In the case of all inputs being constant and equal, cstr_eq will be
replaced with a true_witness.
Differential Revision: https://reviews.llvm.org/D80303
This allows replacing of this op with a true witness in the case of both
inputs being const_shapes and being found to be broadcastable.
Differential Revision: https://reviews.llvm.org/D80304
This allows assuming_all to be replaced when all inputs are known to be
statically passing witnesses.
Differential Revision: https://reviews.llvm.org/D80306
This will later be used during canonicalization and folding steps to replace
statically known passing constraints.
Differential Revision: https://reviews.llvm.org/D80307
Update linalg to affine lowering for convop to use affine load for input
whenever there is no padding. It had always been using std.loads because
max in index functions (needed for non-zero padding if not materializing
zeros) couldn't be represented in the non-zero padding cases.
In the future, the non-zero padding case could also be made to use
affine - either by materializing or using affine.execute_region. The
latter approach will not impact the scf/std output obtained after
lowering out affine.
Differential Revision: https://reviews.llvm.org/D81191
This simplifies a lot of handling of BoolAttr/IntegerAttr. For example, a lot of places currently have to handle both IntegerAttr and BoolAttr. In other places, a decision is made to pick one which can lead to surprising results for users. For example, DenseElementsAttr currently uses BoolAttr for i1 even if the user initialized it with an Array of i1 IntegerAttrs.
Differential Revision: https://reviews.llvm.org/D81047
This revision adds a helper function to hoist alloc/dealloc pairs and
alloca op out of immediately enclosing scf::ForOp if both conditions are true:
1. all operands are defined outside the loop.
2. all uses are ViewLikeOp or DeallocOp.
This is now considered Linalg-specific and will be generalized on a per-need basis.
Differential Revision: https://reviews.llvm.org/D81152
Add SubgroupId, SubgroupSize and NumSubgroups to GPU dialect ops and add the
lowering of those ops to SPIRV.
Differential Revision: https://reviews.llvm.org/D81042
Summary:
The fusion for tensor_reshape is embedding the information to indexing maps,
thus the exising pattenr also works for indexed_generic ops.
Depends On D80347
Differential Revision: https://reviews.llvm.org/D80348
Summary:
Different from the fusion between generic ops, indices are involved. In this
context, we need to re-map the indices for producer since the fused op is built
on consumer's perspective. This patch supports all combination of the fusion
between indexed_generic ops and generic ops, which includes tests case:
1) generic op as producer and indexed_generic op as consumer.
2) indexed_generic op as producer and generic op as consumer.
3) indexed_generic op as producer and indexed_generic op as consumer.
Differential Revision: https://reviews.llvm.org/D80347
Summary:
Progressive lowering of vector.transpose into an operation that
is closer to an intrinsic, and thus the hardware ISA. Currently
under the common vector transform testing flag, as we prepare
deploying this transformation in the LLVM lowering pipeline.
Reviewers: nicolasvasilache, reidtatge, andydavis1, ftynse
Reviewed By: nicolasvasilache, ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, llvm-commits
Tags: #llvm, #mlir
Differential Revision: https://reviews.llvm.org/D80772
This commit adds basic matrix type support to the SPIR-V dialect
including type definition, IR assembly, parsing, printing, and
(de)serialization.
Differential Revision: https://reviews.llvm.org/D80594
This revision replaces the load + vector.type_cast by appropriate vector transfer
operations. These play more nicely with other vector abstractions and canonicalization
patterns and lower to load/store with or without masks when appropriate.
Differential Revision: https://reviews.llvm.org/D80809
Summary:
Implemented the basic changes for defining master operation in OpenMP.
It uses the generic parser and printer.
Reviewed By: kiranchandramohan, ftynse
Differential Revision: https://reviews.llvm.org/D80689
This revision adds custom rewrites for patterns that arise during linalg structured
ops vectorization. These patterns allow the composition of linalg promotion,
vectorization and removal of redundant copies.
The patterns are voluntarily limited and restrictive atm.
More robust behavior will be implemented once more powerful side effect modeling and analyses are available on view/subview.
On the transfer_read side, the following pattern is rewritten:
```
%alloc = ...
[optional] %view = std.view %alloc ...
%subView = subview %allocOrView ...
[optional] linalg.fill(%allocOrView, %cst) ...
...
linalg.copy(%in, %subView) ...
vector.transfer_read %allocOrView[...], %cst ...
```
into
```
[unchanged] %alloc = ...
[unchanged] [optional] %view = std.view %alloc ...
[unchanged] [unchanged] %subView = subview %allocOrView ...
...
vector.transfer_read %in[...], %cst ...
```
On the transfer_write side, the following pattern is rewriten:
```
%alloc = ...
[optional] %view = std.view %alloc ...
%subView = subview %allocOrView...
...
vector.transfer_write %..., %allocOrView[...]
linalg.copy(%subView, %out)
```
Differential Revision: https://reviews.llvm.org/D80728
operands of Generic ops.
Unit-extent dimensions are typically used for achieving broadcasting
behavior. The pattern added (along with canonicalization patterns
added previously) removes the use of unit-extent dimensions, and
instead uses a more canonical representation of the computation. This
new pattern is not added as a canonicalization for now since it
entails adding additional reshape operations. A pass is added to
exercise these patterns, along with an API entry to populate a
patterns list with these patterns.
Differential Revision: https://reviews.llvm.org/D79766
The operation `num_elements` determines the number of elements for a given
shape.
That is the product of its dimensions.
Differential Revision: https://reviews.llvm.org/D80281
Add the two conversion operations `index_to_size` and `size_to_index` to the
shape dialect.
This facilitates the conversion of index types between the shape and the
standard dialect.
Differential Revision: https://reviews.llvm.org/D80280
Summary:
Index is the proper type for storing shapes when constant folding, so
this fixes the previous code (which was using i64).
Differential Revision: https://reviews.llvm.org/D80600
Summary:
This includes a basic implementation for the OpenMP parallel
operation without a custom pretty-printer and parser.
The if, num_threads, private, shared, first_private, last_private,
proc_bind and default clauses are included in this implementation.
Currently the reduction clause is omitted as it is more complex and
requires analysis to see if we can share implementation with the loop
dialect. The allocate clause is also omitted.
A discussion about the design of this operation can be found here:
https://llvm.discourse.group/t/openmp-parallel-operation-design-issues/686
The current OpenMP Specification can be found here:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
Reviewers: jdoerfert
Subscribers: mgorny, yaxunl, kristof.beyls, guansong, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79410
alloc/dealloc/copies.
Add options to LinalgPromotion to use callbacks for implementating the
allocation, deallocation of buffers used for the promoted subviews,
and to copy data into and from the original subviews to the allocated
buffers.
Also some misc. cleanup of the code.
Differential Revision: https://reviews.llvm.org/D80365
Modifying the loop nest builder for generating scf.parallel loops to
not generate scf.parallel loops for non-parallel iterator types in
Linalg operations. The existing implementation incorrectly generated
scf.parallel for all tiled loops. It is rectified by refactoring logic
used while lowering to loops that accounted for this.
Differential Revision: https://reviews.llvm.org/D80188
Summary:
This op extracts an extent from a shape.
This also is the first op which constant folds to shape.const_size,
which revealed that shape.const_size needs a folder (ConstantLike ops
seem to always need folders for the constant folding infra to work).
Differential Revision: https://reviews.llvm.org/D80394
This revision expands the types of vector contractions that can be lowered to vector.outerproduct.
All 8 permutation cases are support.
The idiomatic manipulation of AffineMap written declaratively makes this straightforward.
In the process a bug with the vector.contract verifier was uncovered.
The vector shape verification part of the contract op is rewritten to use AffineMap composition.
One bug in the vector `ops.mlir` test is fixed and a new case not yet captured is added
to the vector`invalid.mlir` test.
Differential Revision: https://reviews.llvm.org/D80393
This revision adds the additional lowering and exposes the patterns at a finer granularity for better programmatic reuse. The unit test makes use of the finer grained pattern for simpler checks.
As the ContractionOpLowering is exposed programmatically, cleanup opportunities appear and static class methods are turned into free functions with static visibility.
Differential Revision: https://reviews.llvm.org/D80375
Enable inset/extract/construct composite ops as well as access chain for
cooperative matrix. ConstantComposite requires more change and will be done in
a separate patch. Also fix the getNumElements function for coopMatrix per
feedback from Jeff Bolz. The number of element is implementation dependent so
it cannot be known at compile time.
Differential Revision: https://reviews.llvm.org/D80321
Adds support for cooperative matrix support for arithmetic and cast
instructions. It also adds cooperative matrix store, muladd and matrixlength
instructions which are part of the extension.
Differential Revision: https://reviews.llvm.org/D80181
Summary:
This revision refactors the Linalg tiling pass to be written as pattern applications and retires the use of the folder in Linalg tiling.
In the early days, tiling was written as a pass that would create (partially) folded and canonicalized operations on the fly for better composability.
As this evolves towards composition of patterns, the pass-specific folder is counter-productive and is retired.
The tiling options struct evolves to take a tile size creation function which allows materializing tile sizes on the fly (in particular constant tile sizes). This plays better with folding and DCE.
With the folder going away in Tiling, the check on whether subviews are the same in linalg fusion needs to be more robust. This revision also implements such a check.
In the current form, there are still some canonicalizations missing due to AffineMin/Max ops fed by scf::ForOp. These will be improved at a later time.
Differential Revision: https://reviews.llvm.org/D80267
Summary:
Additionally, this adds traits and builder methods to AssumingYieldOp
and names the input witness to the AssumingOp.
Differential Revision: https://reviews.llvm.org/D80187
Add a new type to SPIRV dialect for cooperative matrix and add new op for
cooperative matrix load. This is missing most instructions to support
cooperative matrix extension but this is a stop-gap patch to avoid creating big
review.
Differential Revision: https://reviews.llvm.org/D80043
Summary:
This is a basic op needed for creating shapes from SSA values
representing the extents.
Differential Revision: https://reviews.llvm.org/D79833
Implemented tangent op from SPIR-V's GLSL extended instruction set.
Added a round-trip and serialization/deserialization tests for the op.
Differential Revision: https://reviews.llvm.org/D80152
Summary:
This patch adds support for flush operation in OpenMP dialect and translation of this construct to LLVM IR.
The OpenMP IRBuilder is used for this translation.
The patch includes code changes and testcase modifications.
Reviewed By: ftynse, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D79937
For now the promoted buffer is indexed using the `full view`. The full view might be
slightly bigger than the partial view (which is accounting for boundaries).
Unfortunately this does not compose easily with other transformations when multiple buffers
with shapes related to each other are involved.
Take `linalg.matmul A B C` (with A of size MxK, B of size KxN and C of size MxN) and suppose we are:
- Tiling over M by 100
- Promoting A only
This is producing a `linalg.matmul promoted_A B subview_C` where `promoted_A` is a promoted buffer
of `A` of size (100xK) and `subview_C` is a subview of size mxK where m could be smaller than 100 due
to boundaries thus leading to a possible incorrect behavior.
We propose to:
- Add a new parameter to the tiling promotion allowing to enable the use of the full tile buffer.
- By default all promoted buffers will be indexed by the partial view.
Note that this could be considered as a breaking change in comparison to the way the tiling promotion
was working.
Differential Revision: https://reviews.llvm.org/D79927
Summary:
Vector transfer ops semantic is extended to allow specifying a per-dimension `masked`
attribute. When the attribute is false on a particular dimension, lowering to LLVM emits
unmasked load and store operations.
Differential Revision: https://reviews.llvm.org/D80098
Summary:
This revision makes the use of vector transfer operatons more idiomatic by
allowing to omit and inferring the permutation_map.
Differential Revision: https://reviews.llvm.org/D80092
Summary:
First, compact implementation of lowering to LLVM IR. A bit more
challenging than the constant mask due to the dynamic indices, of course.
I like to hear if there are more efficient ways of doing this in LLVM,
but this for now at least gives us a functional reference implementation.
Reviewers: nicolasvasilache, ftynse, bkramer, reidtatge, andydavis1, mehdi_amini
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79954
This revision starts decoupling the include the kitchen sink behavior of Linalg to LLVM lowering by inserting a -convert-linalg-to-std pass.
The lowering of linalg ops to function calls was previously lowering to memref descriptors by having both linalg -> std and std -> LLVM patterns in the same rewrite.
When separating this step, a new issue occurred: the layout is automatically type-erased by this process. This revision therefore introduces memref casts to perform these type erasures explicitly. To connect everything end-to-end, the LLVM lowering of MemRefCastOp is relaxed because it is artificially more restricted than the op semantics. The op semantics already guarantee that source and target MemRefTypes are cast-compatible. An invalid lowering test now becomes valid and is removed.
Differential Revision: https://reviews.llvm.org/D79468
This patch adds `affine.vector_load` and `affine.vector_store` ops to
the Affine dialect and lowers them to `vector.transfer_read` and
`vector.transfer_write`, respectively, in the Vector dialect.
Reviewed By: bondhugula, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D79658
All ops of the SCF dialect now use the `scf.` prefix instead of `loop.`. This
is a part of dialect renaming.
Differential Revision: https://reviews.llvm.org/D79844
The existing implementation of SubViewOp::getRanges relies on all
offsets/sizes/strides to be dynamic values and does not work in
combination with canonicalization. This revision adds a
SubViewOp::getOrCreateRanges to create the missing constants in the
canonicalized case.
This allows reactivating the fused pass with staged pattern
applications.
However another issue surfaces that the SubViewOp verifier is now too
strict to allow folding. The existing folding pattern is turned into a
canonicalization pattern which rewrites memref_cast + subview into
subview + memref_cast.
The transform-patterns-matmul-to-vector can then be reactivated.
Differential Revision: https://reviews.llvm.org/D79759
This is only valid if the source tensors (result tensor) is static
shaped with all unit-extents when the reshape is collapsing
(expanding) dimensions.
Differential Revision: https://reviews.llvm.org/D79764
Summary:
Makes this operation runnable on CPU by generating MLIR instructions
that are eventually folded into an LLVM IR constant for the mask.
Reviewers: nicolasvasilache, ftynse, reidtatge, bkramer, andydavis1
Reviewed By: nicolasvasilache, ftynse, andydavis1
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79815
The main objective of this revision is to change the way static information is represented, propagated and canonicalized in the SubViewOp.
In the current implementation the issue is that canonicalization may strictly lose information because static offsets are combined in irrecoverable ways into the result type, in order to fit the strided memref representation.
The core semantics of the op do not change but the parser and printer do: the op always requires `rank` offsets, sizes and strides. These quantities can now be either SSA values or static integer attributes.
The result type is automatically deduced from the static information and more powerful canonicalizations (as powerful as the representation with sentinel `?` values allows). Previously static information was inferred on a best-effort basis from looking at the source and destination type.
Relevant tests are rewritten to use the idiomatic `offset: x, strides : [...]`-form. Bugs are corrected along the way that were not trivially visible in flattened strided memref form.
Lowering to LLVM is updated, simplified and now supports all cases.
A mixed static-dynamic mode test that wouldn't previously lower is added.
It is an open question, and a longer discussion, whether a better result type representation would be a nicer alternative. For now, the subview op carries the required semantic.
Differential Revision: https://reviews.llvm.org/D79662
This reverts commit 80d133b24f.
Per Stephan Herhut: The canonicalizer pattern that was added creates
forms of the subview op that cannot be lowered.
This is shown by failing Tensorflow XLA tests such as:
tensorflow/compiler/xla/service/mlir_gpu/tests:abs.hlo.test
Will provide more details offline, they rely on logs from private CI.
Summary:
The main objective of this revision is to change the way static information is represented, propagated and canonicalized in the SubViewOp.
In the current implementation the issue is that canonicalization may strictly lose information because static offsets are combined in irrecoverable ways into the result type, in order to fit the strided memref representation.
The core semantics of the op do not change but the parser and printer do: the op always requires `rank` offsets, sizes and strides. These quantities can now be either SSA values or static integer attributes.
The result type is automatically deduced from the static information and more powerful canonicalizations (as powerful as the representation with sentinel `?` values allows). Previously static information was inferred on a best-effort basis from looking at the source and destination type.
Relevant tests are rewritten to use the idiomatic `offset: x, strides : [...]`-form. Bugs are corrected along the way that were not trivially visible in flattened strided memref form.
It is an open question, and a longer discussion, whether a better result type representation would be a nicer alternative. For now, the subview op carries the required semantic.
Reviewers: ftynse, mravishankar, antiagainst, rriddle!, andydavis1, timshen, asaadaldien, stellaraccident
Reviewed By: mravishankar
Subscribers: aartbik, bondhugula, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, bader, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79662
Summary:
This revision introduces a helper function to allow applying rewrite patterns, interleaved with more global transformations, in a staged fashion:
1. the first stage consists of an OwningRewritePatternList. The RewritePattern in this list are applied once and in order.
2. the second stage consists of a single OwningRewritePattern that is applied greedily until convergence.
3. the third stage consists of applying a lambda, generally used for non-local transformation effects.
This allows creating custom fused transformations where patterns can be ordered and applied at a finer granularity than a sequence of traditional compiler passes.
A test that exercises these behaviors is added.
Differential Revision: https://reviews.llvm.org/D79518
This [discussion](https://llvm.discourse.group/t/viewop-isnt-expressive-enough/991/2) raised some concerns with ViewOp.
In particular, the handling of offsets is incorrect and does not match the op description.
Note that with an elemental type change, offsets cannot be part of the type in general because sizeof(srcType) != sizeof(dstType).
Howerver, offset is a poorly chosen term for this purpose and is renamed to byte_shift.
Additionally, for all intended purposes, trying to support non-identity layouts for this op does not bring expressive power but rather increases code complexity.
This revision simplifies the existing semantics and implementation.
This simplification effort is voluntarily restrictive and acts as a stepping stone towards supporting richer semantics: treat the non-common cases as YAGNI for now and reevaluate based on concrete use cases once a round of simplification occurred.
Differential revision: https://reviews.llvm.org/D79541
This dialect contains various structured control flow operaitons, not only
loops, reflect this in the name. Drop the Ops suffix for consistency with other
dialects.
Note that this only moves the files and changes the C++ namespace from 'loop'
to 'scf'. The visible IR prefix remains the same and will be updated
separately. The conversions will also be updated separately.
Differential Revision: https://reviews.llvm.org/D79578
Originally, these operations were folded only if all expressions in their
affine maps could be folded to a constant expression that can be then subject
to numeric min/max computation. This introduces a more advanced version that
partially folds the affine map by lifting individual constant expression in it
even if some of the expressions remain variable. The folding can update the
operation in place to use a simpler map. Note that this is not as powerful as
canonicalization, in particular this does not remove dimensions or symbols that
became useless. This allows for better composition of Linalg tiling and
promotion transformation, where the latter can handle some canonical forms of
affine.min that the folding can now produce.
Differential Revision: https://reviews.llvm.org/D79502
Summary:
Adds the loop unroll transformation for loop::ForOp.
Adds support for promoting the body of single-iteration loop::ForOps into its containing block.
Adds check tests for loop::ForOps with dynamic and static lower/upper bounds and step.
Care was taken to share code (where possible) with the AffineForOp unroll transformation to ease maintenance and potential future transition to a LoopLike construct on which loop transformations for different loop types can implemented.
Reviewers: ftynse, nicolasvasilache
Reviewed By: ftynse
Subscribers: bondhugula, mgorny, zzheng, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79184
Adding this pattern reduces code duplication. There is no need to have a
custom implementation for lowering to llvm.cmpxchg.
Differential Revision: https://reviews.llvm.org/D78753
This revision adds support for merging identical blocks, or those with the same operations that branch to the same successors. Operands that mismatch between the different blocks are replaced with new block arguments added to the merged block.
Differential Revision: https://reviews.llvm.org/D79134
Linalg transformations are currently exposed as DRRs.
Unfortunately RewriterGen does not play well with the line of work on named linalg ops which require variadic operands and results.
Additionally, DRR is arguably not the right abstraction to expose compositions of such patterns that don't rely on SSA use-def semantics.
This revision abandons DRRs and exposes manually written C++ patterns.
Refactorings and cleanups are performed to uniformize APIs.
This refactoring will allow replacing the currently manually specified Linalg named ops.
A collateral victim of this refactoring is the `tileAndFuse` DRR, and the one associated test, which will be revived at a later time.
Lastly, the following 2 tests do not add value and are altered:
- a dot_perm tile + interchange test does not test anything new and is removed
- a dot tile + lower to loops does not need 2-D tiling and is trimmed.
This is useful for several reasons:
* In some situations the user can guarantee that thread-safety isn't necessary and don't want to pay the cost of synchronization, e.g., when parsing a very large module.
* For things like logging threading is not desirable as the output is not guaranteed to be in stable order.
This flag also subsumes the pass manager flag for multi-threading.
Differential Revision: https://reviews.llvm.org/D79266
Summary:
This is an initial version, currently supports OpString and OpLine
for autogenerated operations during (de)serialization.
Differential Revision: https://reviews.llvm.org/D79091
Summary:
This revision cleans up a layer of complexity in ScopedContext and uses InsertGuard instead of previously manual bookkeeping.
The method `getBuilder` is renamed to `getBuilderRef` and spurious copies of OpBuilder are tracked.
This results in some canonicalizations not happening anymore in the Linalg matmul to vector test. This test is retired because relying on DRRs for this has been shaky at best. The solution will be better support to write fused passes in C++ with more idiomatic pattern composition and application.
Differential Revision: https://reviews.llvm.org/D79208
This revision adds support to allow named ops to lower to loops.
Linalg.batch_matmul successfully lowers to loops and to LLVM.
In the process, this test also activates linalg to affine loops.
However padded convolutions to not lower to affine.load atm so this revision overrides the type of underlying load / store operation.
Differential Revision: https://reviews.llvm.org/D79135
This commit marks AllocLikeOp as MemAlloc in StandardOps.
Also in Linalg dependency analysis use memory effect to detect
allocation. This allows the dependency analysis to be more
general and recognize other allocation-like operations.
Differential Revision: https://reviews.llvm.org/D78705
(A previous version of this, dd2c639c3c, was
reverted.)
Introduce op trait PolyhedralScope for ops to define a new scope for
polyhedral optimization / affine dialect purposes, thus generalizing
such scopes beyond FuncOp. Ops to which this trait is attached will
define a new scope for the consideration of SSA values as valid symbols
for the purposes of polyhedral analysis and optimization. Update methods
that check for dim/symbol validity to work based on this trait.
Differential Revision: https://reviews.llvm.org/D79060
Summary:
This change results in tests also being changed to prevent dead
affine.load operations from being folded away during rewrites.
Also move AffineStoreOp and AffineLoadOp to an ODS file.
Differential Revision: https://reviews.llvm.org/D78930
Introduce op trait `PolyhedralScope` for ops to define a new scope for
polyhedral optimization / affine dialect purposes, thus generalizing
such scopes beyond FuncOp. Ops to which this trait is attached will
define a new scope for the consideration of SSA values as valid symbols
for the purposes of polyhedral analysis and optimization. Update methods
that check for dim/symbol validity to work based on this trait.
Differential Revision: https://reviews.llvm.org/D78863
Summary:
Previously operations like std.load created methods for obtaining their
effects but did not inherit from the SideEffect interfaces when their
parameters were decorated with the information. The resulting situation
was that passes had no information on the SideEffects of std.load/store
and had to treat them more cautiously. This adds the inheritance
information when creating the methods.
As a side effect, many tests are modified, as they were using std.load
for testing and this oepration would be folded away as part of pattern
rewriting. Tests are modified to use store or to reutn the result of the
std.load.
Reviewers: mravishankar, antiagainst, nicolasvasilache, herhut, aartbik, ftynse!
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78802
- Implement a first constant fold for shape.shape_of (more ops coming in subsequent patches)
- Implement the right builder interfaces for ShapeType and other types
- Splits shape.constant into shape.const_size and shape.const_shape which plays better with dyn_cast and building vs one polymorphic op.
Also, fix the RUN line in ops.mlir to properly verify round-tripping.
Ensure that `gpu.func` is only used within the dedicated `gpu.module`.
Implement the constraint to the GPU dialect and adopt test cases.
Differential Revision: https://reviews.llvm.org/D78541
It currently requires that the condition match the shape of the selected value, but this is only really useful for things like masks. This revision allows for the use of i1 to mean that all of the vector/tensor is selected. This also matches the behavior of LLVM select. A benefit of this change is that transformations that want to generate selects, like those on the CFG, don't have to special case vector/tensor. Previously the only way to generate a select from an i1 was to use a splat, but that doesn't support dynamically shaped/unranked tensors.
Differential Revision: https://reviews.llvm.org/D78690
This revision adds support for canonicalizing the following:
```
br ^bb1
^bb1
br ^bbN(...)
br ^bbN(...)
```
Differential Revision: https://reviews.llvm.org/D78683
This revision adds support for canonicalizing the following:
```
cond_br %cond, ^bb1(A, ..., N), ^bb1(A, ..., N)
br ^bb1(A, ..., N)
```
If the operands to the successor are different and the cond_br is the only predecessor, we emit selects for the branch operands.
```
cond_br %cond, ^bb1(A), ^bb1(B)
%select = select %cond, A, B
br ^bb1(%select)
```
Differential Revision: https://reviews.llvm.org/D78682
Summary:
Use a nested symbol to identify the kernel to be invoked by a `LaunchFuncOp` in the GPU dialect.
This replaces the two attributes that were used to identify the kernel module and the kernel within seperately.
Differential Revision: https://reviews.llvm.org/D78551
Summary:
Use the shortcu `kernel` for the `gpu.kernel` attribute of `gpu.func`.
The parser supports this and test cases are easier to read.
Differential Revision: https://reviews.llvm.org/D78542
Summary:
Fix a broken test case in the `invalid.mlir` lit test case.
`expect` was missing its `e`.
Differential Revision: https://reviews.llvm.org/D78540
The buffer allocated by a promotion can be subject to other transformations afterward. For example it could be vectorized, in which case it is needed to ensure that this buffer is memory-aligned.
Differential Revision: https://reviews.llvm.org/D78556
This revision is the first in a set of improvements that aim at allowing
more generalized named Linalg op generation from a mathematical
specification.
This revision allows creating a new op and checks that the parser,
printer and verifier are hooked up properly.
This opened up a few design points that will be addressed in the future:
1. A named linalg op has a static region builder instead of an
explicitly parsed region. This is not currently compatible with
assemblyFormat so a custom parser / printer are needed.
2. The convention for structured ops and tensor return values needs to
evolve to allow tensor-land and buffer land specifications to agree
3. ReferenceIndexingMaps and referenceIterators will need to become
static to allow building attributes at parse time.
4. Error messages will be improved once we have 3. and we pretty print
in custom form.
Differential Revision: https://reviews.llvm.org/D78327
Unfortunately FileCheck ignores directives with whitespace between the directive and the colon (`CHECK :` for example), thus most of the directives of this test were ignored.
Differential Revision: https://reviews.llvm.org/D78548
The promotion transformation is promoting all input and output buffers of the transformed op. The user might want to only promote some of these buffers.
Differential Revision: https://reviews.llvm.org/D78498
Fix intra-tile upper bound setting in a scenario where the tile size was
larger than the trip count.
Differential Revision: https://reviews.llvm.org/D78505
Summary:
Rather than having a full, recursive, lowering of vector.broadcast
to LLVM IR, it is much more elegant to have a progressive lowering
of each vector.broadcast into a lower dimensional vector.broadcast,
until only elementary vector operations remain. This results
in more elegant, step-wise code, that is easier to understand.
Also makes some optimizations in the generated code.
Reviewers: nicolasvasilache, mehdi_amini, andydavis1, grosul1
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78071
The function attribute in generic ops is not paying for itself.
A region is the more standardized way of specifying a custom computation.
If needed this region can call a function directly.
This is deemed more natural than managing a dedicated function attribute.
This also simplifies named ops generation by trimming unnecessary complexity.
Differential Revision: https://reviews.llvm.org/D78266
Summary:
Modified AffineMap::get to remove support for the overload which allowed
an ArrayRef of AffineExpr but no context (and gathered the context from a
presumed first entry, resulting in bugs when there were 0 results).
Instead, we support only a ArrayRef and a context, and a version which
takes a single AffineExpr.
Additionally, removed some now needless case logic which previously
special cased which call to AffineMap::get to use.
Reviewers: flaub, bondhugula, rriddle!, nicolasvasilache, ftynse, ulysseB, mravishankar, antiagainst, aartbik
Subscribers: mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78226
This revision introduces a utility to unswitch affine.for/parallel loops
by hoisting affine.if operations past surrounding affine.for/parallel.
The hoisting works for both perfect/imperfect nests and in the presence
of else blocks. The hoisting is currently to as outermost a level as
possible. Uses a test pass to test the utility.
Add convenience method Operation::getParentWithTrait<Trait>.
Depends on D77487.
Differential Revision: https://reviews.llvm.org/D77870
Similarly to actual LLVM IR, and to `llvm.mlir.func`, allow the custom syntax
of `llvm.mlir.global` to omit the linkage keyword. If omitted, the linkage is
assumed to be external. This makes the modeling of globals in the LLVM dialect
more consistent, both within the dialect and with LLVM IR.
Differential Revision: https://reviews.llvm.org/D78096
Introduce mlir::applyOpPatternsAndFold which applies patterns as well as
any folding only on a specified op (in contrast to
applyPatternsAndFoldGreedily which applies patterns only on the regions
of an op isolated from above). The caller is made aware of the op being
folded away or erased.
Depends on D77485.
Differential Revision: https://reviews.llvm.org/D77487
The inversePermutation method returns a null map on failure. Update
uses of this method within Linalg to handle this. In LinalgToLoops the
null return value was used to emit scalar code. Modify that to return
failure, and emit scalar implementation when affine map is "empty",
i.e. 1 dims, 0 symbols and no result exprs.
Differential Revision: https://reviews.llvm.org/D77964
The invertPermutation method does not return a nullptr anymore, but
rather returns an empty map for the scalar case. Update the check in
LinalgToLoops to reflect this.
Also add test case for generating scalar code.
The outer parallel loops of a linalg operation is lowered to
loop.parallel, with the other loops lowered to loop.for. This gets the
lowering to loop.parallel on par with the loop.for lowering. In future
the reduction loop could also be lowered to loop.parallel.
Also add a utility function that returns the loops that are
created.
Differential Revision: https://reviews.llvm.org/D77678
NFC clean up for simplify-affine-structures test cases. Rename sets
better; avoid suffix numbers; move outlined definitions close to use.
This is in preparation for other functionality updates.
Differential Revision: https://reviews.llvm.org/D78017
This commit added stride support in runtime array types. It also
adjusted the assembly form for the stride from `[N]` to `stride=N`.
This makes the IR more readable, especially for the cases where
one mix array types and struct types.
Differential Revision: https://reviews.llvm.org/D78034
This patch adds support for taskwait and taskyield operations in OpenMP dialect and translation of the these constructs to LLVM IR. The OpenMP IRBuilder is used for this translation.
The patch includes code changes and a testcase modifications.
Differential Revision: https://reviews.llvm.org/D77634
Summary:
LLVM matrix intrinsics recently introduced an option to support row-major mode.
This matches the MLIR vector model, this revision switches to row-major.
A corner case related to degenerate sizes was also fixed upstream.
This revision removes the guard against this corner case.
A bug was uncovered on the output vector construction which this revision also fixes.
Lastly, this has been tested on a small size and benchmarked independently: no visible performance regression is observed.
In the future, when matrix intrinsics support per op attribute, we can more aggressively translate to that and avoid inserting MLIR-level transposes.
This has been tested independently to work on small matrices.
Differential Revision: https://reviews.llvm.org/D77761
This revision builds a simple "fused pass" consisting of 2 levels of tiling, memory promotion and vectorization using linalg transformations written as composable pattern rewrites.
Summary: Pass options are a better choice for various reasons and avoid the need for static constructors.
Differential Revision: https://reviews.llvm.org/D77707
Summary:
Update ShapeCastOp folder to use producer-consumer value forwarding.
Support is added for tracking sub-vectors through trivial shape cast operations,
where the sub-vector shape is preserved across shape cast operations and only
leading ones are added or removed.
Support is preserved for cancelling shape cast operations.
One unit test is added and two are updated.
Reviewers: aartbik, nicolasvasilache
Reviewed By: aartbik, nicolasvasilache
Subscribers: frgossen, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77253
This revision removes the reliance of Promotion on `linalg.slice` which is meant
for the rank-reducing case.
Differential Revision: https://reviews.llvm.org/D77676
Summary:
* Removal of FxpMathOps was discussed on the mailing list.
* Will send a courtesy note about also removing the Quantizer (which had some dependencies on FxpMathOps).
* These were only ever used for experimental purposes and we know how to get them back from history as needed.
* There is a new proposal for more generalized quantization tooling, so moving these older experiments out of the way helps clean things up.
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77479
If we have two back-to-back loops with block arguments, the OpPhi
instructions generated for the second loop's block arguments should
have use the merge block of the first SPIR-V loop structure as
their incoming parent block.
Differential Revision: https://reviews.llvm.org/D77543
Fix point-wise copy generation to work with bounds that have max/min.
Change structure of copy loop nest to use absolute loop indices and
subtracting base from the indexes of the fast buffers. Update supporting
utilities: Fix FlatAffineConstraints::getLowerAndUpperBound to look at
equalities as well and for a missing division. Update unionBoundingBox
to not discard common constraints (leads to a tighter system). Update
MemRefRegion::getConstantBoundingSizeAndShape to add memref dimension
constraints. Run removeTrivialRedundancy at the end of
MemRefRegion::compute. Run single iteration loop promotion and
load/store canonicalization after affine data copy (in its test pass as
well).
Differential Revision: https://reviews.llvm.org/D77320
Summary:
This revision adds a tensor_reshape operation that operates on tensors.
In the tensor world the constraints are less stringent and we can allow more
arbitrary dynamic reshapes, as long as they are contractions.
The expansion of a dynamic dimension into multiple dynamic dimensions is under-specified and is punted on for now.
Differential Revision: https://reviews.llvm.org/D77360
Summary: This revision adds support for marking the last region as variadic in the ODS region list with the VariadicRegion directive.
Differential Revision: https://reviews.llvm.org/D77455
Two back-to-back transpose operations are combined into a single transpose, which uses a combination of their permutation vectors.
Differential Revision: https://reviews.llvm.org/D77331
Add a method that given an affine map returns another with just its unique
results. Use this to drop redundant bounds in max/min for affine.for. Update
affine.for's canonicalization pattern and createCanonicalizedForOp to use
this.
Differential Revision: https://reviews.llvm.org/D77237
Summary:
The RAW fusion happens only if the produecer block dominates the consumer block.
The WAW pattern also works with the precondition. I.e., if a producer can
dominate the consumer, they can fairly fuse together.
Since they are all tilable, we can think the pattern like this way:
Input:
```
linalg_op1 view
tile_loop
subview_2
linalg_op2 subview_2
```
Tile the first Linalg op as same as the second Linalg.
```
tile_loop
subview_1
linalg_op1 subview_1
tile_loop
subview_2
liangl_op2 subview_2
```
Since the first Linalg op is tilable in the same way and the computation are
independently, it's fair to fuse it with the second Linalg op.
```
tile_loop
subview_1
linalg_op1 subview_1
linalg_op2 subview_2
```
In short, this patch includes:
- Handling both RAW and WAW pattern.
- Adding a interface method to get input and output buffers.
- Exposing a method to get a StringRef of a dependency type.
- Fixing existing WAW tests and add one more use case: initialize the buffer
before conv op.
Differential Revision: https://reviews.llvm.org/D76897
Summary:
Performs an N-D pooling operation similarly to the description in the TF
documentation:
https://www.tensorflow.org/api_docs/python/tf/nn/pool
Different from the description, this operation doesn't perform on batch and
channel. It only takes tensors of rank `N`.
```
output[x[0], ..., x[N-1]] =
REDUCE_{z[0], ..., z[N-1]}
input[
x[0] * strides[0] - pad_before[0] + dilation_rate[0]*z[0],
...
x[N-1]*strides[N-1] - pad_before[N-1] + dilation_rate[N-1]*z[N-1]
],
```
The required optional arguments are:
- strides: an i64 array specifying the stride (i.e. step) for window
loops.
- dilations: an i64 array specifying the filter upsampling/input
downsampling rate
- padding: an i64 array of pairs (low, high) specifying the number of
elements to pad along a dimension.
If strides or dilations attributes are missing then the default value is
one for each of the input dimensions. Similarly, padding values are zero
for both low and high in each of the dimensions, if not specified.
Differential Revision: https://reviews.llvm.org/D76414
Existing tiling implementation of Linalg would still work for tiling
the batch dimensions of the convolution op.
Differential Revision: https://reviews.llvm.org/D76637
Summary:
Add support for TupleGetOp folding through InsertSlicesOp and ExtractSlicesOp.
Vector-to-vector transformations for unrolling and lowering to hardware vectors
can generate chains of structured vector operations (InsertSlicesOp,
ExtractSlicesOp and ShapeCastOp) between the producer of a hardware vector
value and its consumer. Because InsertSlicesOp, ExtractSlicesOp and ShapeCastOp
are structured, we can track the location (tuple index and vector offsets) of
the consumer vector value through the chain of structured operations to the
producer, enabling a much more powerful producer-consumer fowarding of values
through structured ops and tuple, which in turn enables a more powerful
TupleGetOp folding transformation.
Reviewers: nicolasvasilache, aartbik
Reviewed By: aartbik
Subscribers: grosul1, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76889
Rewrite mlir::permuteLoops (affine loop permutation utility) to fix
incorrect approach. Avoiding using sinkLoops entirely - use single move
approach. Add test pass.
This fixes https://bugs.llvm.org/show_bug.cgi?id=45328
Depends on D77003.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D77004
This patch introduces a utility to separate full tiles from partial
tiles when tiling affine loop nests where trip counts are unknown or
where tile sizes don't divide trip counts. A conditional guard is
generated to separate out the full tile (with constant trip count loops)
into the then block of an 'affine.if' and the partial tile to the else
block. The separation allows the 'then' block (which has constant trip
count loops) to be optimized better subsequently: for eg. for
unroll-and-jam, register tiling, vectorization without leading to
cleanup code, or to offload to accelerators. Among techniques from the
literature, the if/else based separation leads to the most compact
cleanup code for multi-dimensional cases (because a single version is
used to model all partial tiles).
INPUT
affine.for %i0 = 0 to %M {
affine.for %i1 = 0 to %N {
"foo"() : () -> ()
}
}
OUTPUT AFTER TILING W/O SEPARATION
map0 = affine_map<(d0) -> (d0)>
map1 = affine_map<(d0)[s0] -> (d0 + 32, s0)>
affine.for %arg2 = 0 to %M step 32 {
affine.for %arg3 = 0 to %N step 32 {
affine.for %arg4 = #map0(%arg2) to min #map1(%arg2)[%M] {
affine.for %arg5 = #map0(%arg3) to min #map1(%arg3)[%N] {
"foo"() : () -> ()
}
}
}
}
OUTPUT AFTER TILING WITH SEPARATION
map0 = affine_map<(d0) -> (d0)>
map1 = affine_map<(d0) -> (d0 + 32)>
map2 = affine_map<(d0)[s0] -> (d0 + 32, s0)>
#set0 = affine_set<(d0, d1)[s0, s1] : (-d0 + s0 - 32 >= 0, -d1 + s1 - 32 >= 0)>
affine.for %arg2 = 0 to %M step 32 {
affine.for %arg3 = 0 to %N step 32 {
affine.if #set0(%arg2, %arg3)[%M, %N] {
// Full tile.
affine.for %arg4 = #map0(%arg2) to #map1(%arg2) {
affine.for %arg5 = #map0(%arg3) to #map1(%arg3) {
"foo"() : () -> ()
}
}
} else {
// Partial tile.
affine.for %arg4 = #map0(%arg2) to min #map2(%arg2)[%M] {
affine.for %arg5 = #map0(%arg3) to min #map2(%arg3)[%N] {
"foo"() : () -> ()
}
}
}
}
}
The separation is tested via a cmd line flag on the loop tiling pass.
The utility itself allows one to pass in any band of contiguously nested
loops, and can be used by other transforms/utilities. The current
implementation works for hyperrectangular loop nests.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76700
- add method to get back an integer set from flat affine constraints;
this allows a round trip
- use this to complete the simplification of integer sets in
-simplify-affine-structures
- update FlatAffineConstraints::removeTrivialRedundancy to also do GCD
tightening and normalize by GCD (while still keeping it linear time).
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Summary:
The attribute parser fails to correctly parse unsigned 64 bit
attributes as the check `isNegative ? (int64_t)-val.getValue() >= 0
: (int64_t)val.getValue() < 0` will falsely detect an overflow for
unsigned values larger than 2^63-1.
This patch reworks the overflow logic to instead of doing arithmetic
on int64_t use APInt::isSignBitSet() and knowledge of the attribute
type.
Test-cases which verify the de-facto behavior of the parser and
triggered the previous faulty handing of unsigned 64 bit attrbutes are
also added.
Differential Revision: https://reviews.llvm.org/D76493
Move some of the affine transforms and their test cases to their
respective dialect directory. This patch does not complete the move, but
takes care of a good part.
Renames: prefix 'affine' to affine loop tiling cl options,
vectorize -> super-vectorize
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76565
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.
Differential Revision: https://reviews.llvm.org/D76161
The Vector Dialect [document](https://mlir.llvm.org/docs/Dialects/Vector/) discusses the vector abstractions that MLIR supports and the various tradeoffs involved.
One of the layer that is missing in OSS atm is the Hardware Vector Ops (HWV) level.
This revision proposes an AVX512-specific to add a new Dialect/Targets/AVX512 Dialect that would directly target AVX512-specific intrinsics.
Atm, we rely too much on LLVM’s peephole optimizer to do a good job from small insertelement/extractelement/shufflevector. In the future, when possible, generic abstractions such as VP intrinsics should be preferred.
The revision will allow trading off HW-specific vs generic abstractions in MLIR.
Differential Revision: https://reviews.llvm.org/D75987
Summary: This patch add tests when lowering multiple `gpu.all_reduce` operations in the same kernel. This was previously failing.
Differential Revision: https://reviews.llvm.org/D75930
Summary:
These are not supported by any of the code using `type_cast`. In the general
case, such casting would require memrefs to handle a non-contiguous vector
representation or misaligned vectors (e.g., if the offset of the source memref
is not divisible by vector size, since offset in the target memref is expressed
in the number of elements).
Differential Revision: https://reviews.llvm.org/D76349
This commit unifies target environment queries into a new wrapper
class spirv::TargetEnv and shares across various places needing
the functionality. We still create multiple instances of TargetEnv
though given the parent components (type converters, passes,
conversion targets) have different lifetimes.
In the meantime, LowerABIAttributesPass is updated to take into
consideration the target environment, which requires updates to
tests to provide that.
Differential Revision: https://reviews.llvm.org/D76242
Previously in SPIRVTypeConverter, we always convert memref types
to StorageBuffer regardless of their memory spaces. This commit
fixes that to let the conversion to look into memory space
properly. For this purpose, a mapping between SPIR-V storage class
and memref memory space is introduced. The mapping is arbitary
decided at the moment and the hope is that we can leverage
string memory space later to be more clear.
Now spv.interface_var_abi cannot contain storage class unless it's
attached to a scalar value, where we need the storage class as side
channel information. Verifications and tests are properly adjusted.
Differential Revision: https://reviews.llvm.org/D76241
Summary:
This revision restructures the calling of vector transforms to make it more flexible to ask for lowering through LLVM matrix intrinsics.
This also makes sure we bail out in degenerate cases (i.e. 1) in which LLVM complains about not being able to scalarize.
Differential Revision: https://reviews.llvm.org/D76266
Summary:
Renamed QuantOps to Quant to avoid the Ops suffix. All dialects will contain
ops, so the Ops suffix is redundant.
Differential Revision: https://reviews.llvm.org/D76318
MLIR supports terminators that have the same successor block with different
block operands, which cannot be expressed in the LLVM's phi-notation as the
block identifier is used to tell apart the predecessors. This limitation can be
worked around by branching to a new block instead, with this new block
unconditionally branching to the original successor and forwarding the
argument. Until now, this transformation was performed during the conversion
from the Standard to the LLVM dialect. This does not scale well to multiple
dialects targeting the LLVM dialect as all of them would have to be aware of
this limitation and perform the preparatory transformation. Instead, do it as a
separate pass and run it immediately before the translation.
Differential Revision: https://reviews.llvm.org/D75619
Summary:
This regional op in the QuantOps dialect will be used to wrap
high-precision ops into atomic units for quantization. All the values
used by the internal ops are captured explicitly by the op inputs. The
quantization parameters of the inputs and outputs are stored in the
attributes.
Subscribers: jfb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75972
Summary:
To enable this, two changes are needed:
1) Add an optional attribute `padding` to linalg.conv.
2) Compute if the indices accessing is out of bound in the loops. If so, use the
padding value `0`. Otherwise, use the value derived from load.
In the patch, the padding only works for lowering without other transformations,
e.g., tiling, fusion, etc.
Differential Revision: https://reviews.llvm.org/D75722
Summary:
This revision adds lowering of vector.contract to llvm.intr.matrix_multiply.
Note that there is currently a mismatch between the MLIR vector dialect which
expects row-major layout and the LLVM matrix intrinsics which expect column
major layout.
As a consequence, we currently only match a vector.contract with indexing maps
that express column-major matrix multiplication.
Other cases would require additional transposes and it is better to wait for
LLVM intrinsics to provide a per-operation attribute that would specify which
layout is expected.
A separate integration test, not submitted to MLIR core, has independently
verified that correct execution occurs on a 2x2x2 matrix multiplication.
Differential Revision: https://reviews.llvm.org/D76014
Summary:
The direct lowering of vector.broadcast into LLVM has been replaced by
progressive lowering into elementary vector ops. This also required a
small refactoring of a llvm.mlir test that used a direct vector.broadcast
operator (just to define a matmul).
Reviewers: nicolasvasilache, andydavis1, rriddle
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76143
Previously we only consider the version/capability/extension requirements
on ops themselves. Some types in SPIR-V also require special extensions
or capabilities to be used. For example, non-32-bit integers/floats
will require different capabilities and/or extensions depending on
where they are used because it may mean special hardware abilities.
This commit adds query methods to SPIR-V type class hierarchy to support
querying extensions and capabilities. We don't go through ODS for
auto-generating such information given that we don't have them in
SPIR-V machine readable grammar and there are just a few types.
Differential Revision: https://reviews.llvm.org/D75875
This commits changes the definition of spv.module to use the #spv.vce
attribute for specifying (version, capabilities, extensions) triple
so that we can have better API and custom assembly form. Since now
we have proper modelling of the triple, (de)serialization is wired up
to use them.
With the new UpdateVCEPass, we don't need to manually specify the
required extensions and capabilities anymore when creating a spv.module.
One just need to call UpdateVCEPass before serialization to get the
needed version/extensions/capabilities.
Differential Revision: https://reviews.llvm.org/D75872
Creates an operation pass that deduces and attaches the minimal version/
capabilities/extensions requirements for spv.module ops.
For each spv.module op, this pass requires a `spv.target_env` attribute on
it or an enclosing module-like op to drive the deduction. The reason is
that an op can be enabled by multiple extensions/capabilities. So we need
to know which one to pick. `spv.target_env` gives the hard limit as for
what the target environment can support; this pass deduces what are
actually needed for a specific spv.module op.
Differential Revision: https://reviews.llvm.org/D75870
We also need the (version, capabilities, extensions) triple on the
spv.module op. Thus far we have been using separate 'extensions'
and 'capabilities' attributes there and 'version' is missing. Creating
a separate attribute for the trip allows us to reuse the assembly
form and verification.
Differential Revision: https://reviews.llvm.org/D75868
The current mechanism for identifying is a bit hacky and extremely adhoc, i.e. we explicit check 1-result, 0-operand, no side-effect, and always foldable and then assume that this is a constant. Adding a trait adds structure to this, and makes checking for a constant much more efficient as we can guarantee that all of these things have already been verified.
Differential Revision: https://reviews.llvm.org/D76020
Summary:
This replaces the direct lowering of vector.outerproduct to LLVM with progressive lowering into elementary vectors ops to avoid having the similar lowering logic at several places.
NOTE1: with the new progressive rule, the lowered llvm is slightly more elaborate than with the direct lowering, but the generated assembly is just as optimized; still if we want to stay closer to the original, we should add a "broadcast on extract" to shuffle rewrite (rather than special cases all the lowering steps)
NOTE2: the original outerproduct lowering code should now be removed but some linalg test work directly on vector and contain some dead code, so this requires another CL
Reviewers: nicolasvasilache, andydavis1
Reviewed By: nicolasvasilache, andydavis1
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75956
Summary:
This patch add some builtin operation for the gpu.all_reduce ops.
- for Integer only: `and`, `or`, `xor`
- for Float and Integer: `min`, `max`
This is useful for higher level dialect like OpenACC or OpenMP that can lower to the GPU dialect.
Differential Revision: https://reviews.llvm.org/D75766
Summary:
This patch add some builtin operation for the gpu.all_reduce ops.
- for Integer only: `and`, `or`, `xor`
- for Float and Integer: `min`, `max`
This is useful for higher level dialect like OpenACC or OpenMP that can lower to the GPU dialect.
Differential Revision: https://reviews.llvm.org/D75766
This revision takes advantage of the empty AffineMap to specify the
0-D edge case. This allows removing a bunch of annoying corner cases
that ended up impacting users of Linalg.
Differential Revision: https://reviews.llvm.org/D75831
Summary:
Paying off some technical debt in VectorOps, where I introduced a special
op for a fused accumulator into reduction to avoid some issues around
printing and parsing an optional accumulator. This CL merges the two
into one op again and does things the right way (still would be nice
to have "assemblyFormat" for optional operands though....).
Reviewers: nicolasvasilache, andydavis1, ftynse, rriddle
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75699
Summary:
This revision removes all of the functionality related to successor operands on the core Operation class. This greatly simplifies a lot of handling of operands, as well as successors. For example, DialectConversion no longer needs a special "matchAndRewrite" for branching terminator operations.(Note, the existing method was also broken for operations with variadic successors!!)
This also enables terminator operations to define their own relationships with successor arguments, instead of the hardcoded "pass-through" behavior that exists today.
Differential Revision: https://reviews.llvm.org/D75318
This attribute details the segment sizes for operand groups within the operation. This revision add support for automatically populating this attribute in the declarative parser.
Differential Revision: https://reviews.llvm.org/D75315
This allows for simplifying OpDefGen, as well providing specializing accessors for the different successor counts. This mirrors the existing traits for operands and results.
Differential Revision: https://reviews.llvm.org/D75313
The current setup of the GPU dialect is to model both the host and
device side codegen. For cases (like IREE) the host side modeling
might not directly fit its use case, but device-side codegen is still
valuable. First step in accessing just the device-side functionality
of the GPU dialect is to allow just creating a gpu.func operation from
a gpu.launch operation. In addition this change also "inlines"
operations into the gpu.func op at time of creation instead of this
being a later step.
Differential Revision: https://reviews.llvm.org/D75287
output has zero rank.
While lowering to loops, no indices should be used in the load/store
operation if the buffer is zero-rank.
Differential Revision: https://reviews.llvm.org/D75391
This commit updates SPIR-V dialect to support integer signedness
by relaxing various checks for signless to just normal integers.
The hack for spv.Bitcast can now be removed.
Differential Revision: https://reviews.llvm.org/D75611
A previous commit added support for integer signedness in C++
IntegerType. This change introduces ODS definitions for
integer types and integer (element) attributes w.r.t. signedness.
This commit also updates various existing definitions' descriptions
to mention signless where suitable to make it more clear.
Positive and non-negative integer attributes are removed to avoid
the explosion of subclasses. Instead, one should use more atmoic
constraints together with Confined to model that. For example,
`Confined<..., [IntPositive]>`.
Differential Revision: https://reviews.llvm.org/D75610
This matches loops with a affine.min upper bound, limiting the trip
count to a constant, and rewrites them into two loops, one with constant
upper bound and one with variable upper bound. The assumption is that
the constant upper bound loop will be unrolled and vectorized, which is
preferable if this is the hot path.
Differential Revision: https://reviews.llvm.org/D75240
Summary:
AffineApplyNormalizer provides common logic for folding affine maps that appear
in affine.apply into other affine operations that use the result of said
affine.apply. In the process, affine maps of both operations are composed.
During the composition `A.compose(B)` the symbols from the map A are placed
before those of the map B in a single concatenated symbol list. However,
AffineApplyNormalizer was ordering the operands of the operation being
normalized by iteratively appending the symbols into a single list accoridng to
the operand order, regardless of whether these operands are symbols of the
current operation or of the map that is being folded into it. This could lead
to wrong order of symbols and, when the symbols were bound to constant values,
to visibly incorrect folding of constants into affine maps as reported in
PR45031. Make sure symbols operands to the current operation are always placed
before symbols coming from the folded maps.
Update the test that was exercising the incorrect folder behavior. For some
reason, the order of symbol operands was swapped in the test input compared to
the previous operations, making it easy to assume the correct maps were
produced whereas they were swapping the symbols back due to the problem
described above.
Closes https://bugs.llvm.org/show_bug.cgi?id=45031
Differential Revision: https://reviews.llvm.org/D75247
This commit handles folding spv.LogicalAnd/spv.LogicalOr when
one of the operands is constant true/false.
Differential Revision: https://reviews.llvm.org/D75195
Summary:
The mapper assigns annotations to loop.parallel operations that
are compatible with the loop to gpu mapping pass. The outermost
loop uses the grid dimensions, followed by block dimensions. All
remaining loops are mapped to sequential loops.
Differential Revision: https://reviews.llvm.org/D74963