into a single CRJ while emitting instructions in ISelLowering.
llvm-svn: 182764
The idea is to make sure that:
(1) "register expected" is restricted to cases where ParseRegister()
is called and the token obviously isn't a register.
(2) "invalid register" is restricted to cases where a register-like "%..."
sequence is found, but the "..." makes no sense.
(3) the generic "invalid operand for instruction" is used in cases where
the wrong register type is used (GPR instead of FPR, etc.).
(4) the new "invalid register pair" is used if the register has the right type,
but is not a valid register pair.
Testing of (1)-(3) is now restricted to regs-bad.s. It uses a representative
instruction for each register class to make sure that only registers from
that class are accepted.
(4) is tested by both regs-bad.s (which checks all invalid register pairs)
and insn-bad.s (which tests one invalid pair for each instruction that
requires a pair).
While there, I changed "Number" to "Num" for consistency with the
operand class.
llvm-svn: 182643