Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Note: This recommits the previously reverted patch,
but now it is commited together with a fix for lldb.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 349019
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 348927
When the global new and delete operators aren't declared, Clang
provides and implicit declaration, but this declaration currently
always uses the default visibility. This is a problem when the
C++ library itself is being built with non-default visibility because
the implicit declaration will force the new and delete operators to
have the default visibility unlike the rest of the library.
The existing workaround is to use assembly to enforce the visiblity:
https://fuchsia.googlesource.com/zircon/+/master/system/ulib/zxcpp/new.cpp#108
but that solution is not always available, e.g. in the case of of
libFuzzer which is using an internal version of libc++ that's also built
with -fvisibility=hidden where the existing behavior is causing issues.
This change introduces a new option -fvisibility-global-new-delete-hidden
which makes the implicit declaration of the global new and delete
operators hidden.
Differential Revision: https://reviews.llvm.org/D53787
llvm-svn: 348234
Added references to the addr spaces deduction and enabled
CL2.0 features (program scope variables and storage class
qualifiers) to work in C++ mode too.
Fixed several address space conversion issues in CodeGen
for references.
Differential Revision: https://reviews.llvm.org/D53764
llvm-svn: 347059
Summary:
When -faligned-allocation is specified in C++03 libc++ defines std::align_val_t as an unscoped enumeration type (because Clang didn't provide scoped enumerations as an extension until 8.0).
Unfortunately Clang confuses the `align_val_t` overloads of delete with the sized deallocation overloads which aren't enabled. This caused Clang to call the aligned deallocation function as if it were the sized deallocation overload.
For example: https://godbolt.org/z/xXJELh
This patch fixes the confusion.
Reviewers: rsmith, EricWF
Reviewed By: EricWF
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D53508
llvm-svn: 345296
Summary:
When -faligned-allocation is specified in C++03 libc++ defines std::align_val_t as an unscoped enumeration type (because Clang didn't provide scoped enumerations as an extension until 8.0).
Unfortunately Clang confuses the `align_val_t` overloads of delete with the sized deallocation overloads which aren't enabled. This caused Clang to call the aligned deallocation function as if it were the sized deallocation overload.
For example: https://godbolt.org/z/xXJELh
This patch fixes the confusion.
Reviewers: rsmith, EricWF
Reviewed By: EricWF
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D53508
llvm-svn: 345211
Rather, they are subexpressions of the enclosing lambda-expression, and
any temporaries in them are destroyed at the end of that
full-expression, or when the corresponding lambda-expression is
destroyed if they are lifetime-extended.
llvm-svn: 344801
Previously clang considered function variants from both sides of
compilation and that resulted in picking up wrong deallocation function.
Differential Revision: https://reviews.llvm.org/D51808
llvm-svn: 342749
Summary:
r306722 introduced a new note called note_silence_unligned_allocation_unavailable
where I believe what was meant is note_silence_aligned_allocation_unavailable.
Reviewers: ahatanak
Subscribers: dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D51043
llvm-svn: 340288
Libc++ needs to know when aligned allocation is supported by clang, but is
otherwise unavailable at link time. Otherwise, libc++ will incorrectly end up
generating calls to `__builtin_operator_new`/`__builtin_operator_delete` with
alignment arguments.
This patch implements the following changes:
* The `__cpp_aligned_new` feature test macro to no longer be defined when
aligned allocation is otherwise enabled but unavailable.
* The Darwin driver no longer passes `-faligned-alloc-unavailable` when the
user manually specifies `-faligned-allocation` or `-fno-aligned-allocation`.
* Instead of a warning Clang now generates a hard error when an aligned
allocation or deallocation function is referenced but unavailable.
Patch by Eric Fiselier.
Reviewers: rsmith, vsapsai, erik.pilkington, ahatanak, dexonsmith
Reviewed By: rsmith
Subscribers: Quuxplusone, cfe-commits
Differential Revision: https://reviews.llvm.org/D45015
llvm-svn: 338934
in some member function calls.
Specifically, when calling a conversion function, we would fail to
create the AST node representing materialization of the class object.
llvm-svn: 338135
This change implements C++ DR1696, which makes initialization of a
reference member of a class from a temporary object ill-formed. The
standard wording here is imprecise, but we interpret it as meaning that
any time a mem-initializer would result in lifetime extension, the
program is ill-formed.
This reinstates r337226, reverted in r337255, with a fix for the
InitializedEntity alignment problem that was breaking ARM buildbots.
llvm-svn: 337329
This change breaks on ARM because pointers to clang::InitializedEntity are only
4 byte aligned and do not have 3 bits to store values. A possible solution
would be to change the fields in clang::InitializedEntity to enforce a bigger
alignment requirement.
The error message is
llvm/include/llvm/ADT/PointerIntPair.h:132:3: error: static_assert failed "PointerIntPair with integer size too large for pointer"
static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
include/llvm/ADT/PointerIntPair.h:73:13: note: in instantiation of template class 'llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> >' requested here
Value = Info::updateInt(Info::updatePointer(0, PtrVal),
llvm/include/llvm/ADT/PointerIntPair.h:51:5: note: in instantiation of member function 'llvm::PointerIntPair<const clang::InitializedEntity *, 3, (anonymous namespace)::LifetimeKind, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *>, llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> > >::setPointerAndInt' requested here
setPointerAndInt(PtrVal, IntVal);
^
llvm/tools/clang/lib/Sema/SemaInit.cpp:6237:12: note: in instantiation of member function 'llvm::PointerIntPair<const clang::InitializedEntity *, 3, (anonymous namespace)::LifetimeKind, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *>, llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> > >::PointerIntPair' requested here
return {Entity, LK_Extended};
Full log here:
http://lab.llvm.org:8011/builders/clang-cmake-armv7-global-isel/builds/1330http://lab.llvm.org:8011/builders/clang-cmake-armv7-full/builds/1394
llvm-svn: 337255
This change implements C++ DR1696, which makes initialization of a
reference member of a class from a temporary object ill-formed. The
standard wording here is imprecise, but we interpret it as meaning that
any time a mem-initializer would result in lifetime extension, the
program is ill-formed.
llvm-svn: 337226
Summary:
Can happen when getConstructorName is called on invalid decls,
specifically the ones that do not have the injected class name.
Reviewers: bkramer, rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D48880
llvm-svn: 336244
conversions are only applied to operands of class type, and the second
standard conversion sequence is not applied.
When diagnosing an invalid builtin binary operator, talk about the
original types rather than the converted types. If these differ by a
user-defined conversion, tell the user what happened.
llvm-svn: 335781
NumTypos guard value ~0U doesn't prevent from creating new delayed typos. When
you create new delayed typos during typo correction, value ~0U wraps around to
0. When NumTypos is 0 we can miss some typos and treat an expression as it can
be typo-corrected. But if the expression is still invalid after correction, we
can get stuck in infinite loop trying to correct it.
Fix by not using value ~0U so that NumTypos correctly reflects the number of
typos.
rdar://problem/38642201
Reviewers: arphaman, majnemer, rsmith
Reviewed By: rsmith
Subscribers: rsmith, nicholas, cfe-commits
Differential Revision: https://reviews.llvm.org/D47341
llvm-svn: 335638
members of dependent contexts.
This permits cases where the names before and after the '::' in a
dependent inherited constructor using-declaration do not match, but
where we can nonetheless tell when parsing the template that a
constructor is being named. Under (open) core language DR 2070, such
cases will probably be ill-formed, but r335182 does not quite give
that result and didn't intend to change this, so restore the old
behavior for now.
llvm-svn: 335381
Diagnose the name of the class being shadowed by using declarations, and
improve the diagnostics for the case where the name of the class is
shadowed by a non-static data member in a class with constructors. In
the latter case, we now always give the "member with the same name as
its class" diagnostic regardless of the relative order of the member and
the constructor, rather than giving an inscrutible diagnostic if the
constructor appears second.
llvm-svn: 335182
Reject uses of the default new/delete operators with a diagnostic
instead of a crash in OpenCL C++ mode and accept user-defined forms.
Differential Revision: https://reviews.llvm.org/D46651
llvm-svn: 334700
Restrict the following keywords in the OpenCL C++ language mode,
according to Sections 2.2 & 2.9 of the OpenCL C++ 1.0 Specification.
- dynamic_cast
- typeid
- register (already restricted in OpenCL C, update the diagnostic)
- thread_local
- exceptions (try/catch/throw)
- access qualifiers read_only, write_only, read_write
Support the `__global`, `__local`, `__constant`, `__private`, and
`__generic` keywords in OpenCL C++. Leave the unprefixed address
space qualifiers such as global available, i.e., do not mark them as
reserved keywords in OpenCL C++. libclcxx provides explicit address
space pointer classes such as `global_ptr` and `global<T>` that are
implemented using the `__`-prefixed qualifiers.
Differential Revision: https://reviews.llvm.org/D46022
llvm-svn: 331874
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
FunctionProtoType.
We previously re-evaluated the expression each time we wanted to know whether
the type is noexcept or not. We now evaluate the expression exactly once.
This is not quite "no functional change": it fixes a crasher bug during AST
deserialization where we would try to evaluate the noexcept specification in a
situation where we have not deserialized sufficient portions of the AST to
permit such evaluation.
llvm-svn: 331428
enabled for the host.
If the compilation for the host enables C++ exceptions, but they are not
supported by the device, we still need to allow the code with the
exception handling constructs outside of the target regions.
llvm-svn: 331372
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
structs.
r326307 and r327870 made changes that allowed using non-trivial C
structs with fields qualified with __strong or __weak. This commit makes
the following C++ triviality type traits available to non-trivial C
structs:
__has_trivial_assign
__has_trivial_move_assign
__has_trivial_copy
__has_trivial_move_constructor
__has_trivial_constructor
__has_trivial_destructor
This reapplies r328680. This commit fixes a bug where the copy/move
__has_trivial_* traits would return false when a volatile type was being
passed. Thanks to Richard Smith for pointing out the mistake.
rdar://problem/33599681
Differential Revision: https://reviews.llvm.org/D44913
llvm-svn: 329289
It unintentionally caused the values of the __has_* type traits to change in
C++ for trivially-copyable classes with volatile members.
llvm-svn: 329247
Summary:
https://reviews.llvm.org/rL325291 implemented Coroutines TS N4723
section [dcl.fct.def.coroutine]/7, but it performed lookup of allocator
functions within both the global and class scope, whereas the specified
behavior is to perform lookup for custom allocators within just the
class scope.
To fix, add parameters to the `Sema::FindAllocationFunctions` function
such that it can be used to lookup allocators in global scope,
class scope, or both (instead of just being able to look up in just global
scope or in both global and class scope). Then, use those parameters
from within the coroutine Sema.
This incorrect behavior had the unfortunate side-effect of causing the
bug https://bugs.llvm.org/show_bug.cgi?id=36578 (or at least the reports
of that bug in C++ programs). That bug would occur for any C++ user with
a coroutine frame that took a single pointer argument, since it would
then find the global placement form `operator new`, described in the
C++ standard 18.6.1.3.1. This patch prevents Clang from generating code
that triggers the LLVM assert described in that bug report.
Test Plan: `check-clang`
Reviewers: GorNishanov, eric_niebler, lewissbaker
Reviewed By: GorNishanov
Subscribers: EricWF, cfe-commits
Differential Revision: https://reviews.llvm.org/D44552
llvm-svn: 328949
structs.
r326307 and r327870 made changes that allowed using non-trivial C
structs with fields qualified with __strong or __weak. This commit makes
the following C++ triviality type traits available to non-trivial C
structs:
__has_trivial_assign
__has_trivial_move_assign
__has_trivial_copy
__has_trivial_move_constructor
__has_trivial_constructor
__has_trivial_destructor
rdar://problem/33599681
Differential Revision: https://reviews.llvm.org/D44913
llvm-svn: 328680
Summary:
Libc++'s default allocator uses `__builtin_operator_new` and `__builtin_operator_delete` in order to allow the calls to new/delete to be ellided. However, libc++ now needs to support over-aligned types in the default allocator. In order to support this without disabling the existing optimization Clang needs to support calling the aligned new overloads from the builtins.
See llvm.org/PR22634 for more information about the libc++ bug.
This patch changes `__builtin_operator_new`/`__builtin_operator_delete` to call any usual `operator new`/`operator delete` function. It does this by performing overload resolution with the arguments passed to the builtin to determine which allocation function to call. If the selected function is not a usual allocation function a diagnostic is issued.
One open issue is if the `align_val_t` overloads should be considered "usual" when `LangOpts::AlignedAllocation` is disabled.
In order to allow libc++ to detect this new behavior the value for `__has_builtin(__builtin_operator_new)` has been updated to `201802`.
Reviewers: rsmith, majnemer, aaron.ballman, erik.pilkington, bogner, ahatanak
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D43047
llvm-svn: 328134
Use an enum parameter instead of a bool for more control on how the copy elision
functions work. Extract the move initialization code from the move or copy
initialization block.
Patch by: Arthur O'Dwyer
Differential Revision: https://reviews.llvm.org/D43898
llvm-svn: 327598
This relands r326965.
There was a null dereference in typo correction that was triggered in
Sema/diagnose_if.c. We are not always in a function scope when doing
typo correction. The fix is to add a null check.
LLVM's optimizer made it hard to find this bug. I wrote it up in a
not-very-well-editted blog post here:
http://qinsb.blogspot.com/2018/03/ub-will-delete-your-null-checks.html
llvm-svn: 327334
This reverts r326965. It seems to have caused repeating test failures in
clang/test/Sema/diagnose_if.c on some buildbots.
I cannot reproduce the problem, and it's not immediately obvious what
the problem is, so let's revert to green.
llvm-svn: 326974
Summary:
Before this patch, Sema pre-allocated a FunctionScopeInfo and kept it in
the first, always present element of the FunctionScopes stack. This
meant that Sema::getCurFunction would return a pointer to this
pre-allocated object when parsing code outside a function body. This is
pretty much always a bug, so this patch moves the pre-allocated object
into a separate unique_ptr. This should make bugs like PR36536 a lot
more obvious.
As you can see from this patch, there were a number of places that
unconditionally assumed they were always called inside a function.
However, there are also many places that null checked the result of
getCurFunction(), so I think this is a reasonable direction.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D44039
llvm-svn: 326965
So I wrote a clang-tidy check to lint out redundant `isa`, `cast`, and
`dyn_cast`s for fun. This is a portion of what it found for clang; I
plan to do similar cleanups in LLVM and other subprojects when I find
time.
Because of the volume of changes, I explicitly avoided making any change
that wasn't highly local and obviously correct to me (e.g. we still have
a number of foo(cast<Bar>(baz)) that I didn't touch, since overloading
is a thing and the cast<Bar> did actually change the type -- just up the
class hierarchy).
I also tried to leave the types we were cast<>ing to somewhere nearby,
in cases where it wasn't locally obvious what we were dealing with
before.
llvm-svn: 326416
Summary:
Many methods in Sema take a `bool Diagnose` parameter. Examples of such
methods include `Sema::FindDeallocationFunction` and
`Sema::SpecialMemberIsTrivial`. Calling these methods with
`Diagnose = false` allows callers to, for instance, check for the
existence of a deallocation function, without that check resulting in
error diagnostics being emitted if no matching deallocation function exists.
Add a similar `bool Diagnose` to the `Sema::FindAllocationFunctions`
method, so that checks for the existence of allocation functions can be
made without triggering error diagnostics.
This allows `SemaCoroutine.cpp`, in its implementation of the
Coroutines TS, to check for the existence of a particular `operator new`
overload, but then without error fall back to a default `operator new`
if no matching overload exists.
Test Plan: `check-clang`
Reviewers: rsmith, GorNishanov, eric_niebler
Reviewed By: GorNishanov
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D42605
llvm-svn: 325288
When parsing C++ type construction expressions with list initialization,
forward the locations of the braces to Sema.
Without these locations, the code coverage pass crashes on the given test
case, because the pass relies on getLocEnd() returning a valid location.
Here is what this patch does in more detail:
- Forwards init-list brace locations to Sema (ParseExprCXX),
- Builds an InitializationKind with these locations (SemaExprCXX), and
- Uses these locations for constructor initialization (SemaInit).
The remaining changes fall out of introducing a new overload for
creating direct-list InitializationKinds.
Testing: check-clang, and a stage2 coverage-enabled build of clang with
asserts enabled.
Differential Revision: https://reviews.llvm.org/D41921
llvm-svn: 322729
Summary:
The STL types `std::pair` and `std::tuple` can both store reference types. However their constructors cannot adequately check if the initialization of reference types is safe. For example:
```
std::tuple<std::tuple<int> const&> t = 42;
// The stored reference is already dangling.
```
Libc++ has a best effort attempts in tuple to diagnose this, but they're not able to handle all valid cases (If I'm not mistaken). For example initialization of a reference from the result of a class's conversion operator. Libc++ would benefit from having a builtin traits which can provide a much better implementation.
This patch introduce the `__reference_binds_to_temporary(T, U)` trait that determines whether a reference of type `T` bound to an expression of type `U` would bind to a materialized temporary object.
Note that the trait simply returns false if `T` is not a reference type instead of reporting it as an error.
```
static_assert(__is_constructible(int const&, long));
static_assert(__reference_binds_to_temporary(int const&, long));
```
Reviewers: majnemer, rsmith
Reviewed By: rsmith
Subscribers: compnerd, cfe-commits
Differential Revision: https://reviews.llvm.org/D29930
llvm-svn: 322334
Summary:
This is a side-effect brought in by p0620r0, which allows other placeholder types (derived from `auto` and `decltype(auto)`) to be usable in a `new` expression with a single-clause //braced-init-list// as its initializer (8.3.4 [expr.new]/2). N3922 defined its semantics.
References:
http://wg21.link/p0620r0http://wg21.link/n3922
Reviewers: rsmith, aaron.ballman
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D39451
llvm-svn: 320401
As rsmith pointed out, the original implementation of this intrinsic
missed a number of important situations. This patch fixe a bunch of
shortcomings and implementation details to make it work correctly.
Differential Revision: https://reviews.llvm.org/D39347
llvm-svn: 319446
GCC ignore qualifiers on array types. Since we seem to have this
function primarily for GCC compatibility, we should try to match that
behavior.
This also adds a few more test-cases __builtin_types_compatible_p,
which were inspired by GCC's documentation on the builtin.
llvm-svn: 315951
Summary:
Convert clang::LangAS to a strongly typed enum
Currently both clang AST address spaces and target specific address spaces
are represented as unsigned which can lead to subtle errors if the wrong
type is passed. It is especially confusing in the CodeGen files as it is
not possible to see what kind of address space should be passed to a
function without looking at the implementation.
I originally made this change for our LLVM fork for the CHERI architecture
where we make extensive use of address spaces to differentiate between
capabilities and pointers. When merging the upstream changes I usually
run into some test failures or runtime crashes because the wrong kind of
address space is passed to a function. By converting the LangAS enum to a
C++11 we can catch these errors at compile time. Additionally, it is now
obvious from the function signature which kind of address space it expects.
I found the following errors while writing this patch:
- ItaniumRecordLayoutBuilder::LayoutField was passing a clang AST address
space to TargetInfo::getPointer{Width,Align}()
- TypePrinter::printAttributedAfter() prints the numeric value of the
clang AST address space instead of the target address space.
However, this code is not used so I kept the current behaviour
- initializeForBlockHeader() in CGBlocks.cpp was passing
LangAS::opencl_generic to TargetInfo::getPointer{Width,Align}()
- CodeGenFunction::EmitBlockLiteral() was passing a AST address space to
TargetInfo::getPointerWidth()
- CGOpenMPRuntimeNVPTX::translateParameter() passed a target address space
to Qualifiers::addAddressSpace()
- CGOpenMPRuntimeNVPTX::getParameterAddress() was using
llvm::Type::getPointerTo() with a AST address space
- clang_getAddressSpace() returns either a LangAS or a target address
space. As this is exposed to C I have kept the current behaviour and
added a comment stating that it is probably not correct.
Other than this the patch should not cause any functional changes.
Reviewers: yaxunl, pcc, bader
Reviewed By: yaxunl, bader
Subscribers: jlebar, jholewinski, nhaehnle, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D38816
llvm-svn: 315871
This feature is not (yet) approved by the C++ committee, so this is liable to
be reverted or significantly modified based on committee feedback.
No functionality change intended for existing code (a new type must be defined
in namespace std to take advantage of this feature).
llvm-svn: 315662
r312167 made it so that we emit Wdelete-non-virtual-dtor from delete statements
that are in system headers (e.g. std::unique_ptr). That works great on Linux
and macOS, but on Windows there are non-final classes that are defined in
system headers that have virtual methods but non-virtual destructors and yet
get deleted through a base class pointer (e.g. ATL::CAccessToken::CRevert). So
paddle back a bit and don't emit the warning if it's about a class defined in a
system header.
https://reviews.llvm.org/D37324
llvm-svn: 312216
Makes the warning useful again in a std::unique_ptr world, PR28460.
Also make the warning not fire in unevaluated contexts, since system libraries
(e.g. libc++) do do that. This would've been a good change before we started
emitting this warning in system headers too, but "normal" code seems to be less
template-heavy, so we didn't notice until now.
https://reviews.llvm.org/D37235
llvm-svn: 312167
Do not discard invalid Decl when searching for the operator delete function.
The lookup for this function always expects to find a result, so sometimes the
invalid Decl is the only choice possible. This fixes PR34109.
llvm-svn: 310435
allocation functions.
This changes the error message Sema prints when an unavailable C++17
aligned allocation function is selected.
Original message: "... possibly unavailable on x86_64-apple-macos10.12"
New message: "... only available on macOS 10.13 or newer"
This is a follow-up to r306722.
rdar://problem/32664169
Differential Revision: https://reviews.llvm.org/D35520
llvm-svn: 308496
a c++17 aligned allocation/deallocation function that is unavailable in
the standard library on Apple platforms.
The aligned functions are implemented only in the following versions or
later versions of the OSes, so clang issues diagnostics if the deployment
target being targeted is older than these:
macosx: 10.13
ios: 11.0
tvos: 11.0
watchos: 4.0
The diagnostics are issued whenever the aligned functions are selected
except when the selected function has a definition in the same file.
If there is a user-defined function available somewhere else, option
-Wno-aligned-allocation-unavailable can be used to silence the
diagnostics.
rdar://problem/32664169
Differential Revision: https://reviews.llvm.org/D34574
llvm-svn: 306722
Fix crash in clang when an array of unknown bounds of an incomplete type is passed to __has_trivial_destructor.
Patch by Puneetha
https://reviews.llvm.org/D34198
llvm-svn: 306519
declarations that are owned but unconditionally visible.
This allows us to set declarations as visible even if they have a local owning
module, without losing information. In turn, that means that our Objective-C
support can keep on incorrectly assuming the "hidden" bit on the declaration is
the whole story with regard to name visibility. This will also be useful once
we support the C++ Modules TS export semantics.
Objective-C name visibility is still incorrect in any case where the "hidden"
bit is not the complete story: for instance, in Objective-C++ the set of
visible categories will be wrong during template instantiation, and with local
submodule visibility enabled it will be wrong when building modules. Fixing that
will require a major overhaul of how visibility is handled for Objective-C (and
particularly for categories).
llvm-svn: 306075
n the current local-submodule-visibility mode, as soon as we discover a virtual
destructor, we declare on demand a global delete operator. However, this causes
that this delete operator is owned by the submodule which contains said virtual
destructor. This means that other modules no longer can see the global delete
operator which is hidden inside another submodule and fail to compile.
This patch unhides those global allocation function once they're created to
prevent this issue.
Patch by Raphael Isemann (D33366)!
llvm-svn: 305118
Unlike the GCC-compatible __has_trivial_destructor trait, this one computes the
right answer rather than performing the quirky set of checks described in GCC's
documentation (https://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html).
MSVC also has a __has_trivial_destructor trait which is the same as its (and
now Clang's) __is_trivially_destructible trait; we might want to consider
changing the behavior of __has_trivial_destructor if we're targeting an MSVC
platform, but I'm not doing so for now.
While implementing this I found that we were incorrectly rejecting
__is_destructible queries on arrays of unknown bound of incomplete types; that
too is fixed, and I've added similar tests for other traits for good measure.
llvm-svn: 304376
This patch teaches clang to perform implicit scalar to vector conversions
when one of the operands of a binary vector expression is a scalar which
can be converted to the element type of the vector without truncation
following GCC's implementation.
If the (constant) scalar is can be casted safely, it is implicitly casted to the
vector elements type and splatted to produce a vector of the same type.
Contributions from: Petar Jovanovic
Reviewers: bruno, vkalintiris
Differential Revision: https://reviews.llvm.org/D25866
llvm-svn: 302935
When computing the appropriate cv-qualifiers for the 'this' capture, we have to examine each enclosing lambda - but when using the FunctionScopeInfo stack we have to ensure that the lambda below (outer) is the decl-context of the closure-class of the current lambda.
https://bugs.llvm.org/show_bug.cgi?id=32831
This patch was initially committed here: https://reviews.llvm.org/rL301735
Then reverted here: https://reviews.llvm.org/rL301916
The issue with the original patch was a failure to check that the closure type has been created within the LambdaScopeInfo before querying its DeclContext - instead of just assuming it has (silly!). A reduced example such as this highlights the problem:
struct X {
int data;
auto foo() { return [] { return [] -> decltype(data) { return 0; }; }; }
};
When 'data' within decltype(data) tries to determine the type of 'this', none of the LambdaScopeInfo's have their closure types created at that point.
llvm-svn: 301972
It leads to clang crashing, e.g. on this short code fragment (added to
test/SemaCXX/warn-thread-safety-parsing.cpp):
class SomeClass {
public:
void foo() {
auto l = [this] { auto l = [] EXCLUSIVE_LOCKS_REQUIRED(mu_) {}; };
}
Mutex mu_;
};
llvm-svn: 301916
When computing the appropriate cv-qualifiers for the 'this' capture, we have to examine each enclosing lambda - but when using the FunctionScopeInfo stack we have to ensure that the lambda below (outer) is the decl-context of the closure-class of the current lambda.
https://bugs.llvm.org/show_bug.cgi?id=32831
llvm-svn: 301735
available.
Original patch by Douglas Gregor with minor modifications.
This recommits r300389, which broke bots because there have been API
changes since the original patch was written.
rdar://problem/20689633
llvm-svn: 300396
For OpenCL, the private address space qualifier is 0 in AST. Before this change, 0 address space qualifier
is always mapped to target address space 0. As now target private address space is specified by
alloca address space in data layout, address space qualifier 0 needs to be mapped to alloca addr space specified by the data layout.
This change has no impact on targets whose alloca addr space is 0.
With contributions from Matt Arsenault, Tony Tye and Wen-Heng (Jack) Chung
Differential Revision: https://reviews.llvm.org/D31404
llvm-svn: 299965
- also replace direct equality checks against the ConstantEvaluated enumerator with isConstantEvaluted(), in anticipation of adding finer granularity to the various ConstantEvaluated contexts and reinstating certain restrictions on where lambda expressions can occur in C++17.
- update the clang tablegen backend that uses these Enumerators, and add the relevant scope where needed.
llvm-svn: 299316
Summary: clang should produce the same errors Objective-C classes that cannot be assigned to weak pointers under both -fobjc-arc and -fobjc-weak. Check for ObjCWeak along with ObjCAutoRefCount when analyzing pointer conversions. Add an -fobjc-weak pass to the existing arc-unavailable-for-weakref test cases to verify the behavior is the same.
Reviewers: rsmith, doug.gregor, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31006
llvm-svn: 299014
Summary: Similar to ARC, in ObjCWeak Objective-C object pointers qualified with a weak lifetime are not POD or trivial types. Update the type trait code to reflect this. Copy and adapt the arc-type-traits.mm test case to verify correctness.
Reviewers: rsmith, doug.gregor, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31004
llvm-svn: 299010
Sema holds the current FPOptions which is adjusted by 'pragma STDC
FP_CONTRACT'. This then gets propagated into expression nodes as they are
built.
This encapsulates FPOptions so that this propagation happens opaquely rather
than directly with the fp_contractable on/off bit. This allows controlled
transitioning of fp_contractable to a ternary value (off, on, fast). It will
also allow adding more fast-math flags later.
This is toward moving fp-contraction=fast from an LLVM TargetOption to a
FastMathFlag in order to fix PR25721.
Differential Revision: https://reviews.llvm.org/D31166
llvm-svn: 298877
This change fixes a crash on initialization of a reference from ({}) during
template instantiation and incidentally improves diagnostics.
This reverts a prior attempt to handle this in r286721. Instead, we teach the
initialization code that initialization cannot be performed if a source type
is required and the initializer is an initializer list (which is not an
expression and does not have a type), and likewise for function-style cast
expressions.
llvm-svn: 298676
instantiation.
In preparation for converting the template stack to a more general context
stack (so we can include context notes for other kinds of context).
llvm-svn: 295686
After r260016 and r260017 disabled typo correction for ivars and properties
clang didn't report errors about unresolved identifier in the base of ivar and
property ref expressions. This meant that clang invoked CodeGen on invalid AST
which then caused a crash.
This commit re-enables typo correction for ivars and properites, and fixes the
PR25113 & PR26486 (that were originally fixed in r260017 and r260016) in a
different manner by transforming the Objective-C ivar reference expression with
'IsFreeIvar' preserved.
rdar://30310772
llvm-svn: 294008
This patch changes how we handle argument-dependent `diagnose_if`
attributes. In particular, we now check them in the same place that we
check for things like passing NULL to Nonnull args, etc. This is
basically better in every way than how we were handling them before. :)
This fixes PR31638, PR31639, and PR31640.
Differential Revision: https://reviews.llvm.org/D28889
llvm-svn: 293360
This change adds a new type node, DeducedTemplateSpecializationType, to
represent a type template name that has been used as a type. This is modeled
around AutoType, and shares a common base class for representing a deduced
placeholder type.
We allow deduced class template types in a few more places than the standard
does: in conditions and for-range-declarators, and in new-type-ids. This is
consistent with GCC and with discussion on the core reflector. This patch
does not yet support deduced class template types being named in typename
specifiers.
llvm-svn: 293207
This commit improves the mismatched destructor type error by detecting when the
destructor call has used a '.' instead of a '->' on a pointer to the destructed
type. The diagnostic now suggests to use '->' instead of '.', and adds a fixit
where appropriate.
rdar://28766702
Differential Revision: https://reviews.llvm.org/D25817
llvm-svn: 292615
Under this defect resolution, the injected-class-name of a class or class
template cannot be used except in very limited circumstances (when declaring a
constructor, in a nested-name-specifier, in a base-specifier, or in an
elaborated-type-specifier). This is apparently done to make parsing easier, but
it's a pain for us since we don't know whether a template-id using the
injected-class-name is valid at the point when we annotate it (we don't yet
know whether the template-id will become part of an elaborated-type-specifier).
As a tentative resolution to a perceived language defect, mem-initializer-ids
are added to the list of exceptions here (they generally follow the same rules
as base-specifiers).
When the reference to the injected-class-name uses the 'typename' or 'template'
keywords, we permit it to be used to name a type or template as an extension;
other compilers also accept some cases in this area. There are also a couple of
corner cases with dependent template names that we do not yet diagnose, but
which will also get this treatment.
llvm-svn: 292518
Summary:
Warn when a lambda explicitly captures something that is not used in its body.
The warning is part of -Wunused and can be enabled with -Wunused-lambda-capture.
Reviewers: rsmith, arphaman, jbcoe, aaron.ballman
Subscribers: Quuxplusone, arphaman, cfe-commits
Differential Revision: https://reviews.llvm.org/D28467
llvm-svn: 291905
This flag serves no purpose other than to prevent us walking through a type to
check whether it contains an 'auto' specifier; this duplication of information
is error-prone, does not appear to provide any performance benefit, and will
become less practical once we support C++1z deduced class template types and
eventually constrained types from the Concepts TS.
No functionality change intended.
llvm-svn: 291737
Most code paths would already bail out in this case, but certain paths,
particularly overload resolution and typo correction, would not. Carrying on
with an invalid declaration could in some cases result in crashes due to
downstream code relying on declaration invariants that are not necessarily
met for invalid declarations, and in other cases just resulted in undesirable
follow-on diagnostics.
llvm-svn: 291030
This change introduces UsingPackDecl as a marker for the set of UsingDecls
produced by pack expansion of a single (unresolved) using declaration. This is
not strictly necessary (we just need to be able to map from the original using
declaration to its expansions somehow), but it's useful to maintain the
invariant that each declaration reference instantiates to refer to one
declaration.
This is a re-commit of r290080 (reverted in r290092) with a fix for a
use-after-lifetime bug.
llvm-svn: 290203
This reverts commit r290171. It triggers a bunch of warnings, because
the new enumerator isn't handled in all switches. We want a warning-free
build.
Replied on the commit with more details.
llvm-svn: 290173
Summary: Enabling the compression of CLK_NULL_QUEUE to variable of type queue_t.
Reviewers: Anastasia
Subscribers: cfe-commits, yaxunl, bader
Differential Revision: https://reviews.llvm.org/D27569
llvm-svn: 290171
This change introduces UsingPackDecl as a marker for the set of UsingDecls
produced by pack expansion of a single (unresolved) using declaration. This is
not strictly necessary (we just need to be able to map from the original using
declaration to its expansions somehow), but it's useful to maintain the
invariant that each declaration reference instantiates to refer to one
declaration.
llvm-svn: 290080
constructs that can do so into the initialization code. This fixes a number
of different cases in which we used to fail to check for abstract types.
Thanks to Tim Shen for inspiring the weird code that uncovered this!
llvm-svn: 289753
Although not specifically mentioned in the documentation, MSVC accepts
__uuidof(…) and declspec(uuid("…")) attributes on enumeration types in
addition to structs/classes. This is meaningful, as such types *do* have
associated UUIDs in ActiveX typelibs, and such attributes are included
by default in the wrappers generated by their #import construct, so they
are not particularly unusual.
clang currently rejects the declspec with a –Wignored-attributes
warning, and errors on __uuidof() with “cannot call operator __uuidof on
a type with no GUID” (because it rejected the uuid attribute, and
therefore finds no value). This is causing problems for us while trying
to use clang-tidy on a codebase that makes heavy use of ActiveX.
I believe I have found the relevant places to add this functionality,
this patch adds this case to clang’s implementation of these MS
extensions. patch is against r285994 (or actually the git mirror
80464680ce).
Both include an update to test/Parser/MicrosoftExtensions.cpp to
exercise the new functionality.
This is my first time contributing to LLVM, so if I’ve missed anything
else needed to prepare this for review just let me know!
__uuidof: https://msdn.microsoft.com/en-us/library/zaah6a61.aspx
declspec(uuid("…")): https://msdn.microsoft.com/en-us/library/3b6wkewa.aspx
#import: https://msdn.microsoft.com/en-us/library/8etzzkb6.aspx
Reviewers: aaron.ballman, majnemer, rnk
Differential Revision: https://reviews.llvm.org/D26846
llvm-svn: 289567
mirror the description in the standard. Per DR1295, this means that binding a
const / rvalue reference to a bit-field no longer "binds directly", and per
P0135R1, this means that we materialize a temporary in reference binding
after adjusting cv-qualifiers and before performing a derived-to-base cast.
In C++11 onwards, this should have fixed the last case where we would
materialize a temporary of the wrong type (with a subobject adjustment inside
the MaterializeTemporaryExpr instead of outside), but we still have to deal
with that possibility in C++98, unless we want to start using xvalues to
represent materialized temporaries there too.
llvm-svn: 289250
When an object of class type is initialized from a prvalue of the same type
(ignoring cv qualifications), use the prvalue to initialize the object directly
instead of inserting a redundant elidable call to a copy constructor.
llvm-svn: 288866
arguments from a declaration; despite what the standard says, this form of
deduction should not be considering exception specifications.
llvm-svn: 288301
Since r274049, for an inheriting constructor declaration, the name of the using
declaration (and using shadow declaration comes from the using declaration) is
the name of a derived class, not the base class (line 8225-8232 of
lib/Sema/SemaDeclCXX.cpp in https://reviews.llvm.org/rL274049). Because of
this, name-based lookup performed inside Sema::LookupConstructors returns not
only CXXConstructorDecls but also Using(Shadow)Decls, which results assertion
failure reported in PR29087.
Patch by Taewook Oh, thanks!
Differential Revision: https://reviews.llvm.org/D23765
llvm-svn: 287999
Summary:
We don't need a side table in ASTContext to hold CXXDefaultArgExprs. The
important part of building the CXXDefaultArgExprs was to ODR use the
default argument expressions, not to make AST nodes. Refactor the code
to only check the default argument, and remove the side table in
ASTContext which wasn't being serialized.
Fixes PR31121
Reviewers: thakis, rsmith, majnemer
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D27007
llvm-svn: 287774
If initializer contains parentheses around braced list where it is not allowed,
as in construct int({0}), clang issued message like `functional-style cast
from 'void' to 'int' is not allowed`, which does not help much. Both gcc and
msvc issue message `list-initializer for non-class type must not be
parenthesized`, which is more descriptive. This change implements similar
message for clang.
Differential Revision: https://reviews.llvm.org/D25816
llvm-svn: 286721
Clang emits error message for the following code:
```
template <class F> void parallel_loop(F &&f) { f(0); }
int main() {
int x;
parallel_loop([&](auto y) {
{
x = y;
};
});
}
```
$ clang++ --std=gnu++14 clang_test.cc -o clang_test
clang_test.cc:9:7: error: reference to local variable 'x' declared in enclosing function 'main'
x = y;
^
clang_test.cc:2:48: note: in instantiation of function template specialization 'main()::(anonymous class)::operator()<int>' requested here
template <class F> void parallel_loop(F &&f) { f(0); }
^
clang_test.cc:6:3: note: in instantiation of function template specialization 'parallel_loop<(lambda at clang_test.cc:6:17)>' requested here parallel_loop([&](auto y) {
^
clang_test.cc:5:7: note: 'x' declared here
int x;
^
1 error generated.
Patch fixes this issue.
llvm-svn: 286584
mismatched dynamic exception specifications in expressions from an error to a
warning, since this is no longer ill-formed in C++1z.
Allow reference binding of a reference-to-non-noexcept function to a noexcept
function lvalue. As defect resolutions, also allow a conditional between
noexcept and non-noexcept function lvalues to produce a non-noexcept function
lvalue (rather than decaying to a function pointer), and allow function
template argument deduction to deduce a reference to non-noexcept function when
binding to a noexcept function type.
llvm-svn: 284905
This has two significant effects:
1) Direct relational comparisons between null pointer constants (0 and nullopt)
and pointers are now ill-formed. This was always the case for C, and it
appears that C++ only ever permitted by accident. For instance, cases like
nullptr < &a
are now rejected.
2) Comparisons and conditional operators between differently-cv-qualified
pointer types now work, and produce a composite type that both source
pointer types can convert to (when possible). For instance, comparison
between 'int **' and 'const int **' is now valid, and uses an intermediate
type of 'const int *const *'.
Clang previously supported #2 as an extension.
We do not accept the cases in #1 as an extension. I've tested a fair amount of
code to check that this doesn't break it, but if it turns out that someone is
relying on this, we can easily add it back as an extension.
This is a re-commit of r284800.
llvm-svn: 284890
This has two significant effects:
1) Direct relational comparisons between null pointer constants (0 and nullopt)
and pointers are now ill-formed. This was always the case for C, and it
appears that C++ only ever permitted by accident. For instance, cases like
nullptr < &a
are now rejected.
2) Comparisons and conditional operators between differently-cv-qualified
pointer types now work, and produce a composite type that both source
pointer types can convert to (when possible). For instance, comparison
between 'int **' and 'const int **' is now valid, and uses an intermediate
type of 'const int *const *'.
Clang previously supported #2 as an extension.
We do not accept the cases in #1 as an extension. I've tested a fair amount of
code to check that this doesn't break it, but if it turns out that someone is
relying on this, we can easily add it back as an extension.
llvm-svn: 284800
Original commit message:
[c++1z] Teach composite pointer type computation how to compute the composite
pointer type of two function pointers with different noexcept specifications.
While I'm here, also teach it how to merge dynamic exception specifications.
llvm-svn: 284785
pointer type of two function pointers with different noexcept specifications.
While I'm here, also teach it how to merge dynamic exception specifications.
llvm-svn: 284753
Summary:
Together these let you easily create diagnostics that
- are never emitted for host code
- are always emitted for __device__ and __global__ functions, and
- are emitted for __host__ __device__ functions iff these functions are
codegen'ed.
At the moment there are only three diagnostics that need this treatment,
but I have more to add, and it's not sustainable to write code for emitting
every such diagnostic twice, and from a special wrapper in SemaCUDA.cpp.
While we're at it, don't emit the function name in
err_cuda_device_exceptions: It's not necessary to print it, and making
this work in the new framework in the face of a null value for
dyn_cast<FunctionDecl>(CurContext) isn't worth the effort.
Reviewers: rnk
Subscribers: cfe-commits, tra
Differential Revision: https://reviews.llvm.org/D25139
llvm-svn: 284143
match other CUDA preference orders, per discussion with jlebar. We now model
this in an attempt to match overload resolution as closely as possible:
- First, we throw out all non-callable (due to CUDA host/device mismatch)
operator delete functions.
- Then we apply sizedness / alignedness preferences based on whether the type
is overaligned and whether the deallocation function is a member.
- Finally, we use the CUDA callability preference as a tiebreaker.
llvm-svn: 283830
CheckSingleAssignmentConstraints. These no longer produce ExprError() when they
have not emitted an error, and reliably inform the caller when they *have*
emitted an error.
This fixes some serious issues where we would fail to emit any diagnostic for
invalid code and then attempt to emit code for an invalid AST, and conversely
some issues where we would emit two diagnostics for the same problem.
llvm-svn: 283508
new expression, distinguish between the case of a constant and non-constant
initializer. In the former case, if the bound is erroneous (too many
initializer elements, bound is negative, or allocated size overflows), reject,
and take the bound into account when determining whether we need to
default-construct any elements. In the remanining cases, move the logic to
check for default-constructibility of trailing elements into the initialization
code rather than inventing a bogus array bound, to cope with cases where the
number of initialized elements is not the same as the number of initializer
list elements (this can happen due to string literal initialization or brace
elision).
This also fixes rejects-valid and crash-on-valid errors when initializing a
new'd array of character type from a braced string literal.
llvm-svn: 283406
assume that ::operator new provides no more alignment than is necessary for any
primitive type, except when we're on a GNU OS, where glibc's malloc guarantees
to provide 64-bit alignment on 32-bit systems and 128-bit alignment on 64-bit
systems. This can be controlled by the command-line -fnew-alignment flag.
llvm-svn: 282974
This patch allows us to perform incompatible pointer conversions when
resolving overloads in C. So, the following code will no longer fail to
compile (though it will still emit warnings, assuming the user hasn't
opted out of them):
```
void foo(char *) __attribute__((overloadable));
void foo(int) __attribute__((overloadable));
void callFoo() {
unsigned char bar[128];
foo(bar); // selects the char* overload.
}
```
These conversions are ranked below all others, so:
A. Any other viable conversion will win out
B. If we had another incompatible pointer conversion in the example
above (e.g. `void foo(int *)`), we would complain about
an ambiguity.
Differential Revision: https://reviews.llvm.org/D24113
llvm-svn: 280553
The class MismatchingNewDeleteDetector is in
lib/Sema/SemaExprCXX.cpp inside the anonymous namespace.
This diff reorders the fields and removes the excessive padding.
Test plan: make -j8 check-clang
Differential revision: https://reviews.llvm.org/D23898
llvm-svn: 280426
function-style cast to a non-dependent type which is then used in an invalid
way. We'd lose the "type dependent" bit here, and downstream Sema processing
would then discard the expression if it was used in a context where its type
rendered it invalid.
llvm-svn: 274267
Replace inheriting constructors implementation with new approach, voted into
C++ last year as a DR against C++11.
Instead of synthesizing a set of derived class constructors for each inherited
base class constructor, we make the constructors of the base class visible to
constructor lookup in the derived class, using the normal rules for
using-declarations.
For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived
class that tracks the requisite additional information. We create shadow
constructors (not found by name lookup) in the derived class to model the
actual initialization, and have a new expression node,
CXXInheritedCtorInitExpr, to model the initialization of a base class from such
a constructor. (This initialization is special because it performs real perfect
forwarding of arguments.)
In cases where argument forwarding is not possible (for inalloca calls,
variadic calls, and calls with callee parameter cleanup), the shadow inheriting
constructor is not emitted and instead we directly emit the initialization code
into the caller of the inherited constructor.
Note that this new model is not perfectly compatible with the old model in some
corner cases. In particular:
* if B inherits a private constructor from A, and C uses that constructor to
construct a B, then we previously required that A befriends B and B
befriends C, but the new rules require A to befriend C directly, and
* if a derived class has its own constructors (and so its implicit default
constructor is suppressed), it may still inherit a default constructor from
a base class
llvm-svn: 274049
-Wfor-loop-analysis warnings for a for-loop with a condition variable. In such
a case, the loop condition variable is modified on each iteration of the loop
by definition.
Original commit message:
Rearrange condition handling so that semantic checks on a condition variable
are performed before the other substatements of the construct are parsed,
rather than deferring them until the end. This allows better error recovery
from semantic errors in the condition, improves diagnostic order, and is a
prerequisite for C++17 constexpr if.
llvm-svn: 273600
are performed before the other substatements of the construct are parsed,
rather than deferring them until the end. This allows better error recovery
from semantic errors in the condition, improves diagnostic order, and is a
prerequisite for C++17 constexpr if.
llvm-svn: 273548
The bug report by Gonzalo (https://llvm.org/bugs/show_bug.cgi?id=27507 -- which results in clang crashing when generic lambdas that capture 'this' are instantiated in contexts where the Functionscopeinfo stack is not in a reliable state - yet getCurrentThisType expects it to be) - unearthed some additional bugs in regards to maintaining proper cv qualification through 'this' when performing by value captures of '*this'.
This patch attempts to correct those bugs and makes the following changes:
o) when capturing 'this', we do not need to remember the type of 'this' within the LambdaScopeInfo's Capture - it is never really used for a this capture - so remove it.
o) teach getCurrentThisType to walk the stack of lambdas (even in scenarios where we run out of LambdaScopeInfo's such as when instantiating call operators) looking for by copy captures of '*this' and resetting the type of 'this' based on the constness of that capturing lambda's call operator.
This patch has been baking in review-hell for > 6 weeks - all the comments so far have been addressed and the bug (that it addresses in passing, and I regret not submitting as a separate patch initially) has been reported twice independently, so is frequent and important for us not to just sit on. I merged the cv qualification-fix and the PR-fix initially in one patch, since they resulted from my initial implementation of star-this and so were related. If someone really feels strongly, I can put in the time to revert this - separate the two out - and recommit. I won't claim it's immunized against all bugs, but I feel confident enough about the fix to land it for now.
llvm-svn: 272480
These ExprWithCleanups are added for holding a RunCleanupsScope not
for destructor calls; rather, they are for lifetime marks. This requires
ExprWithCleanups to keep a bit to indicate whether it have cleanups with
side effects (e.g. dtor calls).
Differential Revision: http://reviews.llvm.org/D20498
llvm-svn: 272296
This implements support for MS-specific __unaligned qualifier in functions and
makes the following test case both compile and mangle correctly:
struct S {
void f() __unaligned;
};
void S::f() __unaligned {
}
Differential Revision: http://reviews.llvm.org/D20437
llvm-svn: 270834
MSVC now supports the __is_assignable type trait intrinsic,
to enable easier and more efficient implementation of the
Standard Library's is_assignable trait.
As of Visual Studio 2015 Update 3, the VC Standard Library
implementation uses the new intrinsic unconditionally.
The implementation is pretty straightforward due to the previously
existing is_nothrow_assignable and is_trivially_assignable.
We handle __is_assignable via the same code as the other two except
that we skip the extra checks for nothrow or triviality.
Patch by Dave Bartolomeo!
Differential Revision: http://reviews.llvm.org/D20492
llvm-svn: 270458
This is in preparation for C++ P0136R1, which switches the model for inheriting
constructors over from synthesizing a constructor to finding base class
constructors (via using shadow decls) when looking for derived class
constructors.
llvm-svn: 269231
This patch corresponds to reviews:
http://reviews.llvm.org/D15120http://reviews.llvm.org/D19125
It adds support for the __float128 keyword, literals and target feature to
enable it. Based on the latter of the two aforementioned reviews, this feature
is enabled on Linux on i386/X86 as well as SystemZ.
This is also the second attempt in commiting this feature. The first attempt
did not enable it on required platforms which caused failures when compiling
type_traits with -std=gnu++11.
If you see failures with compiling this header on your platform after this
commit, it is likely that your platform needs to have this feature enabled.
llvm-svn: 268898
BuildBlockForLambdaConversion.
Previously, clang would build an incorrect AST for the following code:
id test() {
return @{@"a": [](){}, @"b": [](){}};
}
ReturnStmt 0x10d080448
`-ExprWithCleanups 0x10d080428
|-cleanup Block 0x10d0801f0 // points to the second BlockDecl
...
-BlockDecl 0x10d07f150 // First block
...
-BlockDecl 0x10d0801f0 // Second block
...
`-ExprWithCleanups 0x10d0801d0
|-cleanup Block 0x10d07f150 // points to the first BlockDecl
To fix the bug, this commit enters a new evaluation context to reset
ExprNeedsCleanups before each block is parsed.
rdar://problem/16879958
Differential Revision: http://reviews.llvm.org/D18815
llvm-svn: 268527
Since this patch provided support for the __float128 type but disabled it
on all platforms by default, some platforms can't compile type_traits with
-std=gnu++11 since there is a specialization with __float128.
This reverts the patch until D19125 is approved (i.e. we know which platforms
need this support enabled).
llvm-svn: 266460
The example below should work identically with and without compiler native
wchar_t support.
void foo(wchar_t * t = L"");
Differential Revision: http://reviews.llvm.org/D19056
llvm-svn: 266287
This patch corresponds to review:
http://reviews.llvm.org/D15120
It adds support for the __float128 keyword, literals and a target feature to
enable it. This support is disabled by default on all targets and any target
that has support for this type is free to add it.
Based on feedback that I've received from target maintainers, this appears to
be the right thing for most targets. I have not heard from the maintainers of
X86 which I believe supports this type. I will subsequently investigate the
impact of enabling this on X86.
llvm-svn: 266186
CodeGen-level implementation. Instead of adding an attribute to clang's
FunctionDecl, add the IR attribute directly. This means a module built with
this flag is now compatible with code built without it and vice versa.
This change also results in the 'noalias' attribute no longer being added to
calls to operator new in the IR; it's now only added to the declaration. It
also fixes a bug where we failed to add the attribute to the 'nothrow' versions
(because we didn't implicitly declare them, there was no good time to inject a
fake attribute).
llvm-svn: 265728
Summary:
* -fcuda-target-overloads
Previously unconditionally set to true by the driver. Necessary for
correct functioning of the compiler -- our CUDA headers wrapper won't
compile without this.
* -fcuda-disable-target-call-checks
Previously unconditionally set to true by the driver. Necessary to
compile almost any external CUDA code -- almost all libraries assume
that host+device code can call host or device functions.
* -fcuda-allow-host-calls-from-host-device
No effect when target overloading is enabled.
Reviewers: tra
Subscribers: rsmith, cfe-commits
Differential Revision: http://reviews.llvm.org/D18416
llvm-svn: 264739
I broke this back in r264529 because I forgot to serialize the UuidAttr
member. Fix this by replacing the UuidAttr with a StringRef which is
properly serialized and deserialized.
llvm-svn: 264562
Keep a pointer to the UuidAttr that the CXXUuidofExpr corresponds to.
This makes translating from __uuidof to the underlying constant a lot
more straightforward.
llvm-svn: 264529
Implement lambda capture of *this by copy.
For e.g.:
struct A {
int d = 10;
auto foo() { return [*this] (auto a) mutable { d+=a; return d; }; }
};
auto L = A{}.foo(); // A{}'s lifetime is gone.
// Below is still ok, because *this was captured by value.
assert(L(10) == 20);
assert(L(100) == 120);
If the capture was implicit, or [this] (i.e. *this was captured by reference), this code would be otherwise undefined.
Implementation Strategy:
- amend the parser to accept *this in the lambda introducer
- add a new king of capture LCK_StarThis
- teach Sema::CheckCXXThisCapture to handle by copy captures of the
enclosing object (i.e. *this)
- when CheckCXXThisCapture does capture by copy, the corresponding
initializer expression for the closure's data member
direct-initializes it thus making a copy of '*this'.
- in codegen, when assigning to CXXThisValue, if *this was captured by
copy, make sure it points to the corresponding field member, and
not, unlike when captured by reference, what the field member points
to.
- mark feature as implemented in svn
Much gratitude to Richard Smith for his carefully illuminating reviews!
llvm-svn: 263921
Summary:
While diagnosing a CXXNewExpr warning, we were calling isInSystemHeader(), which expect to be
called with a valid source location. This causes an assertion failure if the location is unknown.
A quick grep shows it's not without precedent to guard calls to the function with a
"Loc.isValid()".
This fixes a test failure in LLDB, which always creates object with invalid source locations as it
does not (always) have access to the source.
Reviewers: nlewycky
Subscribers: lldb-commits, cfe-commits
Differential Revision: http://reviews.llvm.org/D17847
llvm-svn: 262700
The ivar ref would be transformed by the Typo Correction TreeTransform, but not
be owned, resulting in the source location being invalid. This would eventually
lead to an assertion in findCapturingExpr. Prevent this assertion from
triggering.
Resolves PR25113.
llvm-svn: 260017
We would previously assert in findCapturingExpr when performing a typo
correction resulting in an assignment of an ObjC property with a strong lifetype
specifier due to the expression not being rooted in the file (invalid SLoc)
during the retain cycle check on the typo-corrected expression. Handle the
expression type appropriately during the TreeTransform to ensure that we have a
source location associated with the expression.
Fixes PR26486.
llvm-svn: 260016
-Wdelete-non-virtual-dtor warns if A is a type with virtual functions but
without virtual dtor has its constructor called via `delete a`. This makes the
warning also fire if the dtor is called via `a->~A()`. This would've found a
security bug in Chromium at compile time. Fixes PR26137.
To fix the warning, add a virtual destructor, make the class final, or remove
its other virtual methods. If you want to silence the warning, there's also
a fixit that shows how:
test.cc:12:3: warning: destructor called on 'B' ... [-Wdelete-non-virtual-dtor]
b->~B();
^
test.cc:12:6: note: qualify call to silence this warning
b->~B();
^
B::
http://reviews.llvm.org/D16206
llvm-svn: 257939
In {CG,}ExprConstant.cpp, we weren't treating vector splats properly.
This patch makes us treat splats more properly.
Additionally, this patch adds a new cast kind which allows a bool->int
cast to result in -1 or 0, instead of 1 or 0 (for true and false,
respectively), so we can sanely model OpenCL bool->int casts in the AST.
Differential Revision: http://reviews.llvm.org/D14877
llvm-svn: 257559
underlying decls. Preserve the found declaration throughout, and only map to
the underlying declaration when we want to check whether it's the right kind.
This allows us to provide the right source location for the found declaration,
and prepares for the possibility of underlying decls with a different name
from the found decl.
llvm-svn: 256575
is complete (with an error produced if not) and a function that merely queries
whether the type is complete. Either way we'll trigger instantiation if
necessary, but only the former will diagnose and recover from missing module
imports.
The intent of this change is to prevent a class of bugs where code would call
RequireCompleteType(..., 0) and then ignore the result. With modules, we must
check the return value and use it to determine whether the definition of the
type is visible.
This also fixes a debug info quality issue: calls to isCompleteType do not
trigger the emission of debug information for a type in limited-debug-info
mode. This allows us to avoid emitting debug information for type definitions
in more cases where we believe it is safe to do so.
llvm-svn: 256049
for the derived class into it. This is mostly just a cleanup, but could in
principle be a bugfix if there is some codepath that reaches here and didn't
previously require a complete type (I couldn't find any such codepath, though).
llvm-svn: 256037
Given the following code:
int *_Nullable ptr;
int *_Nonnull nn = ptr;
...In C, clang will warn you about `nn = ptr`, because you're assigning
a nonnull pointer to a nullable pointer. In C++, clang issues no such
warning. This patch helps ensure that clang doesn't ever miss an
opportunity to complain about C++ code.
N.B. Though this patch has a differential revision link, the actual
review took place over email.
Differential Revision: http://reviews.llvm.org/D14938
llvm-svn: 255556
is_empty, is_polymorphic, and is_abstract didn't handle incomplete types
correctly. Only non-union class types must be complete for these
traits.
is_final and is_sealed don't care about the particular spelling of the
FinalAttr.
is_interface_class should always return false regardless of its input.
The type trait can only be satisfied in a mode we do not support (/CLR).
llvm-svn: 253184
Handle blocks in the tree transform for the typo correction as otherwise, the
capture may miss. This would trigger an assertion. Thanks to Doug Gregor for
the help with this!
Fixes PR25001.
llvm-svn: 251729
Summary:
In `MismatchingNewDeleteDetector::analyzeInClassInitializer`, if
`Field`'s initializer expression is null, lookup the field in
implicit instantiation, and use found field's the initializer.
Reviewers: rsmith, rtrieu
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D9898
llvm-svn: 251335
The patch makes it possible to parse CUDA files that contain host/device
functions with identical signatures, but different attributes without
having to physically split source into host-only and device-only parts.
This change is needed in order to parse CUDA header files that have
a lot of name clashes with standard include files.
Gory details are in design doc here: https://goo.gl/EXnymm
Feel free to leave comments there or in this review thread.
This feature is controlled with CC1 option -fcuda-target-overloads
and is disabled by default.
Differential Revision: http://reviews.llvm.org/D12453
llvm-svn: 248295
The type of a member pointer is incomplete if it has no inheritance
model. This lets us reuse more general logic already embedded in clang.
llvm-svn: 247346
Given a reference to a pointer to member whose class's inheritance model
is unspecified, make sure we come up with an inheritance model in
plausible places. One place we were missing involved LValue to RValue
conversion, another involved unary type traits.
llvm-svn: 247248
Our implementations of these type trait intrinsics simply mapped them to
__has_trivial_destructor. Instead, flesh these intrinsics out with a
full implementation which matches the standard's description.
llvm-svn: 244564
The z13 vector facility has an associated language extension,
closely modeled on AltiVec/VSX. The main differences are:
- vector long, vector float and vector pixel are not supported
- vector long long and vector double are supported (like VSX)
- comparison operators return a vector rather than a scalar integer
- shift operators behave like the OpenCL shift operators
- vector bool is only supported as argument to certain operators;
some operators allow mixing a bool with a non-bool vector
This patch adds clang support for the extension. It is closely modelled
on the AltiVec support. Similarly to the -faltivec option, there's a
new -fzvector option to enable the extensions (as well as an -mzvector
alias for compatibility with GCC). There's also a separate LangOpt.
The extension as implemented here is intended to be compatible with
the -mzvector extension recently implemented by GCC.
Based on a patch by Richard Sandiford.
Differential Revision: http://reviews.llvm.org/D11001
llvm-svn: 243642
In certain cases, the tree transform would introduce new TypoExprs while
trying one of the corrections, invalidating the unique_ptr in the state
reference, and also causing a TypoExpr to exist that will never be
corrected since it doesn't exist in the final corrected expression. The
simple solution to both problems is to temporarily disable typo
correction while handling potentially ambiguous typo corrections.
llvm-svn: 240734