Now that we have a type that can represent the attributes on a single
return, function, or parameter, we can pass it around directly rather
than passing around AttributeList and Idx. Removes some more one-based
argument attribute index counting.
NFC
llvm-svn: 300285
This further improves Ahmed's change in rL299482. See the new comment for the
rationale.
The patch recovers most of the regression for bzip2 after D31965. We're down
to +2.68% from +6.97%.
Differential Revision: https://reviews.llvm.org/D32028
llvm-svn: 300276
Add hasParamAttribute() and use it instead of hasAttribute(ArgNo+1,
Kind) everywhere.
The fact that the AttributeList index for an argument is ArgNo+1 should
be a hidden implementation detail.
NFC
llvm-svn: 300272
If the offset cannot fit into the instruction, an addition to the
pointer is emitted before the actual access. However, BPF offsets are
16-bit but LLVM considers them to be, for the matter of this check,
to be 32-bit long.
This causes the following program:
int bpf_prog1(void *ign)
{
volatile unsigned long t = 0x8983984739ull;
return *(unsigned long *)((0xffffffff8fff0002ull) + t);
}
To generate the following (wrong) code:
0: 18 01 00 00 39 47 98 83 00 00 00 00 89 00 00 00
r1 = 590618314553ll
2: 7b 1a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r1
3: 79 a1 f8 ff 00 00 00 00 r1 = *(u64 *)(r10 - 8)
4: 79 10 02 00 00 00 00 00 r0 = *(u64 *)(r1 + 2)
5: 95 00 00 00 00 00 00 00 exit
Fix it by changing the offset check to 16-bit.
Patch by Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Differential Revision: https://reviews.llvm.org/D32055
llvm-svn: 300269
The ErrorOr should not be dereferenced on the error path.
Patch by Jacob Young
Reviewers: tejohnson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32032
llvm-svn: 300267
We call it unconditionally on the operands of the select. Then decide if its a min/max and call it on the min/max operands or on the select operands again. Either of those second calls will overwrite the results of the initial call so we can just delete the first call.
llvm-svn: 300256
For LCSSA purposes, loop BBs not dominating any of the exits aren't
interesting, as none of the values defined in these blocks can be
used outside the loop.
The way the code computed this information was by comparing each
BB of the loop with each of the exit blocks and ask the dominator tree
about their dominance relation. This is slow.
A more efficient way, implemented here, is that of starting from the
exit blocks and walking the dom upwards until we hit an header. By
transitivity, all the blocks we encounter in our path dominate an exit.
For the testcase provided in PR31851, this reduces compile time on
`opt -O2` by ~25%, going from 1m47s to 1m22s.
Thanks to Dan/MichaelZ for discussions/suggesting the approach/review.
Differential Revision: https://reviews.llvm.org/D31843
llvm-svn: 300255
Switch from Euclid's algorithm to Stein's algorithm for computing GCD. This
avoids the (expensive) APInt division operation in favour of bit operations.
Remove all memory allocation from within the GCD loop by tweaking our `lshr`
implementation so it can operate in-place.
Differential Revision: https://reviews.llvm.org/D31968
llvm-svn: 300252
Summary:
Bug noticed by inspection.
Extend the test to handle invokes as well as calls, and rewrite it to
not depend on the inliner and other passes.
Also simplify the call site replacement code with CallSite, similar to
what I did to dead arg elimination and arg promotion (rL300235 and
rL300229).
Reviewers: danielcdh, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32041
llvm-svn: 300251
Summary: For iterative SamplePGO, an indirect call can be speculatively promoted to multiple direct calls and get inlined. All these promoted direct calls will share the same callsite location (offset+discriminator). With the current implementation, we cannot distinguish between different promotion candidates and its inlined instance. This patch adds callee_name to the key of the callsite sample map. And added helper functions to get all inlined callee samples for a given callsite location. This helps the profile annotator promote correct targets and inline it before annotation, and ensures all indirect call targets to be annotated correctly.
Reviewers: davidxl, dnovillo
Reviewed By: davidxl
Subscribers: andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31950
llvm-svn: 300240
Summary:
In first order recurrences where phi's are used outside the loop,
we should generate an additional vector.extract of the second last element from
the vectorized phi update.
This is because we require the phi itself (which is the value at the second last
iteration of the vector loop) and not the phi's update within the loop.
Also fix the code gen when we just unroll, but don't vectorize.
Fixes PR32396.
Reviewers: mssimpso, mkuper, anemet
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D31979
llvm-svn: 300238
This is effectively a retry of:
https://reviews.llvm.org/rL299851
but now we have tests and an assert to make sure the bug
that was exposed with that attempt will not happen again.
I'll fix the code duplication and missing sibling fold next,
but I want to make this change as small as possible to reduce
risk since I messed it up last time.
This should fix:
https://bugs.llvm.org/show_bug.cgi?id=32524
llvm-svn: 300236
Noticed by inspection while doing attribute work. DAE, InstCombineCalls,
and ArgPromotion have a fair amount of duplicated code for hacking on
call sites, and you can find bugs by comparing them.
Add a test case for this.
llvm-svn: 300229
In many cases ds operations can be combined even if offsets do not
fit into 8 bit encoding. What it takes is to adjust base address.
Differential Revision: https://reviews.llvm.org/D31993
llvm-svn: 300227
It's less efficient to produce 'ule' than 'ult' since we know we're going to
canonicalize to 'ult', but we shouldn't have duplicated code for these folds.
As a trade-off, this was a pretty terrible way to make a '2'. :)
if (LHSC == SubOne(RHSC))
AddC = ConstantExpr::getSub(AddOne(RHSC), LHSC);
The next steps are to share the code to fix PR32524 and add the missing 'and'
fold that was left out when PR14708 was fixed:
https://bugs.llvm.org/show_bug.cgi?id=14708
llvm-svn: 300222
Summary:
* Add a bitreverse case in the demanded bits analysis pass.
* Add tests for the bitreverse (and bswap) intrinsic in the
demanded bits pass.
* Add a test case to the BDCE tests: that manipulations to
high-order bits are eliminated once the bits are reversed
and then right-shifted.
Reviewers: mkuper, jmolloy, hfinkel, trentxintong
Reviewed By: jmolloy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31857
llvm-svn: 300215
Summary:
The linker needs to be able to determine whether a symbol is text or data to
handle the case of a common being overridden by a strong definition in an
archive. If the archive contains a text member of the same name as the common,
that function is discarded. However, if the archive contains a data member of
the same name, that strong definition overrides the common. This is a behavior
of ld.bfd, which the Qualcomm linker also supports in LTO.
Here's a test case to illustrate:
####
cat > 1.c << \!
int blah;
!
cat > 2.c << \!
int blah() {
return 0;
}
!
cat > 3.c << \!
int blah = 20;
!
clang -c 1.c
clang -c 2.c
clang -c 3.c
ar cr lib.a 2.o 3.o
ld 1.o lib.a -t
####
The correct output is:
1.o
(lib.a)3.o
Thanks to Shankar Easwaran and Hemant Kulkarni for the test case!
Reviewers: mehdi_amini, rafael, pcc, davide
Reviewed By: pcc
Subscribers: davide, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D31901
llvm-svn: 300205
Instructions CALLSEQ_START..CALLSEQ_END and their target dependent
counterparts keep data like frame size, stack adjustment etc. These
data are accessed by getOperand using hard coded indices. It is
error prone way. This change implements the access by special methods,
which improve readability and allow changing data representation without
massive changes of index values.
Differential Revision: https://reviews.llvm.org/D31953
llvm-svn: 300196
Throughout the effort of automatically generating the X86 memory folding tables these missing information were encountered.
This is a preparation work for a future patch including the automation of these tables.
Differential Revision: https://reviews.llvm.org/D31714
llvm-svn: 300190
Refactoring InnerLoopVectorizer's vectorizeBlockInLoop() to provide
vectorizeInstruction(). Aligning DeadInstructions with its only user.
Facilitates driving the transformation by VPlan - follows
https://reviews.llvm.org/D28975 and its tentative breakdown.
Differential Revision: https://reviews.llvm.org/D31997
llvm-svn: 300183
Summary:
APInt is currently implemented with an unsigned BitWidth field first and then a uint_64/pointer union. Due to the 64-bit size of the union there is a hole after the bitwidth.
Putting the union first allows the class to be packed. Making it 12 bytes instead of 16 bytes. An APSInt goes from 20 bytes to 16 bytes.
This shows a 4k reduction on the size of the opt binary on my local x86-64 build. So this enables some other improvement to the code as well.
Reviewers: dblaikie, RKSimon, hans, davide
Reviewed By: davide
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D32001
llvm-svn: 300171
This patch allows Error and Expected types to be passed to and returned from
RPC functions.
Serializers and deserializers for custom error types (types deriving from the
ErrorInfo class template) can be registered with the SerializationTraits for
a given channel type (see registerStringError in RPCSerialization.h for an
example), allowing a given custom type to be sent/received. Unregistered types
will be serialized/deserialized as StringErrors using the custom type's log
message as the error string.
llvm-svn: 300167
This is a magic header file supported by the build system that provides a
single definition, LLVM_REVISION, containing an LLVM revision identifier,
if available. This functionality previously lived in the LTO library, but
I am moving it out to lib/Support because I want to also start using it in
lib/Object to create the IR symbol table.
This change also fixes a bug where LLVM_REVISION was never actually being
used in lib/LTO because the macro HAS_LLVM_REVISION was never defined (it
was misspelled as HAVE_SVN_VERSION_INC in lib/LTO/CMakeLists.txt, and was
only being defined in a non-existent file Version.cpp).
I also changed the code to use "git rev-parse --git-dir" to locate the .git
directory, instead of looking for it in the LLVM source root directory,
which makes this compatible with monorepos as well as git worktrees.
Differential Revision: https://reviews.llvm.org/D31985
llvm-svn: 300160
This seems like a much more natural API, based on Derek Schuff's
comments on r300015. It further hides the implementation detail of
AttributeList that function attributes come last and appear at index
~0U, which is easy for the user to screw up. git diff says it saves code
as well: 97 insertions(+), 137 deletions(-)
This also makes it easier to change the implementation, which I want to
do next.
llvm-svn: 300153
This typedef used to be conditional based on whether rvalue references were supported. Looks like it got left behind when we switched to always having rvalue references with c++11. I don't think it provides any value now.
llvm-svn: 300146
Improve performance of argument list parsing with large numbers of IDs and
large numbers of arguments, by tracking a conservative range of indexes within
the argument list that might contain an argument with each ID. In the worst
case (when the first and last argument with a given ID are at the opposite ends
of the argument list), this still results in a linear-time walk of the list,
but it helps substantially in the common case where each ID occurs only once,
or a few times close together in the list.
This gives a ~10x speedup to clang's `test/Driver/response-file.c`, which
constructs a very large set of command line arguments and feeds them to the
clang driver.
Differential Revision: https://reviews.llvm.org/D30130
llvm-svn: 300135
In a followup patch I intend to introduce an additional dumping
mode which dumps a graphical representation of a class's layout.
In preparation for this, the text-based layout printer needs to
be split out from the graphical layout printer, and both need
to be able to use the same code for printing the intro and outro
of a class's definition (e.g. base class list, etc).
This patch does so, and in the process introduces a skeleton
definition for the graphical printer, while currently making
the graphical printer just print nothing.
NFC
llvm-svn: 300134
Previously the dumping of class definitions was very primitive,
and it made it hard to do more than the most trivial of output
formats when dumping. As such, we would only dump one line for
each field, and then dump non-layout items like nested types
and enums.
With this patch, we do a complete analysis of the object
hierarchy including aggregate types, bases, virtual bases,
vftable analysis, etc. The only immediately visible effects
of this are that a) we can now dump a line for the vfptr where
before we would treat that as padding, and b) we now don't
treat virtual bases that come at the end of a class as padding
since we have a more detailed analysis of the class's storage
usage.
In subsequent patches, we should be able to use this analysis
to display a complete graphical view of a class's layout including
recursing arbitrarily deep into an object's base class / aggregate
member hierarchy.
llvm-svn: 300133
The test fails on Darwin because Fuzzer::DeathCallback (which calls
DumpCurrentUnit("crash-")) is called before DumpCurrentUnit("oom-") is
called in Fuzzer::RssLimitCallback. DeathCallback is transitively called
from __sanitizer_print_memory_profile.
This should fix the fuzzer bot that has been failing for a while:
http://lab.llvm.org:8080/green/job/libFuzzer/
llvm-svn: 300127
Previously it tried to call SimplifyInstruction which doesn't know anything about alloca so defers to constant folding which also doesn't do anything with alloca. This results in wasted cycles making calls that won't do anything. Given the frequency with which this function is called this time adds up.
llvm-svn: 300118
If workgroup size is known inform llvm about range returned by local
id and local size queries.
Differential Revision: https://reviews.llvm.org/D31804
llvm-svn: 300102
This replicates the known bits and constant creation code from the single use case for these instructions and adds it here. The computeKnownBits and constant creation code for other instructions is now in the default case of the opcode switch.
llvm-svn: 300094
We already handled a superset check that included the known ones too and folded to a constant that may include ones. But it can also handle the case of no ones.
llvm-svn: 300093
As discussed in:
https://bugs.llvm.org/show_bug.cgi?id=32486
...the canonicalization of vector select to shufflevector does not hold up
when undef elements are present in the condition vector.
Try to make the undef handling clear in the code and the LangRef.
Differential Revision: https://reviews.llvm.org/D31980
llvm-svn: 300092
The use of a DenseMap in precomputeTriangleChains does not cause
non-determinism, even though it is iterated over, as the only thing the
iteration does is to insert entries into a new DenseMap, which is not iterated.
Comment only change.
llvm-svn: 300088
Currently if we reach an instruction with multiples uses we know we can't do any optimizations to that instruction itself since we only have the demanded bits for one of the users. But if we know all of the bits are zero/one for that one user we can still go ahead and create a constant to give to that user.
This might then reduce the instruction to having a single use and allow additional optimizations on the other path.
This picks up an additional case that r300075 didn't catch.
Differential Revision: https://reviews.llvm.org/D31552
llvm-svn: 300084
The current heuristic is triggered on `InFlightCount > BufferLimit`
which isn't really helpful on in-order cores where BufferLimit is zero.
Note that we already get latency hiding effects for in order cores
by instructions staying in the pending queue on stalls; The additional
latency scheduling heuristics only have minimal effects after that while
occasionally increasing register pressure too much resulting in extra
spills.
My motivation here is additional spills/reloads ending up in a loop in
464.h264ref / BlockMotionSearch function resulting in a 4% overal
regression on an in order core. rdar://30264380
llvm-svn: 300083
If we are adding/subtractings 0s below the highest demanded bit we can just use the other operand and remove the operation.
My primary motivation is observing that we can call ShrinkDemandedConstant for the add/sub and create a 0 constant, rather than removing the add completely. In the case I saw, we modified the constant on an add instruction to a 0, but the add is not put into the worklist. So we didn't revisit it until the next InstCombine iteration. This caused an IR modification to remove add and a subsequent iteration to be ran.
With this change we get bypass the add in the first iteration and prevent the second iteration from changing anything.
Differential Revision: https://reviews.llvm.org/D31120
llvm-svn: 300075
One potential way to make InstCombine (very slightly?) faster is to recycle instructions
when possible instead of creating new ones. It's not explicitly stated AFAIK, but we don't
consider this an "InstSimplify". We could, however, make a new layer to house transforms
like this if that makes InstCombine more manageable (just throwing out an idea; not sure
how much opportunity is actually here).
Differential Revision: https://reviews.llvm.org/D31863
llvm-svn: 300067
On FreeBSD backtrace is not part of libc and depends on libexecinfo
being available. Instead of using manual checks we can use the builtin
CMake module FindBacktrace.cmake to detect availability of backtrace()
in a portable way.
Patch By: Alex Richardson
Differential Revision: https://reviews.llvm.org/D27143
llvm-svn: 300062
In getEntryCost(), make the scalar type for a compare instruction that of the
operands, not i1. This is needed in order to call getCmpSelInstrCost() for a
compare in a sensible way, the same way as the LoopVectorizer does.
New test: test/Transforms/SLPVectorizer/SystemZ/SLP-cmp-cost-query.ll
Review: Matthew Simpson
https://reviews.llvm.org/D31601
llvm-svn: 300061
The cost for a branch after vectorization is very different depending on if
the vectorizer will if-convert the block (branch is eliminated), or if
scalarized and predicated blocks will be produced (branch duplicated before
each block). There is also the case of remaining scalar branches, such as the
back-edge branch.
This patch handles these cases differently with TTI based cost estimates.
Review: Matthew Simpson
https://reviews.llvm.org/D31175
llvm-svn: 300058
Since SystemZ supports vector element load/store instructions, there is no
need for extracts/inserts if a vector load/store gets scalarized.
This patch lets Target specify that it supports such instructions by means of
a new TTI hook that defaults to false.
The use for this is in the LoopVectorizer getScalarizationOverhead() method,
which will with this patch produce a smaller sum for a vector load/store on
SystemZ.
New test: test/Transforms/LoopVectorize/SystemZ/load-store-scalarization-cost.ll
Review: Adam Nemet
https://reviews.llvm.org/D30680
llvm-svn: 300056
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.
Interleaved access vectorization enabled.
BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.
Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631
llvm-svn: 300052
This change is basically relative to D31136, where I initially wanted to
implement some relocations handling optimization which shows it can give
significant boost. Though even without any caching algorithm looks
code can have some cleanup at first.
Refactoring separates out code for taking symbol address, used in relocations
computation.
Differential revision: https://reviews.llvm.org/D31747
llvm-svn: 300039
Summary:
Dead basic blocks may be forming a loop, for which SSA form is
fulfilled, but with a circular def-use chain. LoadCombine could
enter an infinite loop when analysing such dead code. This patch
solves the problem by simply avoiding to analyse all basic blocks
that aren't forward reachable, from function entry, in LoadCombine.
Fixes https://bugs.llvm.org/show_bug.cgi?id=27065
Reviewers: mehdi_amini, chandlerc, grosser, Bigcheese, davide
Reviewed By: davide
Subscribers: dberlin, zzheng, bjope, grandinj, Ka-Ka, materi, jholewinski, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D31032
llvm-svn: 300034
and to expose a handle to represent the actual case rather than having
the iterator return a reference to itself.
All of this allows the iterator to be used with common STL facilities,
standard algorithms, etc.
Doing this exposed some missing facilities in the iterator facade that
I've fixed and required some work to the actual iterator to fully
support the necessary API.
Differential Revision: https://reviews.llvm.org/D31548
llvm-svn: 300032
Collection of PostDominatedByUnreachable and PostDominatedByColdCall have been
split out of heuristics itself. Update of the data happens now for each basic
block (before update for PostDominatedByColdCall might be skipped if
unreachable or matadata heuristic handled this basic block).
This separation allows re-ordering of heuristics without loosing
the post-domination information.
Reviewers: sanjoy, junbuml, vsk, chandlerc, reames
Reviewed By: chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31701
llvm-svn: 300029
Not clearing was causing non-deterministic compiles for large files. Addresses
for MachineBasicBlocks would end up colliding and we would lay out a block that
we assumed had been pre-computed when it had not been.
llvm-svn: 300022
Summary:
COFF requires that every comdat contain a symbol with the same name as
the comdat. ThinLTOBitcodeWriter renames symbols, which may cause this
requirement to be violated. This change avoids such violations by
renaming comdats if their leaders are renamed. It also keeps comdats
together when splitting modules.
Reviewers: pcc, mehdi_amini, tejohnson
Reviewed By: pcc
Subscribers: rnk, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31963
llvm-svn: 300019
Summary:
For now, it just wraps AttributeSetNode*. Eventually, it will hold
AvailableAttrs as an inline bitset, and adding and removing enum
attributes will be super cheap.
This sinks AttributeSetNode back down to lib/IR/AttributeImpl.h.
Reviewers: pete, chandlerc
Subscribers: llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D31940
llvm-svn: 300014
Check if the scale operand is identical (doesn't have to be 1) and
do not check the chaain operand.
Differential revision: https://reviews.llvm.org/D31833
llvm-svn: 299986
In the vectorization of first order recurrence, we vectorize such
that the last element in the vector will be the one extracted to pass into the
scalar remainder loop. However, this is not true when there is a phi (other
than the primary induction variable) is used outside the loop.
In such a case, we need the value from the second last iteration (i.e.
the phi value), not the last iteration (which would be the phi update).
I've added a test case for this. Also see PR32396.
A follow up patch would generate the correct code gen for such cases,
and turn this vectorization on.
Differential Revision: https://reviews.llvm.org/D31910
Reviewers: mssimpso
llvm-svn: 299985
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.
llvm-svn: 299980
If you run llc -stop-after=codegenprepare and feed the resulting MIR
to llc -start-after=codegenprepare, you'll have an empty machine
function since we haven't run any isel yet. Of course, this only works
if the MIRParser believes you that this is okay.
This is essentially a revert of r241862 with a fix for the problem it
was papering over.
llvm-svn: 299975
This patch assumes that the dependents to be scanned for the ExitSU are its
predecessors; otherwise, the successors of the instr are scanned.
Furthermore, sometimes the ExitSU was being fused twice, since it may be
fused once when scanning the successors from the beginning of the BB and
then again when scanning the predecessors of ExitSU. Thus, when scanning
the successors of an instr, skip the ExitSU.
llvm-svn: 299974
Before this patch, pass AddDiscriminators always avoided to assign
discriminators to intrinsic calls. This was done mainly for two reasons:
1) We wanted to minimize the number of based discriminators used.
2) We wanted to avoid non-deterministic discriminator assignment for
different debug levels.
Unfortunately, that approach was problematic for MemIntrinsic calls.
MemIntrinsic calls can be split by SROA into loads and stores, and each new
load/store instruction would obtain the debug location from the original
intrinsic call.
If we don't assign a discriminator to MemIntrinsic calls, then we cannot
correctly set the discriminator for the newly created loads and stores.
This may have a negative impact on the basic block weight computation
performed by the SampleLoader.
This patch fixes the issue by letting MemIntrinsic calls have a discriminator.
Differential Revision: https://reviews.llvm.org/D31900
llvm-svn: 299972
This removes a TODO in getIdentityValue and may allow some transforms to occur earlier. But I was unable to find any transforms we didn't already handle.
llvm-svn: 299966
Summary:
This lets PDB readers lookup type record data by type index in O(log n)
time. It also enables makes `cvdump -t` work on PDBs produced by LLD.
cvdump will not dump a PDB that doesn't have an index-to-offset table.
The table is sorted by type index, and has an entry every 8KB. Looking
up a type record by index is a binary search of this table, followed by
a scan of at most 8KB.
Reviewers: ruiu, zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31636
llvm-svn: 299958
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299949
Summary:
In rL299692 I improved strip-dead-debug-info's ability to drop CUs that are not
referenced from the current module. However, in doing so I neglected to realize
that some SPs could be referenced entirely from inlined functions. It appears
I was not the only one to make this mistake, because DebugInfoFinder, doesn't
find those SPs either. Fix this in DebugInfoFinder and then use that to make
sure not to drop those CUs in strip-dead-debug-info.
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31904
llvm-svn: 299936
Use the same handling in the generic legalizer code as for the other
libcalls (G_FREM, G_FPOW).
Enable it on ARM for float and double so we can test it.
llvm-svn: 299931
Summary: Legalize only if the type is marked as Legal or Custom. If not, return Unsupported as LegalizerHelper is not able to handle non-power-of-2 types right now.
Reviewers: qcolombet, aditya_nandakumar, dsanders, t.p.northover, kristof.beyls, javed.absar, ab
Reviewed By: kristof.beyls, ab
Subscribers: dberris, rovka, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31711
llvm-svn: 299929
A fix for the bug reported in PR30911.
The issue arises when multiple CALLSEQ_BEGIN nodes are unscheduled as
the last node to be unscheduled will gain access to the CallResource
register. But when a node is being picked, only CALLSEQ_END nodes are
checked against the CallResource and have their chains evaluated.
This then means that other CALLSEQ_BEGIN nodes can be scheduled
before the existing call sequence has been finalised. This patch adds
a check against the FrameSetup nodes in DelayForLiveRegs to prevent
this from happening.
Differential Revision: https://reviews.llvm.org/D31536
llvm-svn: 299926
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
llvm-svn: 299925
When allowed, we can hoist a division out of a loop in favor of a
multiplication by the reciprocal. Fixes PR32157.
Patch by vit9696!
Differential Revision: https://reviews.llvm.org/D30819
llvm-svn: 299911
Check the legality of ISD::[US]MULO to see whether
Intrinsic::[us]mul_with_overflow will legalize into a function call (and, thus,
will use the CTR register). Fixes PR32485.
Patch by Tim Neumann!
Differential Revision: https://reviews.llvm.org/D31790
llvm-svn: 299910
The getter was equivalent to AttributeList::getAttributes(unsigned),
which seems like a better way to express getting the AttributeSet for a
given index. This static helper was only used in one place anyway.
The constructor doesn't benefit from inlining and doesn't need to be in
a header.
llvm-svn: 299900
This re-lands r299875.
I introduced a bug in Clang code responsible for replacing K&R, no
prototype declarations with a real function definition with a prototype.
The bug was here:
// Collect any return attributes from the call.
- if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex))
- newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
- oldAttrs.getRetAttributes()));
+ newAttrs.push_back(oldAttrs.getRetAttributes());
Previously getRetAttributes() carried AttributeList::ReturnIndex in its
AttributeList. Now that we return the AttributeSetNode* directly, it no
longer carries that index, and we call this overload with a single node:
AttributeList::get(LLVMContext&, ArrayRef<AttributeSetNode*>)
That aborted with an assertion on x86_32 targets. I added an explicit
triple to the test and added CHECKs to help find issues like this in the
future sooner.
llvm-svn: 299899
The math works out where it can actually be counter-productive. The probability
calculations correctly handle the case where the alternative is 0 probability,
rely on those calculations.
Includes a test case that demonstrates the problem.
llvm-svn: 299892
Qin may be large, and Succ may be more frequent than BB. Take these both into
account when deciding if tail-duplication is profitable.
llvm-svn: 299891
Merging identical blocks when it doesn't reduce fallthrough. It is common for
the blocks created from critical edge splitting to be identical. We would like
to merge these blocks whenever doing so would not reduce fallthrough.
llvm-svn: 299890
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
This code will need to be taught to handle string tables and it's better if
there is only one copy of it.
Differential Revision: https://reviews.llvm.org/D31829
llvm-svn: 299886
Summary: Now the SamplePGO support is more stable, we do not need so many verbose optimization remarks emitted.
Reviewers: dnovillo, davidxl
Reviewed By: davidxl
Subscribers: fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D31826
llvm-svn: 299883
Summary:
AttributeList::get(Fn|Ret|Param)Attributes no longer creates a temporary
AttributeList just to hide the AttributeSetNode type.
I've also added a factory method to create AttributeLists from a
parallel array of AttributeSetNodes. I think this simplifies
construction of AttributeLists when rewriting function prototypes.
Previously we would test if a particular index had attributes, and
conditionally add a temporary attribute list to a vector. Now the
attribute set vector is parallel to the argument vector already that
these passes already construct.
My long term vision is to wrap AttributeSetNode* inside an AttributeSet
type that holds the enum attributes, but that will come in a follow up
change.
I haven't done any performance measurements for this change because
profiling hasn't shown that any of the affected code is hot.
Reviewers: pete, chandlerc, sanjoy, hfinkel
Reviewed By: pete
Subscribers: jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31198
llvm-svn: 299875
Summary:
While we don't want them aliasing with other pointers, there seems to
be no point in not having them clobber must-aliased'd pointers.
If some day, we split the aliasing and ordering chains, we'd make this
not aliasing but an ordering barrier (IE it doesn't affect it's
memory, but we can't hoist it above it).
Reviewers: hfinkel, george.burgess.iv
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31865
llvm-svn: 299865
This patch refactors and strengthens the type checks performed for interleaved
accesses. The primary functional change is to ensure that the interleaved
accesses have valid element types. The added test cases previously failed
because the element type is f128.
Differential Revision: https://reviews.llvm.org/D31817
llvm-svn: 299864
The unused dummy src2_modifiers is missing, so it crashes
when trying to print it.
I tried to fully remove src2_modifiers, but there are some
irritations in the places where it is converted to mad since
it starts to require modifying use lists while iterating over
them.
llvm-svn: 299861
Also, make the same change in and-of-icmps and remove a hack for detecting that case.
Finally, add some FIXME comments because the code duplication here is awful.
This should fix the remaining IR problem noted in:
https://bugs.llvm.org/show_bug.cgi?id=32524
llvm-svn: 299851
* Adds support for pointers to arrays, which was missing
* Adds some tests
* Improves consistency of const and volatile qualifiers
* Eliminates non-composable special case code for arrays and function by using
a more general recursive approach
* Has a hack for getting the calling convention into the right spot for
pointer-to-functions
Given the rapid changes happenning in llvm-pdbdump, this may be difficult to
merge.
Differential Revision: https://reviews.llvm.org/D31832
llvm-svn: 299848
We currently only fold scalar add of constants into selects. This improves this to support vectors too.
Differential Revision: https://reviews.llvm.org/D31683
llvm-svn: 299847
Summary:
This is my first time using the commutable matchers so wanted to make sure I was doing it right.
Are there any other matcher tricks to further shrink this? Can we commute the whole match so we don't have to LHS and RHS separately?
Reviewers: davide, spatel
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31680
llvm-svn: 299840
Summary:
For SETCC we aren't calculating the KnownZero bits at all. I've copied the code from computeKnownZero over for this.
For AssertZExt we were only setting KnownZero for bits that were demanded. But the upper bits are zero whether they were demanded or not.
I'm interested in fixing this because my belief is the first part of the ISD::AND handling code in SimplifyDemandedBits largely exists because of these two bugs. In that code we go to computeKnownBits for the LHS and optimize a RHS constant. Because computeKnownBits handles SETCC and AssertZExt correctly we get better information sometimes than when we call SimplifyDemandedBits on the LHS later. With these two issues fixed in SimplifyDemandedBits I was able to remove that computeKnownBits call and still pass all X86 tests. I'll submit that change in a separate patch.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31715
llvm-svn: 299839
Summary: I noticed in the select folding code that we copied fast math flags, but did not do the same for the similar handling in phi nodes. This patch fixes that to do the same thing as select
Reviewers: spatel, davide, majnemer, hfinkel
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31690
llvm-svn: 299838
1. Added some asserts to make sure concrete symbol types don't
get constructed with RawSymbols that have an incompatible
SymTag enum value.
2. Added new forwarding macros that auto-define an Id/Sym method
pair whenever there is a method that returns a SymIndexId.
Previously we would just provide one method that returned only
the SymIndexId and it was up to the caller to use the Session
object to get a pointer to the symbol. Now we automatically
get both the method that returns the Id, as well as a method
that returns the pointer directly with just one macro.
3. Added some methods for dumping straight to stdout that can
be used from inside the debugger for diagnostics during a
debug session.
4. Added a clone() method and a cast<T>() method to PDBSymbol
that can shorten some usage patterns.
llvm-svn: 299831
Summary:
Resolve indirect branch target when possible.
This potentially eliminates more basicblocks and result in better evaluation for phi and other things.
Reviewers: davide, efriedma, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30322
llvm-svn: 299830
"PredicatesFoldable" returns false for signed/unsigned mismatched pairs,
so these cases should never exist. We'll default to 'unreachable' on those
predicate combos instead.
Most of what's left in these switches belongs in InstSimplify (and may
already be there), so there's probably more that can be done to reduce
this code.
llvm-svn: 299829
In isUseTriviallyOptimizableToLiveOnEntry, pointsToConstantMemory needs to be
called on the load's pointer operand, not on the result of the load (which
might not even be a pointer).
llvm-svn: 299823