Commit Graph

3 Commits

Author SHA1 Message Date
Peter Collingbourne e5c4b468f0 hwasan: Pad arrays with non-1 size correctly.
Spotted by eugenis.

Differential Revision: https://reviews.llvm.org/D64783

llvm-svn: 366171
2019-07-16 03:25:50 +00:00
Peter Collingbourne 1366262b74 hwasan: Improve precision of checks using short granule tags.
A short granule is a granule of size between 1 and `TG-1` bytes. The size
of a short granule is stored at the location in shadow memory where the
granule's tag is normally stored, while the granule's actual tag is stored
in the last byte of the granule. This means that in order to verify that a
pointer tag matches a memory tag, HWASAN must check for two possibilities:

* the pointer tag is equal to the memory tag in shadow memory, or
* the shadow memory tag is actually a short granule size, the value being loaded
  is in bounds of the granule and the pointer tag is equal to the last byte of
  the granule.

Pointer tags between 1 to `TG-1` are possible and are as likely as any other
tag. This means that these tags in memory have two interpretations: the full
tag interpretation (where the pointer tag is between 1 and `TG-1` and the
last byte of the granule is ordinary data) and the short tag interpretation
(where the pointer tag is stored in the granule).

When HWASAN detects an error near a memory tag between 1 and `TG-1`, it
will show both the memory tag and the last byte of the granule. Currently,
it is up to the user to disambiguate the two possibilities.

Because this functionality obsoletes the right aligned heap feature of
the HWASAN memory allocator (and because we can no longer easily test
it), the feature is removed.

Also update the documentation to cover both short granule tags and
outlined checks.

Differential Revision: https://reviews.llvm.org/D63908

llvm-svn: 365551
2019-07-09 20:22:36 +00:00
Alex Shlyapnikov 788764ca12 [HWASan] Do not retag allocas before return from the function.
Summary:
Retagging allocas before returning from the function might help
detecting use after return bugs, but it does not work at all in real
life, when instrumented and non-instrumented code is intermixed.
Consider the following code:

F_non_instrumented() {
  T x;
  F1_instrumented(&x);
  ...
}

{
  F_instrumented();
  F_non_instrumented();
}

- F_instrumented call leaves the stack below the current sp tagged
  randomly for UAR detection
- F_non_instrumented allocates its own vars on that tagged stack,
  not generating any tags, that is the address of x has tag 0, but the
  shadow memory still contains tags left behind by F_instrumented on the
  previous step
- F1_instrumented verifies &x before using it and traps on tag mismatch,
  0 vs whatever tag was set by F_instrumented

Reviewers: eugenis

Subscribers: srhines, llvm-commits

Differential Revision: https://reviews.llvm.org/D48664

llvm-svn: 336011
2018-06-29 20:20:17 +00:00