C89 allowed a type specifier to be elided with the resulting type being
int, aka implicit int behavior. This feature was subsequently removed
in C99 without a deprecation period, so implementations continued to
support the feature. Now, as with implicit function declarations, is a
good time to reevaluate the need for this support.
This patch allows -Wimplicit-int to issue warnings in C89 mode (off by
default), defaults the warning to an error in C99 through C17, and
disables support for the feature entirely in C2x. It also removes a
warning about missing declaration specifiers that really was just an
implicit int warning in disguise and other minor related cleanups.
This reverts commit a97899108e.
The patch caused some problems with the libc++ `__range_adaptor_closure`
that I haven't been able to figure out the cause of, so I am reverting
while I figure out whether this is a solvable problem/issue with the
CFE, or libc++ depending on an older 'incorrect' behavior.
The Itanium C++ ABI says prefixes are substitutable. For most prefixes
we already handle this: the manglePrefix(const DeclContext *, bool) and
manglePrefix(QualType) overloads explicitly handles substitutions or
defer to functions that handle substitutions on their behalf. The
manglePrefix(NestedNameSpecifier *) overload, however, is different and
handles some cases implicitly, but not all. The Identifier case was not
handled; this change adds handling for it, as well as a test case.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D122663
This reverts commit 0c31da4838.
I've solved the issue with the PointerUnion by making the
`FunctionTemplateDecl` pointer be a NamedDecl, that could be a
`FunctionDecl` or `FunctionTemplateDecl` depending. This is enforced
with an assert.
This reverts commit 4b6c2cd647.
The patch caused numerous ARM 32 bit build failures, since we added a
5th item to the PointerUnion, and went over the 2-bits available in the
32 bit pointers.
As reported here: https://github.com/llvm/llvm-project/issues/44178
Concepts are not supposed to be instantiated until they are checked, so
this patch implements that and goes through significant amounts of work
to make sure we properly re-instantiate the concepts correctly.
Differential Revision: https://reviews.llvm.org/D119544
By default -fsanitize=address already compiles with this check, why not use it.
For compatibly it can be disabled with env ASAN_OPTIONS=detect_stack_use_after_return=0.
Reviewed By: eugenis, kda, #sanitizers, hans
Differential Revision: https://reviews.llvm.org/D124057
Temporarily revert the option to fix
https://bugs.chromium.org/p/chromium/issues/detail?id=1319387
This reverts option default and documentation of the commit. Test
changes are not being reverted as they are improvement and break
reliance on option defaults.
Additional memory usage is a problem on mobile devices with low memory.
Even heavy thread desktop programs may need some FakeStack tunning.
This reverts commit 4b4437c084.
When doing overload resolution, we have to check that candidates' parameter types are equal before trying to find a better candidate through checking which candidate is more constrained.
This revision adds this missing check and makes us diagnose those cases as ambiguous calls when the types are not equal.
Fixes GitHub issue https://github.com/llvm/llvm-project/issues/53640
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D123182
By default -fsanitize=address already compiles with this check,
why not use it.
For compatibly it can be disabled with env ASAN_OPTIONS=detect_stack_use_after_return=0.
Reviewed By: eugenis, kda, #sanitizers, hans
Differential Revision: https://reviews.llvm.org/D124057
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc30901096,
a571f82a50,
64c045e25b, and
de6ddaeef3,
and reverts aa643f455a.
This change also includes a workaround for users using libc++ 3.1 and
earlier (!!), as apparently happens on AIX, where std::move sometimes
returns by value.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Revert "Fixup D123950 to address revert of D123345"
This reverts commit aa643f455a.
This reverts commit 69dd89fdcb.
This reverts commit 04000c2f92.
The current states breaks libstdc++ usage (https://reviews.llvm.org/D119136#3455423).
The fixup has been reverted as it caused other valid code to be disallowed.
I think we should start from the clean state by reverting all relevant commits.
WG14 has elected to remove support for K&R C functions in C2x. The
feature was introduced into C89 already deprecated, so after this long
of a deprecation period, the committee has made an empty parameter list
mean the same thing in C as it means in C++: the function accepts no
arguments exactly as if the function were written with (void) as the
parameter list.
This patch implements WG14 N2841 No function declarators without
prototypes (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2841.htm)
and WG14 N2432 Remove support for function definitions with identifier
lists (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2432.pdf).
It also adds The -fno-knr-functions command line option to opt into
this behavior in other language modes.
Differential Revision: https://reviews.llvm.org/D123955
C89 had a questionable feature where the compiler would implicitly
declare a function that the user called but was never previously
declared. The resulting function would be globally declared as
extern int func(); -- a function without a prototype which accepts zero
or more arguments.
C99 removed support for this questionable feature due to severe
security concerns. However, there was no deprecation period; C89 had
the feature, C99 didn't. So Clang (and GCC) both supported the
functionality as an extension in C99 and later modes.
C2x no longer supports that function signature as it now requires all
functions to have a prototype, and given the known security issues with
the feature, continuing to support it as an extension is not tenable.
This patch changes the diagnostic behavior for the
-Wimplicit-function-declaration warning group depending on the language
mode in effect. We continue to warn by default in C89 mode (due to the
feature being dangerous to use). However, because this feature will not
be supported in C2x mode, we've diagnosed it as being invalid for so
long, the security concerns with the feature, and the trivial
workaround for users (declare the function), we now default the
extension warning to an error in C99-C17 mode. This still gives users
an easy workaround if they are extensively using the extension in those
modes (they can disable the warning or use -Wno-error to downgrade the
error), but the new diagnostic makes it more clear that this feature is
not supported and should be avoided. In C2x mode, we no longer allow an
implicit function to be defined and treat the situation the same as any
other lookup failure.
Differential Revision: https://reviews.llvm.org/D122983
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
Summary:
This patch removes the OpenMP sections in the release notes. These will
be filled once the release is close and implementations are finalized.
When doing overload resolution, we have to check that candidates' parameter types are equal before trying to find a better candidate through checking which candidate is more constrained.
This revision adds this missing check and makes us diagnose those cases as ambiguous calls when the types are not equal.
Fixes GitHub issue https://github.com/llvm/llvm-project/issues/53640
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D123182
Partially implement the proposed resolution to CWG2569.
D119136 broke some libstdc++ code, as P2036R3, implemented as a DR to
C++11 made ill-formed some previously valid and innocuous code.
We resolve this issue to allow decltype(x) - but not decltype((x)
to appear in the parameter list of a lambda that capture x by copy.
Unlike CWG2569, we do not extend that special treatment to
sizeof/noexcept yet, as the resolution has not been approved yet
and keeping the review small allows a quicker fix of impacted code.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123909
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc30901096,
a571f82a50, and
64c045e25b
which were reverted in
e75d8b7037
due to a crasher bug where CodeGen would emit a builtin glvalue as an
rvalue if it constant-folds.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced
correctly at the point we know whether the lambda is mutable,
and ill-formed before that.
Up until now, the entire lambda declaration up to the start of the body would be parsed in the parent scope, such that capture would not be available to look up.
The scoping is changed to have an outer lambda scope, followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope between the start of the lambda (to which we want to attach the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured variable to (and several parts of clang assume captures are handled from the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope. But the variables are not capured yet (because we don't know their type).
Instead, explicit captures are stored in a temporary map that conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context, we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point We can switch (for the second time) inside the lambda context, unset the flag indicating that we have not parsed the lambda qualifiers,
record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope. When trying to capture an implicit variable, if we are before the qualifiers of a lambda, we need to remember that the variables are still in the parent's context (rather than in the call operator's).
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
Clang should no longer incorrectly diagnose a variable declaration inside of a
lambda expression that shares the name of a variable in a containing
if/while/for/switch init statement as a redeclaration.
After this patch, clang is supposed to accept code below:
void foo() {
for (int x = [] { int x = 0; return x; }(); ;) ;
}
Fixes https://github.com/llvm/llvm-project/issues/54913
Differential Revision: https://reviews.llvm.org/D123840
This catches places where a function without a prototype is
accidentally used, potentially passing an incorrect number of
arguments, and is a follow-up to the work done in
https://reviews.llvm.org/D122895 and described in the RFC
(https://discourse.llvm.org/t/rfc-enabling-wstrict-prototypes-by-default-in-c).
The diagnostic is grouped under the new -Wdeprecated-non-prototypes
warning group and is enabled by default.
The diagnostic is disabled if the function being called was implicitly
declared (the user already gets an on-by-default warning about the
creation of the implicit function declaration, so no need to warn them
twice on the same line). Additionally, the diagnostic is disabled if
the declaration of the function without a prototype was in a location
where the user explicitly disabled deprecation warnings for functions
without prototypes (this allows the provider of the API a way to
disable the diagnostic at call sites because the lack of prototype is
intentional).
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced
correctly at the point we know whether the lambda is mutable,
and ill-formed before that.
Up until now, the entire lambda declaration up to the start
of the body would be parsed in the parent scope, such that
captures would not be available to look up.
The scoping is changed to have an outer lambda scope,
followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope
between the start of the lambda (to which we want to attach
the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured
variable to (and several parts of clang assume captures are handled from
the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope.
But the variables are not capured yet (because we don't know their type).
Instead, explicit captures are stored in a temporary map that
conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context,
we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point,
we can switch (for the second time) inside the lambda context,
unset the flag indicating that we have not parsed the lambda qualifiers,
record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also
transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope.
When trying to capture an implicit variable, if we are before the qualifiers of a lambda,
we need to remember that the variables are still in the parent's context (rather than in the call operator's).
This is a recommit of adff142dc2 after a fix in d8d793f29b
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
This reverts commit adff142dc2.
This broke clang bootstrap: it made existing C++ code in LLVM invalid:
llvm/include/llvm/CodeGen/LiveInterval.h:630:53: error: captured variable 'Idx' cannot appear here
[=](std::remove_reference_t<decltype(*Idx)> V,
^
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced
correctly at the point we know whether the lambda is mutable,
and ill-formed before that.
Up until now, the entire lambda declaration up to the start of the body would be parsed in the parent scope, such that capture would not be available to look up.
The scoping is changed to have an outer lambda scope, followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope between the start of the lambda (to which we want to attach the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured variable to (and several parts of clang assume captures are handled from the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope. But the variables are not capured yet (because we don't know their type).
Instead, explicit captures are stored in a temporary map that conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context, we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point We can switch (for the second time) inside the lambda context, unset the flag indicating that we have not parsed the lambda qualifiers,
record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope. When trying to capture an implicit variable, if we are before the qualifiers of a lambda, we need to remember that the variables are still in the parent's context (rather than in the call operator's).
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
We did not implement C99 6.7.5.3p15 fully in that we missed the rule
for compatible function types where a prior declaration has a prototype
and a subsequent definition (not just declaration) has an empty
identifier list or an identifier list with a mismatch in parameter
arity. This addresses that situation by issuing an error on code like:
void f(int);
void f() {} // type conflicts with previous declaration
(Note: we already diagnose the other type conflict situations
appropriately, this was the only situation we hadn't covered that I
could find.)
According to CWG 1394 and C++20 [dcl.fct.def.general]p2,
Clang should not diagnose incomplete types if function body is "= delete;".
For example:
```
struct Incomplete;
Incomplete f(Incomplete) = delete; // well-formed
```
Also close https://github.com/llvm/llvm-project/issues/52802
Differential Revision: https://reviews.llvm.org/D122981
The Randstruct feature is a compile-time hardening technique that
randomizes the field layout for designated structures of a code base.
Admittedly, this is mostly useful for closed-source releases of code,
since the randomization seed would need to be available for public and
open source applications.
Why implement it? This patch set enhances Clang’s feature parity with
that of GCC which already has the Randstruct feature. It's used by the
Linux kernel in certain structures to help thwart attacks that depend on
structure layouts in memory.
This patch set is a from-scratch reimplementation of the Randstruct
feature that was originally ported to GCC. The patches for the GCC
implementation can be found here:
https://www.openwall.com/lists/kernel-hardening/2017/04/06/14
Link: https://lists.llvm.org/pipermail/cfe-dev/2019-March/061607.html
Co-authored-by: Cole Nixon <nixontcole@gmail.com>
Co-authored-by: Connor Kuehl <cipkuehl@gmail.com>
Co-authored-by: James Foster <jafosterja@gmail.com>
Co-authored-by: Jeff Takahashi <jeffrey.takahashi@gmail.com>
Co-authored-by: Jordan Cantrell <jordan.cantrell@mail.com>
Co-authored-by: Nikk Forbus <nicholas.forbus@gmail.com>
Co-authored-by: Tim Pugh <nwtpugh@gmail.com>
Co-authored-by: Bill Wendling <isanbard@gmail.com>
Signed-off-by: Bill Wendling <isanbard@gmail.com>
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D121556
(With C++ exceptions, `clang++ --target=mips64{,el}-linux-gnu -fpie -pie
-fuse-ld=lld` has link errors (lld does not implement some strange R_MIPS_64
.eh_frame handling in GNU ld). However, sanitizer-x86_64-linux-qemu used this to
build ScudoUnitTests. Pined ScudoUnitTests to -no-pie.)
Default the option introduced in D113372 to ON to match all(?) major Linux
distros. This matches GCC and improves consistency with Android and linux-musl
which always default to PIE.
Note: CLANG_DEFAULT_PIE_ON_LINUX may be removed in the future.
Differential Revision: https://reviews.llvm.org/D120305
This reverts commit 3f0587d0c6.
Not all tests pass after a few rounds of fixes.
I spot one failure that std::shuffle (potentially different results with
different STL implementations) was misused and replaced it with llvm::shuffle,
but there appears to be another failure in a Windows build.
The latest failure is reported on https://reviews.llvm.org/D121556#3440383