I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Summary:
In some cases LLVM (especially the SLP vectorizer) will create vectors
that are 256 bytes (or larger). Given that this is intentional[0] is
likely to get more common, this patch updates the StackMap binary
format to deal with the spill locations for said vectors.
This change also bumps the stack map version from 2 to 3.
[0]: https://reviews.llvm.org/D32533#738350
Reviewers: reames, kavon, skatkov, javed.absar
Subscribers: mcrosier, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D32629
llvm-svn: 301615
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
Summary:
It was previously not possible for tools to use solely the stackmap
information emitted to reconstruct the return addresses of callsites in
the map, which is necessary to use the information to walk a stack. This
patch adds per-function callsite counts when emitting the stackmap
section in order to resolve the problem. Note that this slightly alters
the stackmap format, so external tools parsing these maps will need to
be updated.
**Problem Details:**
Records only store their offset from the beginning of the function they
belong to. While these records and the functions are output in program
order, it is not possible to determine where the end of one function's
records are without the callsite count when processing the records to
compute return addresses.
Patch by Kavon Farvardin!
Reviewers: atrick, ributzka, sanjoy
Subscribers: nemanjai
Differential Revision: https://reviews.llvm.org/D23487
llvm-svn: 281532
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
This patch is quite boring overall, except for some uglyness in
ASMPrinter which has a getDataLayout function but has some clients
that use it without a Module (llmv-dsymutil, llvm-dwarfdump), so
some methods are taking a DataLayout as parameter.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11090
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242386
This starts merging MCSection and MCSectionData.
There are a few issues with the current split between MCSection and
MCSectionData.
* It optimizes the the not as important case. We want the production
of .o files to be really fast, but the split puts the information used
for .o emission in a separate data structure.
* The ELF/COFF/MachO hierarchy is not represented in MCSectionData,
leading to some ad-hoc ways to represent the various flags.
* It makes it harder to remember where each item is.
The attached patch starts merging the two by moving the alignment from
MCSectionData to MCSection.
Most of the patch is actually just dropping 'const', since
MCSectionData is mutable, but MCSection was not.
llvm-svn: 237936
Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`. `id` gets propagated to the ID field
in the generated StackMap section. If the `num_patch_bytes` is
non-zero then the statepoint is lowered to `num_patch_bytes` bytes of
nops instead of a call (the spill and reload code remains unchanged).
A non-zero `num_patch_bytes` is useful in situations where a language
runtime requires complete control over how a call is lowered.
This change brings statepoints one step closer to patchpoints. With
some additional work (that is not part of this patch) it should be
possible to get rid of `TargetOpcode::STATEPOINT` altogether.
PlaceSafepoints generates `statepoint` wrappers with `id` set to
`0xABCDEF00` (the old default value for the ID reported in the stackmap)
and `num_patch_bytes` set to `0`. This can be made more sophisticated
later.
Reviewers: reames, pgavlin, swaroop.sridhar, AndyAyers
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9546
llvm-svn: 237214
numbers before emission.
This removes a dependency on being able to access TRI at the module
level and is similar to the DwarfExpression handling. I've modified
the debug support into print/dump routines that'll do the same dumping
but is now callable anywhere and if TRI isn't available will go ahead
and just print out raw register numbers.
llvm-svn: 232821
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
When computing the call-site offset, use AP.CurrentFnSymForSize instead of
AP.CurrentFnSym. There should be no change for other targets, but this is
necessary for generating valid expressions for PPC64/ELF.
llvm-svn: 225807
This is the second patch in a small series. This patch contains the MachineInstruction and x86-64 backend pieces required to lower Statepoints. It does not include the code to actually generate the STATEPOINT machine instruction and as a result, the entire patch is currently dead code. I will be submitting the SelectionDAG parts within the next 24-48 hours. Since those pieces are by far the most complicated, I wanted to minimize the size of that patch. That patch will include the tests which exercise the functionality in this patch. The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683.
The STATEPOINT psuedo node is generated after all gc values are explicitly spilled to stack slots. The purpose of this node is to wrap an actual call instruction while recording the spill locations of the meta arguments used for garbage collection and other purposes. The STATEPOINT is modeled as modifing all of those locations to prevent backend optimizations from forwarding the value from before the STATEPOINT to after the STATEPOINT. (Doing so would break relocation semantics for collectors which wish to relocate roots.)
The implementation of STATEPOINT is closely modeled on PATCHPOINT. Eventually, much of the code in this patch will be removed. The long term plan is to merge the functionality provided by statepoints and patchpoints. Merging their implementations in the backend is likely to be a good starting point.
Reviewed by: atrick, ributzka
llvm-svn: 223085
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
This change adds code to explicitly mark a function which requires runtime stack realignment as not having a fixed frame size in the StackMap section. As it happens, this is not actually a functional change. The size that would be reported without the check is also "-1", but as far as I can tell, that's an accident. The code change makes this explicit.
Note: There's a separate bug in handling of stackmaps and patchpoints in functions which need dynamic frame realignment. The current code assumes that offsets can be calculated from RBP, but realigned frames must use RSP. (There's a variable gap between RBP and the spill slots.) This change set does not address that issue.
Reviewers: atrick, ributzka
Differential Revision: http://reviews.llvm.org/D4572
llvm-svn: 214534
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
llvm-svn: 206837
This commit updates the stackmap format to version 1 to indicate the
reorganizaion of several fields. This was done in order to align stackmap
entries to their natural alignment and to minimize padding.
Fixes <rdar://problem/16005902>
llvm-svn: 205254
In the stackmap format we advertise the constant field as signed.
However, we were determining whether to promote to a 64-bit constant
pool based on an unsigned comparison.
This fix allows -1 to be encoded as a small constant.
llvm-svn: 198816
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685