This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
Differential Revision: https://reviews.llvm.org/D62888
llvm-svn: 365838
Original patch from alanbaker@google.com
Fixes the error:
CMake Error in <...>/llvm/cmake/modules/CMakeLists.txt:
export called with target "LLVMTestingSupport" which requires target
"gtest" that is not in the export set.
This occurs when LLVM is embedded in a larger project, but is configured not to
include tests. If testing is disabled gtest isn't available and LLVM fails to
configure.
Differential revision: https://reviews.llvm.org/D63097
llvm-svn: 365836
Introduce and deduce "nosync" function attribute to indicate that a function
does not synchronize with another thread in a way that other thread might free memory.
Reviewers: jdoerfert, jfb, nhaehnle, arsenm
Subscribers: wdng, hfinkel, nhaenhle, mehdi_amini, steven_wu,
dexonsmith, arsenm, uenoku, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D62766
llvm-svn: 365830
Follow up to D58597, where it was noted that the commuted ISD::SUB variant
was having problems with lack of combines.
See also D63958 where we untangled setcc/sub pairs.
Differential Revision: https://reviews.llvm.org/D58875
llvm-svn: 365791
We already split extract_subvector(binop(insert_subvector(v,x),insert_subvector(w,y))) -> binop(x,y).
This patch adds support for extract_subvector(binop(concat_vectors(),concat_vectors())) cases as well.
In particular this means we don't have to wait for X86 lowering to convert concat_vectors to insert_subvector chains, which helps avoid some cases where demandedelts/combine calls occur too late to split large vector ops.
The fast-isel-store.ll load folding regression is annoying but I don't think is that critical.
Differential Revision: https://reviews.llvm.org/D63653
llvm-svn: 365785
The interface predates CallBase, so both it and implementation were
significantly more complicated than they needed to be. There was even
some redundancy that could be eliminated.
Should also help with OpaquePointers by not trying to derive a
function's type from it's PointerType.
llvm-svn: 365767
There is no way to set broken sh_size field currently
for sections. It can be usefull for writing the
test cases.
Differential revision: https://reviews.llvm.org/D64401
llvm-svn: 365766
There is currently an EPERM error when a regular user executes `llvm-objcopy a.o /dev/null`.
Worse, root can even change the mode bits of /dev/null.
Fix it by checking if the output file is special.
A new overload of llvm::sys::fs::setPermissions with FD as the parameter
is added. Users should provide `perm & ~umask` as the parameter if they
intend to respect umask.
The existing overload of llvm::sys::fs::setPermissions may be deleted if
we can find an implementation of fchmod() on Windows. fchmod() is
usually better than chmod() because it saves syscalls and can avoid race
condition.
Reviewed By: jakehehrlich, jhenderson
Differential Revision: https://reviews.llvm.org/D64236
llvm-svn: 365753
Summary:
As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
attempted to be relaxed to IE/LE (binutils PR24784). gold and lld are good.
In gcc/config/i386/i386.md, there is a configure-time check of as/ld
support and the GOT relaxation will not be used if as/ld doesn't support
it:
if (flag_plt || !HAVE_AS_IX86_TLS_GET_ADDR_GOT)
return "call\t%P2";
return "call\t{*%p2@GOT(%1)|[DWORD PTR %p2@GOT[%1]]}";
In clang, -DENABLE_X86_RELAX_RELOCATIONS=OFF is the default. The ld.bfd
bogus error can be reproduced with:
thread_local int a;
int main() { return a; }
clang -fno-plt -fpic a.cc -fuse-ld=bfd
GOTPCRELX gained relative good support in 2016, which is considered
relatively new. It is even difficult to conditionally default to
-DENABLE_X86_RELAX_RELOCATIONS=ON due to cross compilation reasons. So
work around the ld.bfd bug by only using GOT when GOTPCRELX is enabled.
Reviewers: dalias, hjl.tools, nikic, rnk
Reviewed By: nikic
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64304
llvm-svn: 365752
Currently invalid bitcode files can cause a crash, when OpNum exceeds
the number of elements in Record, like in the attached bitcode file.
The test case was generated by clusterfuzz: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=15698
Reviewers: t.p.northover, thegameg, jfb
Reviewed By: jfb
Differential Revision: https://reviews.llvm.org/D64507
llvm-svn: 365750
This patch addresses a couple of problems:
1) The maximum supported offset of LE is -4094.
2) The offset of WLS also needs to be checked, this uses a
maximum positive offset of 4094.
The use of BasicBlockUtils has been changed because the block offsets
weren't being initialised, but the isBBInRange checks both positive
and negative offsets.
ARMISelLowering has been tweaked because the test case presented
another pattern that we weren't supporting.
llvm-svn: 365749
The VQDMLAH.U8, VQDMLAH.U16 and VQDMLAH.U32 instructions don't
actually exist: the Armv8.1-M architecture spec only lists signed
forms of that instruction. The unsigned ones were added in error: they
existed in an early draft of the spec, but they were removed before
the public version, and we missed that particular spec change.
Also affects the variant forms VQDMLASH, VQRDMLAH and VQRDMLASH.
Reviewers: miyuki
Subscribers: javed.absar, kristof.beyls, hiraditya, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64502
llvm-svn: 365747
Skip copies between virtual registers during search for UseDefs
and DefUses.
Since each operand has one def search for UseDefs is straightforward.
But since operand can have many uses, we have to check all uses of
each copy we traverse during search for DefUses.
Differential Revision: https://reviews.llvm.org/D64486
llvm-svn: 365744
When one of the uses/defs of ambiguous instruction is also ambiguous
visit it recursively and search its uses/defs for instruction with
only one mapping available.
When all instruction in a chain are ambiguous arbitrary mapping can
be selected. For s64 operands in ambiguous chain fprb is selected since
it results in less instructions then having to narrow scalar s64 to s32.
For s32 both gprb and fprb result in same number of instructions and
gprb is selected like a general purpose option.
At the moment we always avoid cross register bank copies.
TODO: Implement a model for costs calculations of different mappings
on same instruction and cross bank copies. Allow cross bank copies
when appropriate according to cost model.
Differential Revision: https://reviews.llvm.org/D64485
llvm-svn: 365743
Two functional changes have been made here:
- Now search up from any add instruction to find the chains of
operations that we may turn into a smlad. This allows the
generation of a smlad which doesn't accumulate into a phi.
- The search function has been corrected to stop it falsely searching
up through an invalid path.
The bulk of the changes have been making the Reduction struct a class
and making it more C++y with getters and setters.
Differential Revision: https://reviews.llvm.org/D61780
llvm-svn: 365740
Summary:
Wasm does not currently support `llvm.clear_cache` intrinsic, and this
prints a proper error message instead of segfault.
Reviewers: dschuff, sbc100, sunfish
Subscribers: jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64322
llvm-svn: 365731
This patch replaces the three almost identical "strip & accumulate"
implementations for constant pointer offsets with a single one,
combining the respective functionalities. The old interfaces are kept
for now.
Differential Revision: https://reviews.llvm.org/D64468
llvm-svn: 365723
We use the functions that convert to three address to do the
conversion, but changing an 8 or 16 bit will cause it to create
a virtual register. This can't be done after register allocation
where this pass runs.
I've switched the pass completely to a white list of instructions
that can be converted to LEA instead of a blacklist that was
incorrect. This will avoid surprises if we enhance the three
address conversion function to include additional instructions
in the future.
Fixes PR42565.
llvm-svn: 365720
If we have:
R = sub X, Y
P = cmp Y, X
...then flipping the operands in the compare instruction can allow using a subtract that sets compare flags.
Motivated by diffs in D58875 - not sure if this changes anything there,
but this seems like a good thing independent of that.
There's a more involved version of this transform already in IR (in instcombine
although that seems misplaced to me) - see "swapMayExposeCSEOpportunities()".
Differential Revision: https://reviews.llvm.org/D63958
llvm-svn: 365711
Summary:
We will need to handle IntToPtr which I will submit in a separate patch as it's
not going to be NFC.
Reviewers: eugenis, pcc
Reviewed By: eugenis
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63940
llvm-svn: 365709
Unfortunately subo formation in CGP prevents obvious ways of
testing this.
But we already have BLSI in here and the flag behavior is
well understood.
Might become more useful if we improve PR42571.
llvm-svn: 365702
Summary: llvm/IR/GlobalValue.h can't be included in MC, that creates a circular dependency between MC and IR libraries. This circular dependency is causing an issue for build system that enforce layering.
Author: Xiangling_L
Reviewers: sfertile, jasonliu, hubert.reinterpretcast, gribozavr
Reviewed By: gribozavr
Subscribers: wuzish, nemanjai, hiraditya, kbarton, MaskRay, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64445
llvm-svn: 365701
Since we have distinct types for pointers and scalars, G_INTTOPTRs can sometimes
obstruct attempts to find constant source values. These usually come about when
try to do some kind of null pointer check. Teaching getConstantVRegValWithLookThrough
about this operation allows the CBZ/CBNZ optimization to catch more cases.
This change also improves the case where we can't find a constant source at all.
Previously we would emit a cmp, cset and tbnz for that. Now we try to just emit
a cmp and conditional branch, saving an instruction.
The cumulative code size improvement of this change plus D64354 is 5.5% geomean
on arm64 CTMark -O0.
Differential Revision: https://reviews.llvm.org/D64377
llvm-svn: 365690
Some minor cleanup.
This function in Utils does the same thing as `findMIFromReg`. It also looks
through copies, which `findMIFromReg` didn't.
Delete `findMIFromReg` and use `getOpcodeDef` instead. This only happens in
`tryOptVectorDup` right now.
Update opt-shuffle-splat to show that we can look through the copies now, too.
Differential Revision: https://reviews.llvm.org/D64520
llvm-svn: 365684
There are a few places where we walk over copies throughout
AArch64InstructionSelector.cpp. In Utils, there's a function that does exactly
this which we can use instead.
Note that the utility function works with the case where we run into a COPY
from a physical register. We've run into bugs with this a couple times, so using
it should defend us from similar future bugs.
Also update opt-fold-compare.mir to show that we still handle physical registers
properly.
Differential Revision: https://reviews.llvm.org/D64513
llvm-svn: 365683
Summary: Unsafe does not map well alone for each of these three cases as it is missing NoNan context when accessed directly with clang. I have migrated the fold guards to reflect the expectations of handing nan and zero contexts directly (NoNan, NSZ) and some tests with it. Unsafe does include NSZ, however there is already precedent for using the target option directly to reflect that context.
Reviewers: spatel, wristow, hfinkel, craig.topper, arsenm
Reviewed By: arsenm
Subscribers: michele.scandale, wdng, javed.absar
Differential Revision: https://reviews.llvm.org/D64450
llvm-svn: 365679
Rework the TTI cache and software prefetching APIs to prepare for the
introduction of a general system model. Changes include:
- Marking existing interfaces const and/or override as appropriate
- Adding comments
- Adding BasicTTIImpl interfaces that delegate to a subtarget
implementation
- Adding a default "no information" subtarget implementation
Only a handful of targets use these interfaces currently: AArch64,
Hexagon, PPC and SystemZ. AArch64 already has a custom subtarget
implementation, so its custom TTI implementation is migrated to use
the new facilities in BasicTTIImpl to invoke its custom subtarget
implementation. The custom TTI implementations continue to exist for
the other targets with this change. They are not moved over to
subtarget-based implementations.
The end goal is to have the default subtarget implementation defer to
the system model defined by the target. With this change, the default
subtarget implementation essentially returns "no information" for
these interfaces. None of the existing users of TTI will hit that
implementation because they define their own custom TTI
implementations and won't use the BasicTTIImpl implementations.
Once system models are in place for the targets that use these
interfaces, their custom TTI implementations can be removed.
Differential Revision: https://reviews.llvm.org/D63614
llvm-svn: 365676
Previously reverted in 364141 due to buildbot breakage, and fixed here
by making GeneralCategory global a ManagedStatic.
Summary:
This change processes `OptionCategory`s and `SubCommand`s as they
are seen instead of caching them in the Option class and processing
them later. Doing so simplifies the work needed to be done by the Global
parser and significantly reduces the size of the Option class to a mere 64
bytes.
Removing the `OptionCategory` cache saved 24 bytes, and removing
the `SubCommand` cache saved an additional 48 bytes, for a total of a
72 byte reduction.
Reviewed By: serge-sans-paille
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D62105
llvm-svn: 365675
Summary:
The map kept in loop rotate is used for instruction remapping, in order
to simplify the clones of instructions. Thus, if an instruction can be
simplified, its simplified value is placed in the map, even when the
clone is added to the IR. MemorySSA in contrast needs to know about that
clone, so it can add an access for it.
To resolve this: keep a different map for MemorySSA.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63680
llvm-svn: 365672
LLJITBuilder now has a setCompileFunctionCreator method which can be used to
construct a CompileFunction for the LLJIT instance being created. The motivating
use-case for this is supporting ObjectCaches, which can now be set up at
compile-function construction time. To demonstrate this an example project,
LLJITWithObjectCache, is included.
llvm-svn: 365671
An alloca which can be sunk into the extraction region may have more
than one bitcast use. Move these uses along with the alloca to prevent
use-before-def.
Testing: check-llvm, stage2 build of clang
Fixes llvm.org/PR42451.
Differential Revision: https://reviews.llvm.org/D64463
llvm-svn: 365660
This renames the type so it doesn't sound like its based off the load size - as we're moving towards supporting combining loads of different sizes.
llvm-svn: 365655
Summary:
D59191 added support for these modifiers in the assembler and
disassembler. This patch just teaches instruction selection that it can
use them.
Reviewers: arsenm, tstellar
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64497
llvm-svn: 365640
Summary:
Transform
pow(C,x)
To
exp2(log2(C)*x)
if C > 0, C != inf, C != NaN (and C is not power of 2, since we have some fold for such case already).
log(C) is folded by the compiler and exp2 is much faster to compute than pow.
Reviewers: spatel, efriedma, evandro
Reviewed By: evandro
Subscribers: lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64099
llvm-svn: 365637
Summary:
This patch simplifies 2 aspects in the FileCheckNumericVariable code.
First, setValue() method is turned into a void function since being
called only on undefined variable is an invariant and is now asserted
rather than returned. This remove the assert from the callers.
Second, clearValue() method is also turned into a void function since
the only caller does not check its return value since it may be trying
to clear the value of variable that is already cleared without this
being noteworthy.
Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson, rnk
Subscribers: JonChesterfield, rogfer01, hfinkel, kristina, rnk, tra, arichardson, grimar, dblaikie, probinson, llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64231
> llvm-svn: 365249
llvm-svn: 365625
Summary:
The value of the FileCheckNumericVariable class instance representing
the @LINE numeric variable is set and cleared respectively before and
after substitutions are made, if any. However, when a substitution
fails, the value is not cleared. This causes the next substitution of
@LINE later on to give the wrong value since setValue is a nop if the
value is already set. This is what caused failures after commit r365249.
Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson, rnk
Subscribers: hiraditya, llvm-commits, probinson, dblaikie, grimar, arichardson, tra, rnk, kristina, hfinkel, rogfer01, JonChesterfield
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64449
llvm-svn: 365624
Cache the LoadSDNode nodes so we can easily map to/from the element index instead of packing them together - this will be useful for future patches for PR16739 etc.
llvm-svn: 365620
Deleted code was introduced as a work around for a bug in the gold linker
(http://sourceware.org/PR16794). Test case that was given as a reason for
this part of code, the one on previous link, now works for the gold.
This condition is too strict and when a code is compiled with debug info
it forces generation of numerous relocations with symbol for architectures
that do not have relocation addend.
Reviewers: arsenm, espindola
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D64327
llvm-svn: 365618
This patch checks to see if the vector element loads are based off a dereferenceable pointer that covers the entire vector width, in which case we don't need to have element loads at both extremes of the vector width - just the start (base pointer) of it.
Another step towards partial vector loads......
Differential Revision: https://reviews.llvm.org/D64205
llvm-svn: 365614
Only instructions with two or more unique successors should be considered for unswitching.
Patch Author: Daniil Suchkov.
Reviewers: reames, asbirlea, skatkov
Reviewed By: skatkov
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64404
llvm-svn: 365611
Summary:
Use the same predicates as VSTMDB/VLDMIA since VPUSH/VPOP alias to
these.
Patch by Momchil Velikov.
Reviewers: ostannard, simon_tatham, SjoerdMeijer, samparker, t.p.northover, dmgreen
Reviewed By: dmgreen
Subscribers: javed.absar, kristof.beyls, hiraditya, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64413
llvm-svn: 365604
Summary:
On Windows, Posix integer file descriptors are a compatibility layer
over native file handles provided by the C runtime. There is a hard
limit on the maximum number of file descriptors that a process can open,
and the limit is 8192. LLD typically doesn't run into this limit because
it opens input files, maps them into memory, and then immediately closes
the file descriptor. This prevents it from running out of FDs.
For various reasons, I'd like to open handles to every input file and
keep them open during linking. That requires migrating MemoryBuffer over
to taking open native file handles instead of integer FDs.
Reviewers: aganea, Bigcheese
Reviewed By: aganea
Subscribers: smeenai, silvas, mehdi_amini, hiraditya, steven_wu, dexonsmith, dang, llvm-commits, zturner
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63453
llvm-svn: 365588
In SelectionDAG AMDGPU treated these as legal, but this was mostly
because the bitcasts required for FP types were painful. Theoretically
the bitpattern should eventually match to bfi, so don't bother trying
to get the patterns to import.
llvm-svn: 365583
This should prevent doing this on pre-sse4.1 targets or for 256
bit vectors without avx2.
I don't know of a failure from this. Op legalization will probably
take care of, but seemed better to be safe.
llvm-svn: 365577
For a given set of live values, the spill cost will always be the
same for each call. Compute the cost once and multiply it by the
number of calls.
(I'm not sure this spill cost modeling makes sense if there are
multiple calls, as the spill cost will likely be shared across
calls in that case. But that's how it currently works.)
llvm-svn: 365552
A short granule is a granule of size between 1 and `TG-1` bytes. The size
of a short granule is stored at the location in shadow memory where the
granule's tag is normally stored, while the granule's actual tag is stored
in the last byte of the granule. This means that in order to verify that a
pointer tag matches a memory tag, HWASAN must check for two possibilities:
* the pointer tag is equal to the memory tag in shadow memory, or
* the shadow memory tag is actually a short granule size, the value being loaded
is in bounds of the granule and the pointer tag is equal to the last byte of
the granule.
Pointer tags between 1 to `TG-1` are possible and are as likely as any other
tag. This means that these tags in memory have two interpretations: the full
tag interpretation (where the pointer tag is between 1 and `TG-1` and the
last byte of the granule is ordinary data) and the short tag interpretation
(where the pointer tag is stored in the granule).
When HWASAN detects an error near a memory tag between 1 and `TG-1`, it
will show both the memory tag and the last byte of the granule. Currently,
it is up to the user to disambiguate the two possibilities.
Because this functionality obsoletes the right aligned heap feature of
the HWASAN memory allocator (and because we can no longer easily test
it), the feature is removed.
Also update the documentation to cover both short granule tags and
outlined checks.
Differential Revision: https://reviews.llvm.org/D63908
llvm-svn: 365551
Note: I don't actually plan to implement all of the cases at the moment, I'm just documenting them for completeness. There's a couple of cases left which are practically useful for me in debugging loop transforms, and I'll probably stop there for the moment.
llvm-svn: 365550
Basically the problem is that X86 doesn't set the Fast flag from
allowsMemoryAccess on certain CPUs due to slow unaligned memory
subtarget features. This prevents bitcasts from being folded into
loads and stores. But all vector loads and stores of the same width
are the same cost on X86.
This patch merges the allowsMemoryAccess call into isLoadBitCastBeneficial to allow X86 to skip it.
Differential Revision: https://reviews.llvm.org/D64295
llvm-svn: 365549
These are sources of poison which don't come from flags, but are clearly documented in the LangRef. Left off support for scalable vectors for the moment, but should be easy to add if anyone is interested.
llvm-svn: 365543
Stubs out a number of the classes needed to produce a new object file format
(XCOFF) for the powerpc-aix target. For testing input is an empty module which
produces an object file with just a file header.
Differential Revision: https://reviews.llvm.org/D61694
llvm-svn: 365541
Summary: We emit CFI_FUNCTION_DEFS and CFI_FUNCTION_DECLS to
distributed ThinLTO indices to implement indirect function call
checking. This change causes us to only emit entries for functions
that are either defined or used by the module we're writing the index
for (instead of all functions in the combined index), which can make
the indices substantially smaller.
Fixes PR42378.
Reviewers: pcc, vitalybuka, eugenis
Subscribers: mehdi_amini, hiraditya, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63887
llvm-svn: 365537
Implements a transform pass which instruments IR such that poison semantics are made explicit. That is, it provides a (possibly partial) executable semantics for every instruction w.r.t. poison as specified in the LLVM LangRef. There are obvious parallels to the sanitizer tools, but this pass is focused purely on the semantics of LLVM IR, not any particular source language.
The target audience for this tool is developers working on or targetting LLVM from a frontend. The idea is to be able to take arbitrary IR (with the assumption of known inputs), and evaluate it concretely after having made poison semantics explicit to detect cases where either a) the original code executes UB, or b) a transform pass introduces UB which didn't exist in the original program.
At the moment, this is mostly the framework and still needs to be fleshed out. By reusing existing code we have decent coverage, but there's a lot of cases not yet handled. What's here is good enough to handle interesting cases though; for instance, one of the recent LFTR bugs involved UB being triggered by integer induction variables with nsw/nuw flags would be reported by the current code.
(See comment in PoisonChecking.cpp for full explanation and context)
Differential Revision: https://reviews.llvm.org/D64215
llvm-svn: 365536
Several of the conditonal operators commited in llvm-svn: 365524 fail to compile
on the windows buildbots. Converting to an if and early return to try to fix.
llvm-svn: 365535
Adds a readobj dumper for 32-bit and 64-bit section header tables, and extend
support for the file-header dumping to include 64-bit object files. Also
refactors the binary file parsing to be done in a helper function in an attempt
to cleanup error handeling.
Differential Revision: https://reviews.llvm.org/D63843
llvm-svn: 365524
Function return instruction lowering, currently uses the fixed register pair s[30:31] for holding
the return address. It can be any SGPR pair other than the CSRs. Created an SGPR pair sub-register class
exclusive of the CSRs, and used this regclass while lowering the return instruction.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D63924
llvm-svn: 365512
Summary:
There was an error being thrown from isDesirableToCommuteWithShift in
some tests. This was tracked down to the method being called before
legalisation, with an extended value type, not a machine value type.
In the case I diagnosed, the error was only hit with an instruction sequence
involving `i24`s in the add and shift. `i24` is not a Machine ValueType, it is
instead an Extended ValueType which was causing the issue.
I have added a test to cover this case, and fixed the error in the callback.
Reviewers: asb, luismarques
Reviewed By: asb
Subscribers: hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64425
llvm-svn: 365511
If we have an icmp->brcond->br sequence where the brcond just branches to the
next block jumping over the br, while the br takes the false edge, then we can
modify the conditional branch to jump to the br's target while inverting the
condition of the incoming icmp. This means we can eliminate the br as an
unconditional branch to the fallthrough block.
Differential Revision: https://reviews.llvm.org/D64354
llvm-svn: 365510
Introduction
============
This patch added intial support for bpf program compile once
and run everywhere (CO-RE).
The main motivation is for bpf program which depends on
kernel headers which may vary between different kernel versions.
The initial discussion can be found at https://lwn.net/Articles/773198/.
Currently, bpf program accesses kernel internal data structure
through bpf_probe_read() helper. The idea is to capture the
kernel data structure to be accessed through bpf_probe_read()
and relocate them on different kernel versions.
On each host, right before bpf program load, the bpfloader
will look at the types of the native linux through vmlinux BTF,
calculates proper access offset and patch the instruction.
To accommodate this, three intrinsic functions
preserve_{array,union,struct}_access_index
are introduced which in clang will preserve the base pointer,
struct/union/array access_index and struct/union debuginfo type
information. Later, bpf IR pass can reconstruct the whole gep
access chains without looking at gep itself.
This patch did the following:
. An IR pass is added to convert preserve_*_access_index to
global variable who name encodes the getelementptr
access pattern. The global variable has metadata
attached to describe the corresponding struct/union
debuginfo type.
. An SimplifyPatchable MachineInstruction pass is added
to remove unnecessary loads.
. The BTF output pass is enhanced to generate relocation
records located in .BTF.ext section.
Typical CO-RE also needs support of global variables which can
be assigned to different values to different hosts. For example,
kernel version can be used to guard different versions of codes.
This patch added the support for patchable externals as well.
Example
=======
The following is an example.
struct pt_regs {
long arg1;
long arg2;
};
struct sk_buff {
int i;
struct net_device *dev;
};
#define _(x) (__builtin_preserve_access_index(x))
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr) =
(void *) 4;
extern __attribute__((section(".BPF.patchable_externs"))) unsigned __kernel_version;
int bpf_prog(struct pt_regs *ctx) {
struct net_device *dev = 0;
// ctx->arg* does not need bpf_probe_read
if (__kernel_version >= 41608)
bpf_probe_read(&dev, sizeof(dev), _(&((struct sk_buff *)ctx->arg1)->dev));
else
bpf_probe_read(&dev, sizeof(dev), _(&((struct sk_buff *)ctx->arg2)->dev));
return dev != 0;
}
In the above, we want to translate the third argument of
bpf_probe_read() as relocations.
-bash-4.4$ clang -target bpf -O2 -g -S trace.c
The compiler will generate two new subsections in .BTF.ext,
OffsetReloc and ExternReloc.
OffsetReloc is to record the structure member offset operations,
and ExternalReloc is to record the external globals where
only u8, u16, u32 and u64 are supported.
BPFOffsetReloc Size
struct SecLOffsetReloc for ELF section #1
A number of struct BPFOffsetReloc for ELF section #1
struct SecOffsetReloc for ELF section #2
A number of struct BPFOffsetReloc for ELF section #2
...
BPFExternReloc Size
struct SecExternReloc for ELF section #1
A number of struct BPFExternReloc for ELF section #1
struct SecExternReloc for ELF section #2
A number of struct BPFExternReloc for ELF section #2
struct BPFOffsetReloc {
uint32_t InsnOffset; ///< Byte offset in this section
uint32_t TypeID; ///< TypeID for the relocation
uint32_t OffsetNameOff; ///< The string to traverse types
};
struct BPFExternReloc {
uint32_t InsnOffset; ///< Byte offset in this section
uint32_t ExternNameOff; ///< The string for external variable
};
Note that only externs with attribute section ".BPF.patchable_externs"
are considered for Extern Reloc which will be patched by bpf loader
right before the load.
For the above test case, two offset records and one extern record
will be generated:
OffsetReloc records:
.long .Ltmp12 # Insn Offset
.long 7 # TypeId
.long 242 # Type Decode String
.long .Ltmp18 # Insn Offset
.long 7 # TypeId
.long 242 # Type Decode String
ExternReloc record:
.long .Ltmp5 # Insn Offset
.long 165 # External Variable
In string table:
.ascii "0:1" # string offset=242
.ascii "__kernel_version" # string offset=165
The default member offset can be calculated as
the 2nd member offset (0 representing the 1st member) of struct "sk_buff".
The asm code:
.Ltmp5:
.Ltmp6:
r2 = 0
r3 = 41608
.Ltmp7:
.Ltmp8:
.loc 1 18 9 is_stmt 0 # t.c:18:9
.Ltmp9:
if r3 > r2 goto LBB0_2
.Ltmp10:
.Ltmp11:
.loc 1 0 9 # t.c:0:9
.Ltmp12:
r2 = 8
.Ltmp13:
.loc 1 19 66 is_stmt 1 # t.c:19:66
.Ltmp14:
.Ltmp15:
r3 = *(u64 *)(r1 + 0)
goto LBB0_3
.Ltmp16:
.Ltmp17:
LBB0_2:
.loc 1 0 66 is_stmt 0 # t.c:0:66
.Ltmp18:
r2 = 8
.loc 1 21 66 is_stmt 1 # t.c:21:66
.Ltmp19:
r3 = *(u64 *)(r1 + 8)
.Ltmp20:
.Ltmp21:
LBB0_3:
.loc 1 0 66 is_stmt 0 # t.c:0:66
r3 += r2
r1 = r10
.Ltmp22:
.Ltmp23:
.Ltmp24:
r1 += -8
r2 = 8
call 4
For instruction .Ltmp12 and .Ltmp18, "r2 = 8", the number
8 is the structure offset based on the current BTF.
Loader needs to adjust it if it changes on the host.
For instruction .Ltmp5, "r2 = 0", the external variable
got a default value 0, loader needs to supply an appropriate
value for the particular host.
Compiling to generate object code and disassemble:
0000000000000000 bpf_prog:
0: b7 02 00 00 00 00 00 00 r2 = 0
1: 7b 2a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r2
2: b7 02 00 00 00 00 00 00 r2 = 0
3: b7 03 00 00 88 a2 00 00 r3 = 41608
4: 2d 23 03 00 00 00 00 00 if r3 > r2 goto +3 <LBB0_2>
5: b7 02 00 00 08 00 00 00 r2 = 8
6: 79 13 00 00 00 00 00 00 r3 = *(u64 *)(r1 + 0)
7: 05 00 02 00 00 00 00 00 goto +2 <LBB0_3>
0000000000000040 LBB0_2:
8: b7 02 00 00 08 00 00 00 r2 = 8
9: 79 13 08 00 00 00 00 00 r3 = *(u64 *)(r1 + 8)
0000000000000050 LBB0_3:
10: 0f 23 00 00 00 00 00 00 r3 += r2
11: bf a1 00 00 00 00 00 00 r1 = r10
12: 07 01 00 00 f8 ff ff ff r1 += -8
13: b7 02 00 00 08 00 00 00 r2 = 8
14: 85 00 00 00 04 00 00 00 call 4
Instructions #2, #5 and #8 need relocation resoutions from the loader.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D61524
llvm-svn: 365503
Select gprb or fprb when def/use register operand of G_PHI is
used/defined by either:
copy to/from physical register or
instruction with only one mapping available for that use/def operand.
Integer s64 phi is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
Differential Revision: https://reviews.llvm.org/D64351
llvm-svn: 365494
Select gprb or fprb when def/use register operand of G_SELECT is
used/defined by either:
copy to/from physical register or
instruction with only one mapping available for that use/def operand.
Integer s64 select is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
For selection of floating point s32 or s64 select it is enough to set
fprb of appropriate size and selectImpl will do the rest.
Differential Revision: https://reviews.llvm.org/D64350
llvm-svn: 365492
The `sge/sgeu Dst, Src1, Src2/Imm` pseudo instructions set register
`Dst` to 1 if register `Src1` is greater than or equal `Src2/Imm` and
to 0 otherwise.
Differential Revision: https://reviews.llvm.org/D64314
llvm-svn: 365476
The `sgt/sgtu Dst, Src1, Src2/Imm` pseudo instructions set register
`Dst` to 1 if register `Src1` is greater than `Src2/Imm` and to 0 otherwise.
Differential Revision: https://reviews.llvm.org/D64313
llvm-svn: 365475
This makes the functions in Loads.h require a type to be specified
independently of the pointer Value so that when pointers have no structure
other than address-space, it can still do its job.
Most callers had an obvious memory operation handy to provide this type, but a
SROA and ArgumentPromotion were doing more complicated analysis. They get
updated to merge the properties of the various instructions they were
considering.
llvm-svn: 365468
Dump the DWARF information about call sites and call site parameters into
debug info sections.
The patch also provides an interface for the interpretation of instructions
that could load values of a call site parameters in order to generate DWARF
about the call site parameters.
([13/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D60716
llvm-svn: 365467
APInt::getSExtValue will assert if getMinSignedBits() > 64. This can happen,
for instance, if examining an i128. Avoid this assertion by checking
Imm.getMinSignedBits() <= 64 before doing
getTLI()->isLegalAddImmediate(Imm.getSExtValue()). We could directly check
getMinSignedBits() <= 12 but it seems better to reuse the isLegalAddImmediate
helper for this.
Differential Revision: https://reviews.llvm.org/D64390
llvm-svn: 365462
DAGTypeLegalizer and SelectionDAGLegalize has helper
functions wrapping the call to TLI.getSetCCResultType(...).
Use those helpers in more places.
llvm-svn: 365456
Summary:
Make sure we use SETGE instead of SETGT when checking
if the sign bit is zero at SMULFIXSAT expansion.
The faulty expansion occured when doing "expand" of
SMULFIXSAT and the scale was exactly matching the
size of the smaller type. For example doing
i64 Z = SMULFIXSAT X, Y, 32
and expanding X/Y/Z into using two i32 values.
The problem was that we sometimes did not saturate
to min when overflowing.
Here is an example using Q3.4 numbers:
Consider that we are multiplying X and Y.
X = 0x80 (-8.0 as Q3.4)
Y = 0x20 (2.0 as Q3.4)
To avoid loss of precision we do a widening
multiplication, getting a 16 bit result
Z = 0xF000 (-16.0 as Q7.8)
To detect negative overflow we should check if
the five most significant bits in Z are less than -1.
Assume that we name the 4 most significant bits
as HH and the next 4 bits as HL. Then we can do the
check by examining if
(HH < -1) or (HH == -1 && "sign bit in HL is zero").
The fault was that we have been doing the check as
(HH < -1) or (HH == -1 && HL > 0)
instead of
(HH < -1) or (HH == -1 && HL >= 0).
In our example HH is -1 and HL is 0, so the old
code did not trigger saturation and simply truncated
the result to 0x00 (0.0). With the bugfix we instead
detect that we should saturate to min, and the result
will be set to 0x80 (-8.0).
Reviewers: leonardchan, bevinh
Reviewed By: leonardchan
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64331
llvm-svn: 365455
Emit replacements for clobbered parameters location if the parameter
has unmodified value throughout the funciton. This is basic scenario
where we can use the debug entry values.
([12/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D58042
llvm-svn: 365444
This patch modifies the loop peeling transformation so that
it does not expect that there is only one loop exit from latch.
It modifies only transformation. Update of branch weights remains
only for exit from latch.
The motivation is that in follow-up patch I plan to enable loop peeling for
loops with multiple exits but only if other exits then from latch one goes to
block with call to deopt.
For now this patch is NFC.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames, fhahn
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D63921
llvm-svn: 365441
This patch removes the test part that relates to the non-strict
behavior of SwitchInstProfUpdateWrapper and changes
the assertion to llvm_unreachable() to allow the check in
release builds.
This patch prepares SwitchInstProfUpdateWrapper to become
strict with one line change. That is need to revert it easily
if any failure will arise.
llvm-svn: 365439
D63921 requires getExitEdges fills a vector of Edge pairs where
BasicBlocks are not constant.
The rest Loop API mostly returns non-const BasicBlocks, so to be more consistent with
other Loop API getExitEdges is modified to return non-const BasicBlocks as well.
This is an alternative solution to D64060.
Reviewers: reames, fhahn
Reviewed By: reames, fhahn
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64309
llvm-svn: 365437
Summary:
`extsw` and `sldi` are supposed to be combined if they are in the same
BB in instruction selection phase. This patch handles the case where
extsw and sldi are not in the same BB.
Differential Revision: https://reviews.llvm.org/D63806
llvm-svn: 365430
Summary:
This is exposed by functional testing on PowerPC.
In some pipelined loops, Phi refer to phi did not get value defined by
the Phi, hence getting wrong value later.
As the comment mentioned, we should "use the value defined by the Phi,
unless we're generating the firstepilog and the Phi refers to a Phi
in a different stage.", so Phi refering to same stage Phi should use
the value defined by the Phi here.
Reviewers: bcahoon, hfinkel
Reviewed By: hfinkel
Subscribers: MaskRay, wuzish, nemanjai, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64035
llvm-svn: 365428
Summary:
Even with functions with `no-prototype` attribute, there can be an
argument `sret` (structure return) attribute, which is an optimization
when a function return type is a struct. Fixes PR42420.
Reviewers: sbc100
Subscribers: dschuff, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64318
llvm-svn: 365426
For background of BPF CO-RE project, please refer to
http://vger.kernel.org/bpfconf2019.html
In summary, BPF CO-RE intends to compile bpf programs
adjustable on struct/union layout change so the same
program can run on multiple kernels with adjustment
before loading based on native kernel structures.
In order to do this, we need keep track of GEP(getelementptr)
instruction base and result debuginfo types, so we
can adjust on the host based on kernel BTF info.
Capturing such information as an IR optimization is hard
as various optimization may have tweaked GEP and also
union is replaced by structure it is impossible to track
fieldindex for union member accesses.
Three intrinsic functions, preserve_{array,union,struct}_access_index,
are introducted.
addr = preserve_array_access_index(base, index, dimension)
addr = preserve_union_access_index(base, di_index)
addr = preserve_struct_access_index(base, gep_index, di_index)
here,
base: the base pointer for the array/union/struct access.
index: the last access index for array, the same for IR/DebugInfo layout.
dimension: the array dimension.
gep_index: the access index based on IR layout.
di_index: the access index based on user/debuginfo types.
For example, for the following example,
$ cat test.c
struct sk_buff {
int i;
int b1:1;
int b2:2;
union {
struct {
int o1;
int o2;
} o;
struct {
char flags;
char dev_id;
} dev;
int netid;
} u[10];
};
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr)
= (void *) 4;
#define _(x) (__builtin_preserve_access_index(x))
int bpf_prog(struct sk_buff *ctx) {
char dev_id;
bpf_probe_read(&dev_id, sizeof(char), _(&ctx->u[5].dev.dev_id));
return dev_id;
}
$ clang -target bpf -O2 -g -emit-llvm -S -mllvm -print-before-all \
test.c >& log
The generated IR looks like below:
...
define dso_local i32 @bpf_prog(%struct.sk_buff*) #0 !dbg !15 {
%2 = alloca %struct.sk_buff*, align 8
%3 = alloca i8, align 1
store %struct.sk_buff* %0, %struct.sk_buff** %2, align 8, !tbaa !45
call void @llvm.dbg.declare(metadata %struct.sk_buff** %2, metadata !43, metadata !DIExpression()), !dbg !49
call void @llvm.lifetime.start.p0i8(i64 1, i8* %3) #4, !dbg !50
call void @llvm.dbg.declare(metadata i8* %3, metadata !44, metadata !DIExpression()), !dbg !51
%4 = load i32 (i8*, i32, i8*)*, i32 (i8*, i32, i8*)** @bpf_probe_read, align 8, !dbg !52, !tbaa !45
%5 = load %struct.sk_buff*, %struct.sk_buff** %2, align 8, !dbg !53, !tbaa !45
%6 = call [10 x %union.anon]* @llvm.preserve.struct.access.index.p0a10s_union.anons.p0s_struct.sk_buffs(
%struct.sk_buff* %5, i32 2, i32 3), !dbg !53, !llvm.preserve.access.index !19
%7 = call %union.anon* @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(
[10 x %union.anon]* %6, i32 1, i32 5), !dbg !53
%8 = call %union.anon* @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(
%union.anon* %7, i32 1), !dbg !53, !llvm.preserve.access.index !26
%9 = bitcast %union.anon* %8 to %struct.anon.0*, !dbg !53
%10 = call i8* @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(
%struct.anon.0* %9, i32 1, i32 1), !dbg !53, !llvm.preserve.access.index !34
%11 = call i32 %4(i8* %3, i32 1, i8* %10), !dbg !52
%12 = load i8, i8* %3, align 1, !dbg !54, !tbaa !55
%13 = sext i8 %12 to i32, !dbg !54
call void @llvm.lifetime.end.p0i8(i64 1, i8* %3) #4, !dbg !56
ret i32 %13, !dbg !57
}
!19 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "sk_buff", file: !3, line: 1, size: 704, elements: !20)
!26 = distinct !DICompositeType(tag: DW_TAG_union_type, scope: !19, file: !3, line: 5, size: 64, elements: !27)
!34 = distinct !DICompositeType(tag: DW_TAG_structure_type, scope: !26, file: !3, line: 10, size: 16, elements: !35)
Note that @llvm.preserve.{struct,union}.access.index calls have metadata llvm.preserve.access.index
attached to instructions to provide struct/union debuginfo type information.
For &ctx->u[5].dev.dev_id,
. The "%6 = ..." represents struct member "u" with index 2 for IR layout and index 3 for DI layout.
. The "%7 = ..." represents array subscript "5".
. The "%8 = ..." represents union member "dev" with index 1 for DI layout.
. The "%10 = ..." represents struct member "dev_id" with index 1 for both IR and DI layout.
Basically, traversing the use-def chain recursively for the 3rd argument of bpf_probe_read() and
examining all preserve_*_access_index calls, the debuginfo struct/union/array access index
can be achieved.
The intrinsics also contain enough information to regenerate codes for IR layout.
For array and structure intrinsics, the proper GEP can be constructed.
For union intrinsics, replacing all uses of "addr" with "base" should be enough.
The test case ThinLTO/X86/lazyload_metadata.ll is adjusted to reflect the
new addition of the metadata.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D61810
llvm-svn: 365423
A while back, I added support for NE latches formed by LFTR. I didn't think that quite through, as LFTR will also produce the inverse EQ form for some loops and I hadn't handled that. This change just adds handling for that case as well.
llvm-svn: 365419
With this, `clang-cl /source-charset:utf-16 test.cc` now prints `invalid
value 'utf-16' in '/source-charset:utf-16'` instead of `invalid value
'utf-16' in '-finput-charset=utf-16'` before, and several other clang-cl
flags produce much less confusing output as well.
Fixes PR29106.
Since an arg and its alias can have different arg types (joined vs not)
and different values (because of AliasArgs<>), I chose to give the Alias
its own Arg object. For convenience, I just store the alias directly in
the unaliased arg – there aren't many arg objects at runtime, so that
seems ok.
Finally, I changed Arg::getAsString() to use the alias's representation
if it's present – that function was already documented as being the
suitable function for diagnostics, and most callers already used it for
diagnostics.
Implementation-wise, Arg::accept() previously used to parse things as
the unaliased option. The core of that switch is now extracted into a
new function acceptInternal() which parses as the _aliased_ option, and
the previously-intermingled unaliasing is now done as an explicit step
afterwards.
(This also changes one place in lld that didn't use getAsString() for
diagnostics, so that that one place now also prints the flag as the user
wrote it, not as it looks after it went through unaliasing.)
Differential Revision: https://reviews.llvm.org/D64253
llvm-svn: 365413
Deduce the "returned" argument attribute by collecting all potentially
returned values.
Not only the unique return value, if any, can be used by subsequent
attributes but also the set of all potentially returned values as well
as the mapping from returned values to return instructions that they
originate from (see AAReturnedValues::checkForallReturnedValues).
Change in statistics (-stats) for LLVM-TS + Spec2006, totaling ~19% more "returned" arguments.
ADDED: attributor NumAttributesManifested n/a -> 637
ADDED: attributor NumAttributesValidFixpoint n/a -> 25545
ADDED: attributor NumFnArgumentReturned n/a -> 637
ADDED: attributor NumFnKnownReturns n/a -> 25545
ADDED: attributor NumFnUniqueReturned n/a -> 14118
CHANGED: deadargelim NumRetValsEliminated 470 -> 449 ( -4.468%)
REMOVED: functionattrs NumReturned 535 -> n/a
CHANGED: indvars NumElimIdentity 138 -> 164 ( +18.841%)
Reviewers: homerdin, hfinkel, fedor.sergeev, sanjoy, spatel, nlopes, nicholas, reames, efriedma, chandlerc
Subscribers: hiraditya, bollu, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D59919
llvm-svn: 365407
Porting over the part of `emitComparison` in AArch64ISelLowering where we use
TST to represent a compare.
- Rename `tryOptCMN` to `tryFoldIntegerCompare`, since it now also emits TSTs
when possible.
- Add a utility function for emitting a TST with register operands.
- Rename opt-fold-cmn.mir to opt-fold-compare.mir, since it now also tests the
TST fold as well.
Differential Revision: https://reviews.llvm.org/D64371
llvm-svn: 365404
Summary:
This makes it so that IR files using triples without an environment work
out of the box, without normalizing them.
Typically, the MSVC behavior is more desirable. For example, it tends to
enable things like constant merging, use of associative comdats, etc.
Addresses PR42491
Reviewers: compnerd
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64109
llvm-svn: 365387
Forming the canonical splat shuffle improves analysis and
may allow follow-on transforms (although some possibilities
are missing as shown in the test diffs).
The backend generically turns these patterns into build_vector,
so there should be no codegen regressions. All targets are
expected to be able to lower splats efficiently.
llvm-svn: 365379
Currently, the symbolizer lib can only symbolize a file on disk.
This patch teaches the symbolizer lib to symbolize objects.
llvm-objdump needs this to support archive disassembly with source info.
https://bugs.llvm.org/show_bug.cgi?id=41871
Reviewed by: jhenderson, grimar, MaskRay
Differential Revision: https://reviews.llvm.org/D63521
llvm-svn: 365376
Make the FP register callee saved.
This is tricky because now the FP needs to be spilled in the prolog
relative to the incoming SP register, rather than the frame register
used throughout the rest of the function. I don't like how this
bypassess the standard mechanism for CSR spills just to get the
correct insert point. I may look for a better solution, since all CSR
VGPRs may also need to have all lanes activated. Another option might
be to make getFrameIndexReference change the base register if the
frame index is a CSR, and then try to figure out the right insertion
point in emitProlog.
If there is a free VGPR lane available for SGPR spilling, try to use
it for the FP. If that would require intrtoducing a new VGPR spill,
try to use a free call clobbered SGPR. Only fallback to introducing a
new VGPR spill as a last resort.
This also doesn't attempt to handle SGPR spilling with scalar stores.
llvm-svn: 365372
This is extremly slow on AMDGPU, which has a lot of physical register
and a lot of register classes.
determineCalleeSaves, via MachineRegisterInfo::isPhysRegUsed already
added all of the super registers to the saved set.
llvm-svn: 365370
loop
Summary:
Do the cloning in two steps, first allocate all the new loops, then
clone the basic blocks in the same order as the original loop.
Reviewer: Meinersbur, fhahn, kbarton, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, hiraditya, llvm-commits
Tag: https://reviews.llvm.org/D64224
Differential Revision:
llvm-svn: 365366
For background of BPF CO-RE project, please refer to
http://vger.kernel.org/bpfconf2019.html
In summary, BPF CO-RE intends to compile bpf programs
adjustable on struct/union layout change so the same
program can run on multiple kernels with adjustment
before loading based on native kernel structures.
In order to do this, we need keep track of GEP(getelementptr)
instruction base and result debuginfo types, so we
can adjust on the host based on kernel BTF info.
Capturing such information as an IR optimization is hard
as various optimization may have tweaked GEP and also
union is replaced by structure it is impossible to track
fieldindex for union member accesses.
Three intrinsic functions, preserve_{array,union,struct}_access_index,
are introducted.
addr = preserve_array_access_index(base, index, dimension)
addr = preserve_union_access_index(base, di_index)
addr = preserve_struct_access_index(base, gep_index, di_index)
here,
base: the base pointer for the array/union/struct access.
index: the last access index for array, the same for IR/DebugInfo layout.
dimension: the array dimension.
gep_index: the access index based on IR layout.
di_index: the access index based on user/debuginfo types.
For example, for the following example,
$ cat test.c
struct sk_buff {
int i;
int b1:1;
int b2:2;
union {
struct {
int o1;
int o2;
} o;
struct {
char flags;
char dev_id;
} dev;
int netid;
} u[10];
};
static int (*bpf_probe_read)(void *dst, int size, const void *unsafe_ptr)
= (void *) 4;
#define _(x) (__builtin_preserve_access_index(x))
int bpf_prog(struct sk_buff *ctx) {
char dev_id;
bpf_probe_read(&dev_id, sizeof(char), _(&ctx->u[5].dev.dev_id));
return dev_id;
}
$ clang -target bpf -O2 -g -emit-llvm -S -mllvm -print-before-all \
test.c >& log
The generated IR looks like below:
...
define dso_local i32 @bpf_prog(%struct.sk_buff*) #0 !dbg !15 {
%2 = alloca %struct.sk_buff*, align 8
%3 = alloca i8, align 1
store %struct.sk_buff* %0, %struct.sk_buff** %2, align 8, !tbaa !45
call void @llvm.dbg.declare(metadata %struct.sk_buff** %2, metadata !43, metadata !DIExpression()), !dbg !49
call void @llvm.lifetime.start.p0i8(i64 1, i8* %3) #4, !dbg !50
call void @llvm.dbg.declare(metadata i8* %3, metadata !44, metadata !DIExpression()), !dbg !51
%4 = load i32 (i8*, i32, i8*)*, i32 (i8*, i32, i8*)** @bpf_probe_read, align 8, !dbg !52, !tbaa !45
%5 = load %struct.sk_buff*, %struct.sk_buff** %2, align 8, !dbg !53, !tbaa !45
%6 = call [10 x %union.anon]* @llvm.preserve.struct.access.index.p0a10s_union.anons.p0s_struct.sk_buffs(
%struct.sk_buff* %5, i32 2, i32 3), !dbg !53, !llvm.preserve.access.index !19
%7 = call %union.anon* @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(
[10 x %union.anon]* %6, i32 1, i32 5), !dbg !53
%8 = call %union.anon* @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(
%union.anon* %7, i32 1), !dbg !53, !llvm.preserve.access.index !26
%9 = bitcast %union.anon* %8 to %struct.anon.0*, !dbg !53
%10 = call i8* @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(
%struct.anon.0* %9, i32 1, i32 1), !dbg !53, !llvm.preserve.access.index !34
%11 = call i32 %4(i8* %3, i32 1, i8* %10), !dbg !52
%12 = load i8, i8* %3, align 1, !dbg !54, !tbaa !55
%13 = sext i8 %12 to i32, !dbg !54
call void @llvm.lifetime.end.p0i8(i64 1, i8* %3) #4, !dbg !56
ret i32 %13, !dbg !57
}
!19 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "sk_buff", file: !3, line: 1, size: 704, elements: !20)
!26 = distinct !DICompositeType(tag: DW_TAG_union_type, scope: !19, file: !3, line: 5, size: 64, elements: !27)
!34 = distinct !DICompositeType(tag: DW_TAG_structure_type, scope: !26, file: !3, line: 10, size: 16, elements: !35)
Note that @llvm.preserve.{struct,union}.access.index calls have metadata llvm.preserve.access.index
attached to instructions to provide struct/union debuginfo type information.
For &ctx->u[5].dev.dev_id,
. The "%6 = ..." represents struct member "u" with index 2 for IR layout and index 3 for DI layout.
. The "%7 = ..." represents array subscript "5".
. The "%8 = ..." represents union member "dev" with index 1 for DI layout.
. The "%10 = ..." represents struct member "dev_id" with index 1 for both IR and DI layout.
Basically, traversing the use-def chain recursively for the 3rd argument of bpf_probe_read() and
examining all preserve_*_access_index calls, the debuginfo struct/union/array access index
can be achieved.
The intrinsics also contain enough information to regenerate codes for IR layout.
For array and structure intrinsics, the proper GEP can be constructed.
For union intrinsics, replacing all uses of "addr" with "base" should be enough.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D61810
llvm-svn: 365352
Summary:
Before, they were one category of operands which could cause
crashes in non-sensical combinations, e.g. "f32.const symbol".
Now these are forced to be an error.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, aheejin, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64039
llvm-svn: 365351
We recognize a splat from element 0 in (VectorUtils) llvm::getSplatValue()
and also in ShuffleVectorInst::isZeroEltSplatMask(), so this converts
to that form for better matching.
The backend generically turns these patterns into build_vector,
so there should be no codegen difference.
llvm-svn: 365342
The IRBuilder has calls to create floating point instructions like fadd.
It does not have calls to create constrained versions of them. This patch
adds support for constrained creation of fadd, fsub, fmul, fdiv, and frem.
Reviewed by: John McCall, Sanjay Patel
Approved by: John McCall
Differential Revision: https://reviews.llvm.org/D53157
llvm-svn: 365339
This patch adds a function attribute, nofree, to indicate that a function does
not, directly or indirectly, call a memory-deallocation function (e.g., free,
C++'s operator delete).
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D49165
llvm-svn: 365336
Select gprb or fprb when loaded value is used by either:
copy to physical register or
instruction with only one mapping available for that use operand.
Load of integer s64 is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
Differential Revision: https://reviews.llvm.org/D64269
llvm-svn: 365323
Select gprb or fprb when stored value is defined by either:
copy from physical register or
instruction with only one mapping available for that def operand.
Store of integer s64 is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
Differential Revision: https://reviews.llvm.org/D64268
llvm-svn: 365322
Summary of changes:
- simplified handling of FLAT offset: offset_s13 and offset_u12 have been replaced with flat_offset;
- provided information about error position for pre-gfx9 targets;
- improved errors handling.
Reviewers: artem.tamazov, arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D64244
llvm-svn: 365321
Don't do this locally, computeKnownBits does this better (and can handle non-constant cases as well).
A next step would be to actually simplify non-constant elements - building on what we already do in SimplifyDemandedVectorElts.
llvm-svn: 365309
Summary:
According to a recently updated Armv8-M spec
(https://static.docs.arm.com/ddi0553/bh/DDI0553B_h_armv8m_arm.pdf) the
32-bit width versions of the following instructions:
* VQDMLADH
* VQDMLADHX
* VQRDMLADH
* VQRDMLADHX
* VQDMLSDH
* VQDMLSDHX
* VQRDMLSDH
* VQRDMLSDHX
are no longer unpredictable when their output register is the same as
one of the input registers.
This patch updates the assembler parser and the corresponding tests
and also removes @earlyclobber from the instruction constraints.
Reviewers: simon_tatham, ostannard, dmgreen, SjoerdMeijer, samparker
Reviewed By: simon_tatham
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64250
llvm-svn: 365306
Defines RISCV registers for getExceptionPointerRegister() and
getExceptionSelectorRegister().
Differential Revision: https://reviews.llvm.org/D63411
Patch by Edward Jones.
Modified by Alex Bradbury to add CHECK lines to exception-pointer-register.ll.
llvm-svn: 365301
This can help avoid a copy or enable load folding.
On SSE4.1 targets we can commute it to blendi instead.
I had to make shufpd with a 0x02 immediate commutable as well
since we expect commuting to be reversible.
llvm-svn: 365292
This allows us to use the analyzer from unit tests.
* Refactor the interface to use proper error handling for most functions
after JF's work.
* Move everything into a BitstreamAnalyzer class.
* Move that to Bitcode/BitcodeAnalyzer.h.
Differential Revision: https://reviews.llvm.org/D64116
llvm-svn: 365286
Some out of tree backend require larger vector type. Since maintaining the changes out of tree is difficult due to the many manual changes needed when adding a new type we are adding it even if no backend currently use it.
Differential Revision: https://reviews.llvm.org/D64141
Patch by Thomas Raoux!
llvm-svn: 365274
These patterns are the same as the MOVLPDmr and MOVHPDmr patterns,
but with a bitcast at the end. We can just select the PD instruction
and let execution domain fixing switch to PS.
llvm-svn: 365267
These narrow the load so we can only do it if the load isn't
volatile.
There also tests in vector-shuffle-128-v4.ll that this should
support, but we don't seem to fold bitcast+load on pre-sse4.2
targets due to the slow unaligned mem 16 flag.
llvm-svn: 365266
We had versions of this code scattered around, so consolidate into one location.
Not strictly NFC since the order of intermediate results may change in some places, but since these operations are associatives, should not change results.
llvm-svn: 365259
Although removeCopyByCommutingDef deals with full copies, it is still
possible to copy undef lanes and thus, we wouldn't have any a value
number for these lanes.
This fixes PR40215.
llvm-svn: 365256
I'm not sure if it's worth it or not to add a hook to disable the pass
for an arbitrary function.
This pass is taking up to 5% of compile time in tiny programs by
iterating through all of the physical registers in every register
class. This pass should be rewritten in terms of regunits. For now,
skip doing anything for entry point functions. The vast majority of
functions in the real world aren't callable, so just not running this
will give the majority of the benefit.
llvm-svn: 365255
Summary:
This patch simplifies 2 aspects in the FileCheckNumericVariable code.
First, setValue() method is turned into a void function since being
called only on undefined variable is an invariant and is now asserted
rather than returned. This remove the assert from the callers.
Second, clearValue() method is also turned into a void function since
the only caller does not check its return value since it may be trying
to clear the value of variable that is already cleared without this
being noteworthy.
Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson, rnk
Subscribers: JonChesterfield, rogfer01, hfinkel, kristina, rnk, tra, arichardson, grimar, dblaikie, probinson, llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64231
llvm-svn: 365249
Only custom lower uaddo+addcarry or usubo+subcarry chains and leave
mixtures like usubo+addcarry or uaddo+subcarry to the generic
legalizer. Otherwise we run into issues because SystemZ uses
different CC values for carries and borrows.
Fixes https://bugs.llvm.org/show_bug.cgi?id=42512.
Differential Revision: https://reviews.llvm.org/D64213
llvm-svn: 365242
Add a string attribute instead of directly setting
MachineFunctionInfo. This avoids trying to get the analysis in the
MachineFunctionInfo in a way that doesn't work with the new pass
manager.
This will also avoid re-visiting the call graph for every single
function.
llvm-svn: 365241
The Size either needs to be 0 meaning we aren't folding
a stack reload. Or the stack slot needs to be at least
16 bytes. I've also added a paranoia check ensure the
RCSize is at leat 16 bytes as well. This avoids any
FR32/FR64 surprises, but I think we already filtered
those earlier.
All of our test case have Size as either 0 or 16 and
RCSize == 16. So the Size <= 16 check worked for those
cases.
llvm-svn: 365234
The indirect call sequence on PPC requires that the TOC base register be saved
prior to the indirect call and restored after the call since the indirect call
may branch to a global entry point in another DSO which will update the TOC
base. Over the last couple of years, we have improved this to:
- be able to hoist TOC saves from loops (with changes to MachineLICM)
- avoid multiple saves when one dominates the other[s]
However, it is still possible to have multiple TOC saves dynamically in the
execution path if there is no dominance relationship between them.
This patch moves the TOC save to the prologue when one of the TOC saves is in a
block that post-dominates entry (i.e. it cannot be avoided) or if it is in a
block that is hotter than entry.
Differential revision: https://reviews.llvm.org/D63803
llvm-svn: 365232
These patterns use 128-bit loads, but the instructions only load
64-bits. We shouldn't narrow the load if its volatile.
Fixes another variant of PR42079
llvm-svn: 365225
This was identical to a pattern for MOVPQI2QImr with a bitcast
as an input. But we should be able to turn MOVPQI2QImr into
MOVLPSmr in the execution domain fixup pass so we shouldn't
need this.
llvm-svn: 365224
Summary:
This patch changes expression support to use one instance of
FileCheckNumericVariable per numeric variable rather than one per
variable and per definition. The current system was only necessary for
the last patch of the numeric expression support patch series in order
to handle a line using a variable defined earlier on the same line from
the input text. However this can be dealt more efficiently.
Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson, rnk
Subscribers: JonChesterfield, rogfer01, hfinkel, kristina, rnk, tra, arichardson, grimar, dblaikie, probinson, llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64229
llvm-svn: 365220
Summary:
Diagnosing use of undefined variables takes place in
parseNumericVariableUse() and printSubstitutions() for numeric variables
but only takes place in printSubstitutions() for string variables. The
reason for the split location of diagnostics is that parsing is not
aware of the clearing of variables due to --enable-var-scope and thus
use of variables cleared in this way can only be catched by
printSubstitutions().
Beyond the code level inconsistency, there is also a user facing
inconsistency since diagnostics look different between the two
functions. While the diagnostic in printSubstitutions is more verbose,
doing the diagnostic there allows to diagnose all undefined variables
rather than just the first one and error out.
This patch create dummy variable definition when encountering a use of
undefined variable so that parsing can proceed and be diagnosed by
printSubstitutions() later. Tests that were testing whether parsing
fails in such case are thus modified accordingly.
Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson, rnk
Subscribers: JonChesterfield, rogfer01, hfinkel, kristina, rnk, tra, arichardson, grimar, dblaikie, probinson, llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64228
llvm-svn: 365219
When looking for uses/defs to add kill flags, the iterator was double
incremented, skipping the first instruction in the bundle. The use
register in the first bundle instruction was then incorrectly killed.
The "First" instruction should be the BUNDLE itself as the proper
reverse iterator endpoint.
llvm-svn: 365216
Reintroduces the scalable vector IR type from D32530, after it was reverted
a couple of times due to increasing chromium LTO build times. This latest
incarnation removes the walk over aggregate types from the verifier entirely,
in favor of rejecting scalable vectors in the isValidElementType methods in
ArrayType and StructType. This removes the 70% degradation observed with
the second repro tarball from PR42210.
Reviewers: thakis, hans, rengolin, sdesmalen
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D64079
llvm-svn: 365203
Revision r365061 changed a skip of debug instructions for a skip
of meta instructions. This is not safe, as IMPLICIT_DEF is classed
as a meta instruction.
llvm-svn: 365202
On RISC-V, the `cycle` CSR holds a 64-bit count of the number of clock
cycles executed by the core, from an arbitrary point in the past. This
matches the intended semantics of `@llvm.readcyclecounter()`, which we
currently leave to the default lowering (to the constant 0).
With this patch, we will now correctly lower this intrinsic to the
intended semantics, using the user-space instruction `rdcycle`. On
64-bit targets, we can directly lower to this instruction.
On 32-bit targets, we need to do more, as `rdcycle` only returns the low
32-bits of the `cycle` CSR. In this case, we perform a custom lowering,
based on the PowerPC lowering, using `rdcycleh` to obtain the high
32-bits of the `cycle` CSR. This custom lowering inserts a new basic
block which detects overflow in the high 32-bits of the `cycle` CSR
during reading (because multiple instructions are required to read). The
emitted assembly matches the suggested assembly in the RISC-V
specification.
Differential Revision: https://reviews.llvm.org/D64125
llvm-svn: 365201
Since OPT_UNKNOWN args never have any values and consist only of
spelling (and are never aliased), this doesn't make any difference in
practice, but it's more consistent with Arg's guidance to use
getAsString() for diagnostics, and it matches what clang does.
Also tweak two tests to use an unknown option that contains '=' for
additional coverage while here. (The new tests pass fine with the old
code too though.)
llvm-svn: 365200
Revision r365061 changed a skip of debug instructions for a skip
of meta instructions. This is not safe, as IMPLICIT_DEF is classed
as a meta instruction.
llvm-svn: 365198
Summary:
Comment explaining the interaction between parsing of numeric variable
definition and uses in parseNumericVariableUse is stale since it
suggests both use and definition parsing is done in the same function.
This was the case in a previous version of the patch committed as
71d3f227a7 but is no longer the case. This
patch updates the comment accordingly.
Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson, rnk
Subscribers: JonChesterfield, rogfer01, hfinkel, kristina, rnk, tra, arichardson, grimar, dblaikie, probinson, llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64227
llvm-svn: 365192
Summary:
Both callers of parseNumericVariableDefinition() perform the same extra
check that no character is found after the variable name. This patch
factors out this check into parseNumericVariableDefinition().
Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson, rnk
Subscribers: JonChesterfield, rogfer01, hfinkel, kristina, rnk, tra, arichardson, grimar, dblaikie, probinson, llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64226
llvm-svn: 365191
It's possible that some function can load and store the same
variable using the same constant expression:
store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
%42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
The bitcast expression was mistakenly cached while processing loads,
and never examined later when processing store. This caused @bar to
be mistakenly treated as read-only variable. See load-store-caching.ll.
llvm-svn: 365188
This fixes an 8-year-old regression. r105763 made it so that aliases
always refer to the unaliased option – but it missed the "joined" branch
of JoinedOrSeparate flags. (r162231 then made the Args classes
non-virtual, and r169344 moved them from clang to llvm.)
Back then, there was no JoinedOrSeparate flag that was an alias, so it
wasn't observable. Now /U in CLCompatOptions is a JoinedOrSeparate alias
in clang, and warn_slash_u_filename incorrectly used the aliased arg id
(using the unaliased one isn't really a regression since that warning
checks if the undefined macro contains slash or backslash and only then
emits the warning – and no valid use will pass "-Ufoo/bar" or similar).
Also, lld has many JoinedOrSeparate aliases, and due to this bug it had
to explicitly call `getUnaliasedOption()` in a bunch of places, even
though that shouldn't be necessary by design. After this fix in Option,
these calls really don't have an effect any more, so remove them.
No intended behavior change.
(I accidentally fixed this bug while working on PR29106 but then
wondered why the warn_slash_u_filename broke. When I figured it out, I
thought it would make sense to land this in a separate commit.)
Differential Revision: https://reviews.llvm.org/D64156
llvm-svn: 365186
The errors coming from ELF.h are usually not very
useful because they are uninformative. This patch is a
first step to improve the situation.
I tested this patch with a run of check-llvm and found
that few messages are untested. In this patch, I did not
add more tests but marked all such cases with a "TODO" comment.
For all tested messages I extended the error text to
provide more details (see test cases changed).
Differential revision: https://reviews.llvm.org/D64014
llvm-svn: 365183
This adds some handling for VMOVimm, using the same method that NEON uses. We
create VMOVIMM/VMVNIMM/VMOVFPIMM nodes based on the immediate, and select them
using the now renamed ARMvmovImm/etc. There is also an extra 64bit immediate
mode that I have not yet added here.
Code by David Sherwood
Differential Revision: https://reviews.llvm.org/D63884
llvm-svn: 365178
Summary:
We attempt to prevent folding immediates with multiple users under optsize. But we only do this from store nodes and X86ISD::ADD/SUB/XOR/OR/AND patterns. We don't do it for ISD::ADD/SUB/XOR/OR/AND even though we count them as users when deciding whether to fold into other nodes. This leads to situations where we block folding to a compare for example, but still fold into an AND or OR as seen in PR27202.
Unfortunately touching the isel patterns in tablegen for the ISD::ADD/SUB/XOR/OR/AND opcodes will cause the patterns to be unusable for fast isel. And we don't have a way to make a fast isel only pattern.
To workaround this, this patch adds custom isel in front of the isel table that will select the non-immediate forms if the immediate has additional users. This may create some issues for ANDN and NOT matching. And there's room for improvement with unsigned 32 immediates on 64-bit AND.
This patch needs more thorough test cases, but I wanted to get feedback on the direction. Please send me any other test cases you've seen in the wild.
I think we probably have the same issue with the immediate matching when we fold RMW from X86ISD::ADD/SUB/XOR/OR/AND. And our TEST immedaite shrinking logic. Our cost modeling for immediates that can fit in a sign extended 8-bit immediate on a 16/32/64 bit operation is completely wrong.
I also wonder if we should update the ConstantHoisting cost model and block folding for "opaque" constants. But of course constants can still be created by DAG combine and lowering optimizations.
Fixes PR27202
Reviewers: spatel, RKSimon, andreadb
Reviewed By: RKSimon
Subscribers: jsji, hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59909
llvm-svn: 365163
Summary:
The uaddo won't be removed and the addcarry will still be
dependent on the uaddo. So we'll just increase the use count
of X and Y and potentially require a COPY.
Reviewers: spatel, RKSimon, deadalnix
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64190
llvm-svn: 365149
Summary:
Since the changes to introduce vec3 and vec5, INSERT_VECTOR for these
sizes has been marked "expand", which made LegalizeDAG lower it to loads
and stores via a stack slot. The code got optimized a bit later, but the
now-unused stack slot was never deleted.
This commit avoids that problem by custom lowering INSERT_SUBVECTOR into
an EXTRACT_VECTOR_ELT and INSERT_VECTOR_ELT for each element in the
subvector to insert.
V2: Addressed review comments re test.
Differential Revision: https://reviews.llvm.org/D63160
Change-Id: I9e3c13e36f68cfa3431bb9814851cc1f673274e1
llvm-svn: 365148
We allow forming a splat (broadcast) shuffle, but we were conservatively limiting
that to cases where all elements of the vector are specified. It should be safe
from a codegen perspective to allow undefined lanes of the vector because the
expansion of a splat shuffle would become the chain of inserts again.
Forming splat shuffles can reduce IR and help enable further IR transforms.
Motivating bugs:
https://bugs.llvm.org/show_bug.cgi?id=42174https://bugs.llvm.org/show_bug.cgi?id=16739
Differential Revision: https://reviews.llvm.org/D63848
llvm-svn: 365147
Bitcast v4i32 to v8f32 and back again - it might be worth adding isel patterns for X86PShufd v8i32 on AVX1 targets like we did for X86Blendi to avoid the bitcasts?
llvm-svn: 365125
Without this fix gcc (7.4) complains with
../lib/Remarks/RemarkParser.cpp: In function 'std::unique_ptr<llvm::remarks::ParserImpl> formatToParserImpl(llvm::remarks::ParserFormat, llvm::StringRef)':
../lib/Remarks/RemarkParser.cpp:29:1: error: control reaches end of non-void function [-Werror=return-type]
}
^
../lib/Remarks/RemarkParser.cpp: In function 'std::unique_ptr<llvm::remarks::ParserImpl> formatToParserImpl(llvm::remarks::ParserFormat, llvm::StringRef, const llvm::remarks::ParsedStringTable&)':
../lib/Remarks/RemarkParser.cpp:38:1: error: control reaches end of non-void function [-Werror=return-type]
}
^
The Format enum currently only contains the value YAML which is indeed
already handled in the switches, but gcc complains anyway.
Adding a default case with an llvm_unreachable silences gcc.
llvm-svn: 365118
The arm condition codes for GE is N==V (and for LT is N!=V). If the source of
flags cannot set V (overflow), such as a cmp against #0, then we can use the
simpler PL and MI conditions that only check N. As these PL/MI conditions are
simpler than GE/LT, other passes like the peephole optimiser can have a better
time optimising away the redundant CMPs.
The exception is the VSEL instruction, which cannot take the PL code, so there
the transform favours GE.
Differential Revision: https://reviews.llvm.org/D64160
llvm-svn: 365117
This adds patterns for the simpler VAND, VORR and VEOR bitwise vector
instructions. It also adjusts the top16Zero PatLeaf to not match on vector
instructions, which can otherwise cause problems.
Code written by David Sherwood.
Differential Revision: https://reviews.llvm.org/D63867
llvm-svn: 365113
Summary:
"ww" and "ws" are both constraint codes for VSX vector registers that
hold scalar double data. "ww" is preferred for float while "ws" is
preferred for double.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D64119
llvm-svn: 365106
Added array of valid architectures and function returning array.
Modified llvm-lipo to include list of valid architectures in error message for invalid arch.
Patch by Anusha Basana <anusha.basana@gmail.com>
Differential Revision: https://reviews.llvm.org/D63735
llvm-svn: 365099
Replaces direct calls to eh-frame registration with calls to methods on an
EHFrameRegistrar instance. This allows clients to substitute a registrar that
registers frames in a remote process via IPC/RPC.
llvm-svn: 365098
This reverts r365040 (git commit 5cacb91475)
Speculatively reverting, since this appears to have broken check-lld on
Linux. Partial analysis in https://crbug.com/981168.
llvm-svn: 365097
Wasm doesn't have a direct way to lower indirectbr, so hook up the
IndirectBrExpandPass to lower indirectbr into a switch.
Fixes PR42498
Reviewers: aheejin
Differential Revision: https://reviews.llvm.org/D64161
llvm-svn: 365096
This is split out from my patches to split register allocation into a
separate SGPR and VGPR phase, and has some parts that aren't yet used
(like maintaining LiveIntervals).
This simplifies making the frame pointer register callee saved. As it
is now, the code to determine callee saves needs to predict all the
possible SGPR spills and how many callee saved VGPRs are needed. By
handling this before PrologEpilogInserter, it's possible to just check
the spill objects that already exist.
Change-Id: I29e6df4034afcf949e06f8ef44206acb94696f04
llvm-svn: 365095
If the block being cloned contains a PHI node, in general, we need to
clone that PHI node, even though it's trivial. If the operand of the PHI
is an instruction in the block being cloned, the correct value for the
operand doesn't exist until SSAUpdater constructs it.
We usually don't hit this issue because we try to avoid threading across
loop headers, but it's possible to hit this in some cases involving
irreducible CFGs. I added a flag to allow threading across loop headers
to make the testcase easier to understand.
Thanks to Brian Rzycki for reducing the testcase.
Fixes https://bugs.llvm.org/show_bug.cgi?id=42085.
Differential Revision: https://reviews.llvm.org/D63913
llvm-svn: 365094
This moves Bitcode/Bitstream*, Bitcode/BitCodes.h to Bitstream/.
This is needed to avoid a circular dependency when using the bitstream
code for parsing optimization remarks.
Since Bitcode uses Core for the IR part:
libLLVMRemarks -> Bitcode -> Core
and Core uses libLLVMRemarks to generate remarks (see
IR/RemarkStreamer.cpp):
Core -> libLLVMRemarks
we need to separate the Bitstream and Bitcode part.
For clang-doc, it seems that it doesn't need the whole bitcode layer, so
I updated the CMake to only use the bitstream part.
Differential Revision: https://reviews.llvm.org/D63899
llvm-svn: 365091
As noted in the test change, this is not trivially NFC, but all of the changes in output are cases where the SCEVExpander form is more canonical/optimal than the hand generation.
llvm-svn: 365075
Summary:
Hip texture type is equivalent to OpenCL image. So, we need to set the Image type for kernel arguments with __hip_texture type.
Differential revision: https://reviews.llvm.org/D63850
llvm-svn: 365073
Precedence was wrong in an assert added in r364961. Add braces around the
assertion condition to make it right.
See: https://reviews.llvm.org/D64084
llvm-svn: 365069
The motivation for this is two fold:
1) Make the output (and thus tests) a bit more readable to a human trying to understand the result of the transform
2) Reduce spurious diffs in a potential future change to restructure all of this logic to use SCEVExpander (which hoists by default)
llvm-svn: 365066
Instead of just stopping to see if we have a G_CONSTANT, instead, look through
G_TRUNCs, G_SEXTs, and G_ZEXTs.
This gives an average ~1.3% code size improvement on CINT2000 at -O3.
Differential Revision: https://reviews.llvm.org/D64108
llvm-svn: 365063
This patch generalizes the fix in D61680 to ignore all meta instructions,
not just debug info.
Patch by Chris Dawson.
Differential Revision: https://reviews.llvm.org/D62605
llvm-svn: 365061
We previously marked all the tests with branch funnels as
`-verify-machineinstrs=0`.
This is an attempt to fix it.
1) `ICALL_BRANCH_FUNNEL` has no defs. Mark it as `let OutOperandList =
(outs)`
2) After that we hit an assert: ``` Assertion failed: (Op.getValueType()
!= MVT::Other && Op.getValueType() != MVT::Glue && "Chain and glue
operands should occur at end of operand list!"), function AddOperand,
file
/Users/francisvm/llvm/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp,
line 461. ```
The chain operand was added at the beginning of the operand list. Move
that to the end.
3) After that we hit another verifier issue in the pseudo expansion
where the registers used in the cmps and jmps are not added to the
livein lists. Add the `EFLAGS` to all the new MBBs that we create.
PR39436
Differential Review: https://reviews.llvm.org/D54155
llvm-svn: 365058
We haven't changed the set of users, just specialized an operand for those users. Given that, the previous wrap flags must still be correct.
Sorry for the lack of test case. Noticed this while working on something else, and haven't figured out to exercise this standalone.
llvm-svn: 365053
Summary:
This diff improve the capability of DAGCOmbine to generate linear carries propagation in presence of a diamond pattern. It is now able to match a large variety of different patterns rather than some hardcoded one.
Arguably, the codegen in test cases is not better, but this is to be expected. The goal of this transformation is more about canonicalisation than actual optimisation.
Reviewers: hfinkel, RKSimon, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57302
llvm-svn: 365051
If we have more then 2 shuffle ops to combine, try to use combineX86ShuffleChainWithExtract to see if some are from the same super vector.
llvm-svn: 365050
iff the number of elements doesn't change.
This gets around an issue with combineX86ShuffleChain not being able to hint which domain is preferred for shuffles that can be done with either.
Fixes regression introduced in rL365041
llvm-svn: 365044
When a target intrinsic has been determined to touch memory, we construct a MachineMemOperand during SDAG construction. In this case, we should propagate AAMDNodes metadata to the MachineMemOperand where available.
Differential revision: https://reviews.llvm.org/D64131
llvm-svn: 365043
This better accounts for the cost/benefit of removing extract_subvectors from the shuffle and will be more useful in future patches.
The vpermq predicate regression will be fixed shortly.
llvm-svn: 365041
Assert that the shift amount is in range and create vXi8 shift masks in a way that doesn't cause MSVC/cppcheck shift result is truncated then extended warnings.
llvm-svn: 365024
For Thumb2, we prefer low regs (costPerUse = 0) to allow narrow
encoding. However, current allocation order is like:
R0-R3, R12, LR, R4-R11
As a result, a lot of instructs that use R12/LR will be wide instrs.
This patch changes the allocation order to:
R0-R7, R12, LR, R8-R11
for thumb2 and -Osize.
In most cases, there is no extra push/pop instrs as they will be folded
into existing ones. There might be slight performance impact due to more
stack usage, so we only enable it when opt for min size.
https://reviews.llvm.org/D30324
llvm-svn: 365014
The autoconf build system support has been removed a while ago, remove
some outdated references.
Differential Revision: https://reviews.llvm.org/D63608
llvm-svn: 365013
Summary:
This is the backend part of [[ https://bugs.llvm.org/show_bug.cgi?id=42457 | PR42457 ]].
In middle-end, we'd want to prefer the form with two adds - D63992,
but as this diff shows, not every target will prefer that pattern.
Out of 4 targets for which i added tests all seem to be ok with inc-of-add for scalars,
but only X86 prefer that same pattern for vectors.
Here i'm adding a new TLI hook, always defaulting to the inc-of-add,
but adding AArch64,ARM,PowerPC overrides to prefer inc-of-add only for scalars.
Reviewers: spatel, RKSimon, efriedma, t.p.northover, hfinkel
Reviewed By: efriedma
Subscribers: nemanjai, javed.absar, kristof.beyls, kbarton, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64090
llvm-svn: 365010
On some occasions ReuseOrCreateCast may convert previously
expanded value to undefined. That value may be passed by
SCEVExpander as an argument to InsertBinop making IV chain
undefined.
Differential revision: https://reviews.llvm.org/D63928
llvm-svn: 365009
Summary:
Handling callbr is very similar to handling an inline assembly call:
MSan must checks the instruction's inputs.
callbr doesn't (yet) have outputs, so there's nothing to unpoison,
and conservative assembly handling doesn't apply either.
Fixes PR42479.
Reviewers: eugenis
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64072
llvm-svn: 365008
This reverts r364422 (git commit 1a3dc76186)
The inlining cost calculation is incorrect, leading to stack overflow due to large stack frames from heavy inlining.
llvm-svn: 365000
There are two main issues preventing us from generating immediate form shifts:
1) We have partial SelectionDAG imported support for G_ASHR and G_LSHR shift
immediate forms, but they currently don't work because the amount type is
expected to be an s64 constant, but we only legalize them to have homogenous
types.
To deal with this, first we introduce a custom legalizer to *only* custom legalize
s32 shifts which have a constant operand into a s64.
There is also an additional artifact combiner to fold zexts(g_constant) to a
larger G_CONSTANT if it's legal, a counterpart to the anyext version committed
in an earlier patch.
2) For G_SHL the importer can't cope with the pattern. For this I introduced an
early selection phase in the arm64 selector to select these forms manually
before the tablegen selector pessimizes it to a register-register variant.
Differential Revision: https://reviews.llvm.org/D63910
llvm-svn: 364994
Summary:
Before, inline assembly gets mangled by the SjLj transformation.
For example, in a function with setjmp/longjmp, this LLVM IR code
call void asm sideeffect "", ""()
would be transformed into
call void @__invoke_void(void ()* asm sideeffect "", "")
This is invalid, and results in the error:
Cannot take the address of an inline asm!
In this diff, we skip the transformation for inline assembly.
Reviewers: aheejin, tlively
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64115
llvm-svn: 364985
Mac Catalyst is a new MachO platform in macOS Catalina.
It always uses the build_version MachO load command.
Differential Revision: https://reviews.llvm.org/D64107
llvm-svn: 364981
There were two issues here: one, some of the relevant instructions were
missing the expected "FrameSetup" flag, and two,
ARMAsmPrinter::EmitUnwindingInstruction wasn't expecting "mov"
instructions in the prologue.
I'm sticking the additional state into ARMFunctionInfo so it's obvious
it only applies to the current function.
I considered a few alternative approaches where we would compute the
correct unwind information as part of the prologue/epilogue lowering,
but it seems like a lot of work to introduce pseudo-instructions, and
the current code seems to be reliable enough.
Fixes https://bugs.llvm.org/show_bug.cgi?id=42408.
Differential Revision: https://reviews.llvm.org/D63964
llvm-svn: 364970
Summary: This patch introduces a new heuristic for guiding operand reordering. The new "look-ahead" heuristic can look beyond the immediate predecessors. This helps break ties when the immediate predecessors have identical opcodes (see lit test for an example).
Reviewers: RKSimon, ABataev, dtemirbulatov, Ayal, hfinkel, rnk
Reviewed By: RKSimon, dtemirbulatov
Subscribers: hiraditya, phosek, rnk, rcorcs, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60897
llvm-svn: 364964
This teaches `tryOptSelect` to handle folding G_ICMP, and removes the
requirement that the G_SELECT we're dealing with is floating point.
Some refactoring to make this work nicely as well:
- Factor out the scalar case from the selection code for G_ICMP into
`emitIntegerCompare`.
- Make `tryOptCMN` return a MachineInstr* instead of a bool.
- Make `tryOptCMN` not modify the instruction being selected.
- Factor out the CMN emission into `emitCMN` for readability.
By doing this this way, we can get all of the compare selection optimizations
in select emission.
Differential Revision: https://reviews.llvm.org/D64084
llvm-svn: 364961
Summary:
If LTOUnit splitting is disabled, the module summary analysis computes
the summary information necessary to perform single implementation
devirtualization during the thin link with the index and no IR. The
information collected from the regular LTO IR in the current hybrid WPD
algorithm is summarized, including:
1) For vtable definitions, record the function pointers and their offset
within the vtable initializer (subsumes the information collected from
IR by tryFindVirtualCallTargets).
2) A record for each type metadata summarizing the vtable definitions
decorated with that metadata (subsumes the TypeIdentiferMap collected
from IR).
Also added are the necessary bitcode records, and the corresponding
assembly support.
The follow-on index-based WPD patch is D55153.
Depends on D53890.
Reviewers: pcc
Subscribers: mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54815
llvm-svn: 364960
Ordinarily it is lowered as a build_vector of each extract_vector_elt,
which in turn get lowered to bitcasts and bit shifts. Very little
understand the lowered extract pattern, resulting in much worse
code. We treat concat_vectors of v2i16 as legal, so prefer that.
llvm-svn: 364959
The internal option added with r323870 has a typo. It isn't being used
by any tests, but I decided to fix the spelling and leave it in for use
in debugging the changes added in that patch.
llvm-svn: 364958
This commit adds a new builtin, __builtin_bit_cast(T, v), which performs a
bit_cast from a value v to a type T. This expression can be evaluated at
compile time under specific circumstances.
The compile time evaluation currently doesn't support bit-fields, but I'm
planning on fixing this in a follow up (some of the logic for figuring this out
is in CodeGen). I'm also planning follow-ups for supporting some more esoteric
types that the constexpr evaluator supports, as well as extending
__builtin_memcpy constexpr evaluation to use the same infrastructure.
rdar://44987528
Differential revision: https://reviews.llvm.org/D62825
llvm-svn: 364954
Don't use APInt::getZExtValue() if you can avoid it - eventually someone will call it with i128 or something that doesn't fit into 64-bits.
In this case it was completely superfluous as we'd moved the rest of the code to always use APInt.
Fixes the <1 x i128> addition bug in PR42486
llvm-svn: 364953
Similar for (V)MOVSD. Ultimately, I'd like to see about folding
scalar_to_vector+load to vzload. Which would select as (V)MOVSSrm
so this is closer to that.
llvm-svn: 364948
Summary:
Previously, we'd pass a nullptr to std::string and crash().
This case happens when the binary is deleted while being used (e.g. rebuilding clangd).
Reviewers: kadircet
Subscribers: ilya-biryukov, kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64068
llvm-svn: 364936
The register bank for the destination of the sample argument copy was
wrong. We shouldn't be constraining each source to the result register
bank. Allow constraining the original register to the right size.
llvm-svn: 364928