Previously the InstCombiner class contained a pointer to an IR builder that had been passed to the constructor. Sometimes this would be passed to helper functions as either a pointer or the pointer would be dereferenced to be passed by reference.
This patch makes it a reference everywhere including the InstCombiner class itself so there is more inconsistency. This a large, but mechanical patch. I've done very minimal formatting changes on it despite what clang-format wanted to do.
llvm-svn: 307451
There are 2 parts to this patch made simultaneously to avoid a regression.
We're reversing the canonicalization that moves bitwise vector ops before bitcasts.
We're moving bitwise vector ops *after* bitcasts instead. That's the 1st and 3rd hunks
of the patch. The motivation is that there's only one fold that currently depends on
the existing canonicalization (see next), but there are many folds that would
automatically benefit from the new canonicalization.
PR33138 ( https://bugs.llvm.org/show_bug.cgi?id=33138 ) shows why/how we have these
patterns in IR.
There's an or(and,andn) pattern that requires an adjustment in order to continue matching
to 'select' because the bitcast changes position. This match is unfortunately complicated
because it requires 4 logic ops with optional bitcast and sext ops.
Test diffs:
1. The bitcast.ll and bitcast-bigendian.ll changes show the most basic difference -
bitcast comes before logic.
2. There are also tests with no diffs in bitcast.ll that verify that we're still doing
folds that were enabled by the previous canonicalization.
3. icmp-xor-signbit.ll shows the payoff. We don't need to adjust existing icmp patterns
to look through bitcasts.
4. logical-select.ll contains several tests for the or(and,andn) --> select fold to
verify that we are still handling those cases. The lone diff shows the movement of
the bitcast from the new canonicalization rule.
Differential Revision: https://reviews.llvm.org/D33517
llvm-svn: 306011
This continues the changes started when computeSignBit was replaced with this new version of computeKnowBits.
Differential Revision: https://reviews.llvm.org/D33431
llvm-svn: 303773
Otherwise we end up miscompiling, transforming:
define i8 @tinky() {
%sext = sext i1 1 to i16
%hibit = lshr i16 %sext, 15
%tr = trunc i16 %hibit to i8
ret i8 %tr
}
into:
%sext = sext i1 1 to i8
ret i8 %sext
and the first get folded to ret i8 1, while the second gets folded
to ret i8 -1.
Eventually we should get rid of this transform entirely, but for now,
this at least fixes a know correctness bug.
Differential Revision: https://reviews.llvm.org/D33338
llvm-svn: 303513
The comment says to avoid the case where zero bits are shifted into the truncated value,
but the code checks that the shift is smaller than the truncated value instead of the
number of bits added by the sign extension. Fixing this allows a shift by more than the
value size to be introduced, which is undefined behavior, so the shift is capped at the
value size minus one, which has the expected behavior of filling the value with the sign
bit.
Patch by Jacob Young!
Differential Revision: https://reviews.llvm.org/D32285
llvm-svn: 302548
This patch introduces a new KnownBits struct that wraps the two APInt used by computeKnownBits. This allows us to treat them as more of a unit.
Initially I've just altered the signatures of computeKnownBits and InstCombine's simplifyDemandedBits to pass a KnownBits reference instead of two separate APInt references. I'll do similar to the SelectionDAG version of computeKnownBits/simplifyDemandedBits as a separate patch.
I've added a constructor that allows initializing both APInts to the same bit width with a starting value of 0. This reduces the repeated pattern of initializing both APInts. Once place default constructed the APInts so I added a default constructor for those cases.
Going forward I would like to add more methods that will work on the pairs. For example trunc, zext, and sext occur on both APInts together in several places. We should probably add a clear method that can be used to clear both pieces. Maybe a method to check for conflicting information. A method to return (Zero|One) so we don't write it out everywhere. Maybe a method for (Zero|One).isAllOnesValue() to determine if all bits are known. I'm sure there are many other methods we can come up with.
Differential Revision: https://reviews.llvm.org/D32376
llvm-svn: 301432
We currently only support folding a subtract into a select but not a PHI. This fixes that.
I had to fix an assumption in FoldOpIntoPhi that assumed the PHI node was always in operand 0. Now we pass it in like we do for FoldOpIntoSelect. But we still require some dancing to find the Constant when we create the BinOp or ConstantExpr. This is based code is similar to what we do for selects.
Since I touched all call sites, this also renames FoldOpIntoPhi to foldOpIntoPhi to match coding standards.
Differential Revision: https://reviews.llvm.org/D31686
llvm-svn: 300363
Summary:
The call to canEvaluateZExtd in InstCombiner::visitZExt may
return with BitsToClear == SrcTy->getScalarSizeInBits(), but
there is an assert that BitsToClear should be smaller than
SrcTy->getScalarSizeInBits().
I have a test case that triggers the assert, but it only happens
for my downstream target. I've not been able to trigger it for
any upstream target.
The assert triggered for a piece of code such as this
%shr1 = lshr i16 undef, 15
...
%shr2 = lshr i16 %shr1, 1
%conv = zext i16 %shr2 to i32
Normally the lshr instructions are constant folded before we
visit the zext (that is why it is so hard to reproduce).
The original pattern, before instcombine, is of course a lot more
complicated in my test case. The shift count in the second lshr
is for example determined by the outcome of a PHI instruction.
It seems like other rewrites by instcombine leads up to
the pattern above. And then the zext is pulled from the
worklist, and visited (hitting the assert), before we detect
that the lshr instrucions can be constant folded.
Anyway, since the canEvaluateZExtd may return with BitsToClear
equal to SrcTy->getScalarSizeInBits(), and since the rewrite
that converts the expression type to avoid a zero extend works
also for the case where SrcBitsKept ends up being zero, then
it should be OK to liberate the assert to
assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
"Unreasonable BitsToClear");
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D30993
llvm-svn: 297952
This was committed at r297155 and reverted at r297166 because of an
over-reaching clang test. That should be fixed with r297189.
This is one part of solving a recent bug report:
http://lists.llvm.org/pipermail/llvm-dev/2017-February/110293.html
This keeps with our general approach: changing arbitrary shuffles is off-limts,
but changing splat is ok. The transform is very similar to the existing
shrinkBitwiseLogic() canonicalization.
Differential Revision: https://reviews.llvm.org/D30123
llvm-svn: 297232
This one seems more obvious than D30270 that it can't make improvements because an extension always needs
all of the incoming bits. There's one specific transform in SimplifyDemandedInstructionBits of converting
a sext to a zext when the sign-bit is known zero, but that is handled explicitly in visitSext() with
ComputeSignBit().
Like D30270, there are no IR differences (other than instruction names) for the case in PR32037:
https://bugs.llvm.org//show_bug.cgi?id=32037
...and no regression test differences.
Zext/sext are a smaller part of the profile, but this still appears to shave off another 0.5% or so from
'opt -O2'.
Differential Revision: https://reviews.llvm.org/D30280
llvm-svn: 296129
Add missing fabs(fpext) optimzation that worked with the call,
and also fixes it creating a second fpext when there were multiple
uses.
llvm-svn: 292172
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
This solves a secondary problem seen in PR6137:
https://llvm.org/bugs/show_bug.cgi?id=6137#c6
This is similar to the bitwise logic op fold added with:
https://reviews.llvm.org/rL287707
And like that patch, I'm artificially restricting the
transform from vector <-> scalar types until we're sure
that the backend can handle that.
llvm-svn: 288584
In PR27925:
https://llvm.org/bugs/show_bug.cgi?id=27925
...we proposed adding this fold to eliminate a bitcast. In D20774, there was
some concern about changing the type of a bitwise op as well as creating
bitcasts that might not be free for a target. However, if we're strictly
eliminating an instruction (by limiting this to one-use ops), then we should
be able to do this in InstCombine.
But we're cautiously restricting the transform for now to vector types to
avoid possible backend problems. A transform to make sure the logic op is
legal for the target should be added to reverse this transform and improve
codegen.
Differential Revision: https://reviews.llvm.org/D26641
llvm-svn: 287707
The original patch of the A->B->A BitCast optimization was reverted by r274094 because it may cause infinite loop inside compiler https://llvm.org/bugs/show_bug.cgi?id=27996.
The problem is with following code
xB = load (type B);
xA = load (type A);
+yA = (A)xB; B -> A
+zAn = PHI[yA, xA]; PHI
+zBn = (B)zAn; // A -> B
store zAn;
store zBn;
optimizeBitCastFromPhi generates
+zBn = (B)zAn; // A -> B
and expects it will be combined with the following store instruction to another
store zAn
Unfortunately before combineStoreToValueType is called on the store instruction, optimizeBitCastFromPhi is called on the new BitCast again, and this pattern repeats indefinitely.
optimizeBitCastFromPhi only generates BitCast for load/store instructions, only the BitCast before store can cause the reexecution of optimizeBitCastFromPhi, and BitCast before store can easily be handled by InstCombineLoadStoreAlloca.cpp. So the solution to the problem is if all users of a CI are store instructions, we should not do optimizeBitCastFromPhi on it. Then optimizeBitCastFromPhi will not be called on the new BitCast instructions.
Differential Revision: https://reviews.llvm.org/D23896
llvm-svn: 285116
Summary:
InstCombine unfolds expressions of the form `zext(or(icmp, icmp))` to `or(zext(icmp), zext(icmp))` such that in a later iteration of InstCombine the exposed `zext(icmp)` instructions can be optimized. We now combine this unfolding and the subsequent `zext(icmp)` optimization to be performed together. Since the unfolding doesn't happen separately anymore, we also again enable the folding of `logic(cast(icmp), cast(icmp))` expressions to `cast(logic(icmp, icmp))` which had been disabled due to its interference with the unfolding transformation.
Tested via `make check` and `lnt`.
Background
==========
For a better understanding on how it came to this change we subsequently summarize its history. In commit r275989 we've already tried to enable the folding of `logic(cast(icmp), cast(icmp))` to `cast(logic(icmp, icmp))` which had to be reverted in r276106 because it could lead to an endless loop in InstCombine (also see http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160718/374347.html). The root of this problem is that in `visitZExt()` in InstCombineCasts.cpp there also exists a reverse of the above folding transformation, that unfolds `zext(or(icmp, icmp))` to `or(zext(icmp), zext(icmp))` in order to expose `zext(icmp)` operations which would then possibly be eliminated by subsequent iterations of InstCombine. However, before these `zext(icmp)` would be eliminated the folding from r275989 could kick in and cause InstCombine to endlessly switch back and forth between the folding and the unfolding transformation. This is the reason why we now combine the `zext`-unfolding and the elimination of the exposed `zext(icmp)` to happen at one go because this enables us to still allow the cast-folding in `logic(cast(icmp), cast(icmp))` without entering an endless loop again.
Details on the submitted changes
================================
- In `visitZExt()` we combine the unfolding and optimization of `zext` instructions.
- In `transformZExtICmp()` we have to use `Builder->CreateIntCast()` instead of `CastInst::CreateIntegerCast()` to make sure that the new `CastInst` is inserted in a `BasicBlock`. The new calls to `transformZExtICmp()` that we introduce in `visitZExt()` would otherwise cause according assertions to be triggered (in our case this happend, for example, with lnt for the MultiSource/Applications/sqlite3 and SingleSource/Regression/C++/EH/recursive-throw tests). The subsequent usage of `replaceInstUsesWith()` is necessary to ensure that the new `CastInst` replaces the `ZExtInst` accordingly.
- In InstCombineAndOrXor.cpp we again allow the folding of casts on `icmp` instructions.
- The instruction order in the optimized IR for the zext-or-icmp.ll test case is different with the introduced changes.
- The test cases in zext.ll have been adopted from the reverted commits r275989 and r276105.
Reviewers: grosser, majnemer, spatel
Subscribers: eli.friedman, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D22864
Contributed-by: Matthias Reisinger <d412vv1n@gmail.com>
llvm-svn: 277635
A ConstantVector can have ConstantExpr operands and vice versa.
However, the folder had no ability to fold ConstantVectors which, in
some cases, was an optimization barrier.
Instead, rephrase the folder in terms of Constants instead of
ConstantExprs and teach callers how to deal with failure.
llvm-svn: 277099
Summary:
This patch cleans up parts of InstCombine to raise its compliance with the LLVM coding standards and to increase its readability. The changes and according rationale are summarized in the following:
- Rename `ShouldOptimizeCast()` to `shouldOptimizeCast()` since functions should start with a lower case letter.
- Move `shouldOptimizeCast()` from InstCombineCasts.cpp to InstCombineAndOrXor.cpp since it's only used there.
- Simplify interface of `shouldOptimizeCast()`.
- Minor code style adaptions in `shouldOptimizeCast()`.
- Remove the documentation on the function definition of `shouldOptimizeCast()` since it just repeats the documentation on its declaration. Also enhance the documentation on its declaration with more information describing its intended use and make it doxygen-compliant.
- Change a comment in `foldCastedBitwiseLogic()` from `fold (logic (cast A), (cast B)) -> (cast (logic A, B))` to `fold logic(cast(A), cast(B)) -> cast(logic(A, B))` since the surrounding comments use this format.
- Remove comment `Only do this if the casts both really cause code to be generated.` in `foldCastedBitwiseLogic()` since it just repeats parts of the documentation of `shouldOptimizeCast()` and does not help to improve readability.
- Simplify the interface of `isEliminableCastPair()`.
- Removed the documentation on the function definition of `isEliminableCastPair()` which only contained obvious statements about its implementation. Instead added more general doxygen-compliant documentation to its declaration.
- Renamed parameter `DoXform` of `transformZExtIcmp()` to `DoTransform` to make its intention clearer.
- Moved documentation of `transformZExtIcmp()` from its definition to its declaration and made it doxygen-compliant.
Reviewers: vtjnash, grosser
Subscribers: majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D22449
Contributed-by: Matthias Reisinger
llvm-svn: 275964
We can fold truncs whose operand feeds from a load, if the trunc value
is available through a prior load/store.
This change is from: http://reviews.llvm.org/D21246, which folded the
trunc but missed the bitcast or ptrtoint/inttoptr required in the RAUW
call, when the load type didnt match the prior load/store type.
Differential Revision: http://reviews.llvm.org/D21791
llvm-svn: 274853
Revert "[InstCombine] Combine A->B->A BitCast"
as this appears to cause PR27996 and as discussed in http://reviews.llvm.org/D20847
This reverts commits r270135 and r263734.
llvm-svn: 274094
Summary:
This instcombine rule folds away trunc operations that have value available from a prior load or store.
This kind of code can be generated as a result of GVN widening the load or from source code as well.
Reviewers: reames, majnemer, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21246
llvm-svn: 273608
When an aggregate contains an opaque type its size cannot be
determined. This triggers an "Invalid GetElementPtrInst indices for type" assert
in function checkGEPType. The fix suppresses the conversion in this case.
http://reviews.llvm.org/D20319
llvm-svn: 270479
This patch fixes https://llvm.org/bugs/show_bug.cgi?id=27703.
If there is a sequence of one or more load instructions, each loaded value is used as address of later load instruction, bitcast is necessary to change the value type, don't optimize it.
llvm-svn: 270135
We neglected to transfer operand bundles for some transforms. These
were found via inspection, I'll try to come up with some test cases.
llvm-svn: 268010
As noted in the code comment, I don't think we can do the same transform that we do for
*scalar* integers comparisons to *vector* integers comparisons because it might pessimize
the general case.
Exhibit A for an incomplete integer comparison ISA remains x86 SSE/AVX: it only has EQ and GT
for integer vectors.
But we should now recognize all the variants of this construct and produce the optimal code
for the cases shown in:
https://llvm.org/bugs/show_bug.cgi?id=26701
llvm-svn: 262424
This change was discussed in D15392. It allows us to remove the fold that was added
in:
http://reviews.llvm.org/r255261
...and it will allow us to generalize this fold:
http://reviews.llvm.org/rL112232
while preserving the order of bitcast + extract that it produces and testing shows
is better handled by the backend.
Note that the existing check for "isVectorTy()" wasn't strong enough in general
and specifically because: x86_mmx. It's not a vector, but it's not vectorizable
either. So here we check VectorType::isValidElementType() directly before
proceeding with the transform.
llvm-svn: 255433
This is a redo of r255137 (reverted at r255227) which was a redo of
r255124 (reverted at r255126) with a fixed check for a scalar source
type and an added test for the failure that caused the revert.
Original commit message:
Example:
bitcast (extractelement (bitcast <2 x float> %X to <2 x i32>), 1) to float
--->
extractelement <2 x float> %X, i32 1
This is part of fixing PR25543:
https://llvm.org/bugs/show_bug.cgi?id=25543
The next step will be to generalize this fold:
trunc ( lshr ( bitcast X) ) -> extractelement (X)
Ie, I'm hoping to replace the existing transform of:
bitcast ( trunc ( lshr ( bitcast X)))
added by:
http://reviews.llvm.org/rL112232
with 2 less specific transforms to catch the case in the bug report.
Differential Revision: http://reviews.llvm.org/D14879
llvm-svn: 255261
This is a redo of r255124 (reverted at r255126) with an added check for a
scalar destination type and an added test for the failure seen in Clang's
test/CodeGen/vector.c. The extra test shows a different missing optimization.
Original commit message:
Example:
bitcast (extractelement (bitcast <2 x float> %X to <2 x i32>), 1) to float
--->
extractelement <2 x float> %X, i32 1
This is part of fixing PR25543:
https://llvm.org/bugs/show_bug.cgi?id=25543
The next step will be to generalize this fold:
trunc ( lshr ( bitcast X) ) -> extractelement (X)
Ie, I'm hoping to replace the existing transform of:
bitcast ( trunc ( lshr ( bitcast X)))
added by:
http://reviews.llvm.org/rL112232
with 2 less specific transforms to catch the case in the bug report.
Differential Revision: http://reviews.llvm.org/D14879
llvm-svn: 255137
Example:
bitcast (extractelement (bitcast <2 x float> %X to <2 x i32>), 1) to float
--->
extractelement <2 x float> %X, i32 1
This is part of fixing PR25543:
https://llvm.org/bugs/show_bug.cgi?id=25543
The next step will be to generalize this fold:
trunc ( lshr ( bitcast X) ) -> extractelement (X)
Ie, I'm hoping to replace the existing transform of:
bitcast ( trunc ( lshr ( bitcast X)))
added by:
http://reviews.llvm.org/rL112232
with 2 less specific transforms to catch the case in the bug report.
Differential Revision: http://reviews.llvm.org/D14879
llvm-svn: 255124
The logic for handling the pattern without a shift is identical
to the logic for handling the pattern with a shift if you set
the shift amount to zero for the former.
This should make it easier to see that we probably don't even need
optimizeIntToFloatBitCast().
If we call something like foldVecTruncToExtElt() from visitTrunc(),
we'll solve PR25543:
https://llvm.org/bugs/show_bug.cgi?id=25543
llvm-svn: 253403
removes cast by performing the lshr on smaller types. However, currently there
is no trunc(lshr (sext A), Cst) variant.
This patch add such optimization by transforming trunc(lshr (sext A), Cst)
to ashr A, Cst.
Differential Revision: http://reviews.llvm.org/D12520
llvm-svn: 247271
removes cast by performing the lshr on smaller types. However, currently there
is no trunc(lshr (sext A), Cst) variant.
This patch add such optimization by transforming trunc(lshr (sext A), Cst)
to ashr A, Cst.
Differential Revision: http://reviews.llvm.org/D12520
llvm-svn: 246997
The select pattern recognition in ValueTracking (as used by InstCombine
and SelectionDAGBuilder) only knew about integer patterns. This teaches
it about minimum and maximum operations.
matchSelectPattern() has been extended to return a struct containing the
existing Flavor and a new enum defining the pattern's behavior when
given one NaN operand.
C minnum() is defined to return the non-NaN operand in this case, but
the idiomatic C "a < b ? a : b" would return the NaN operand.
ARM and AArch64 at least have different instructions for these different cases.
llvm-svn: 244580
Make sure if we're truncating a constant that would then be sign extended
that the sign extension of the truncated constant is the same as the
original constant.
> Canonicalize min/max expressions correctly.
>
> This patch introduces a canonical form for min/max idioms where one operand
> is extended or truncated. This often happens when the other operand is a
> constant. For example:
>
> %1 = icmp slt i32 %a, i32 0
> %2 = sext i32 %a to i64
> %3 = select i1 %1, i64 %2, i64 0
>
> Would now be canonicalized into:
>
> %1 = icmp slt i32 %a, i32 0
> %2 = select i1 %1, i32 %a, i32 0
> %3 = sext i32 %2 to i64
>
> This builds upon a patch posted by David Majenemer
> (https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
> passively stopped instcombine from ruining canonical patterns. This
> patch additionally actively makes instcombine canonicalize too.
>
> Canonicalization of expressions involving a change in type from int->fp
> or fp->int are not yet implemented.
llvm-svn: 237821
SimplifyDemandedBits was "simplifying" a constant by removing just sign bits.
This caused a canonicalization race between different parts of instcombine.
Fix and regression test added - third time lucky?
llvm-svn: 237539
The AArch64 LNT bot is unhappy - I've found that the problem is in
SimpliftDemandedBits, but that's going to require another code review
so reverting in the meantime.
llvm-svn: 237528
The test timeouts were due to instcombine fighting itself. Regression test added.
Original log message:
Canonicalize min/max expressions correctly.
This patch introduces a canonical form for min/max idioms where one operand
is extended or truncated. This often happens when the other operand is a
constant. For example:
%1 = icmp slt i32 %a, i32 0
%2 = sext i32 %a to i64
%3 = select i1 %1, i64 %2, i64 0
Would now be canonicalized into:
%1 = icmp slt i32 %a, i32 0
%2 = select i1 %1, i32 %a, i32 0
%3 = sext i32 %2 to i64
This builds upon a patch posted by David Majenemer
(https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
passively stopped instcombine from ruining canonical patterns. This
patch additionally actively makes instcombine canonicalize too.
Canonicalization of expressions involving a change in type from int->fp
or fp->int are not yet implemented.
llvm-svn: 237520
We already had a method to iterate over all the incoming values of a PHI. This just changes all eligible code to use it.
Ineligible code included anything which cared about the index, or was also trying to get the i'th incoming BB.
llvm-svn: 237169
This just didn't need to be here at all, but the assertion I tried to
add wasn't appropriate either - the circumstance isn't impossible, it's
just not important to deal with it here - the gep-rooted version of this
instcombine will handle this case, we don't need to duplicate it for the
case where the gep happens to be used in a bitcast.
llvm-svn: 233404
The changes to InstCombine (& SCEV) do seem a bit silly - it doesn't make
anything obviously better to have the caller access the pointers element
type (the thing I'm trying to remove) than the GEP itself, but it's a
helpful migration step. This will allow me to more obviously lock down
GEP (& Load, etc) API usage, then fix all the code that accesses pointer
element types except the places that need to be removed (most of the
InstCombines) anyway - at which point I'll need to just remove all that
code because it won't be meaningful anymore (there will be no pointer
types, so no bitcasts to combine)
SCEV looks like it'll need some restructuring - we'll have to do a bit
more work for GEP canonicalization, since it'll depend on how it's used
if we can even manage to canonicalize it to a non-ugly GEP. I guess we
can do some fun stuff like voting (do 2 out of 3 load from the GEP with
a certain type that gives a pretty GEP? Does every typed use of the GEP
use either a specific type or a generic type (i8*, etc)?)
llvm-svn: 233131
Assert that this doesn't fire - I'll remove all of this later, but just
leaving it in for a while in case this is firing & we just don't have
test coverage.
llvm-svn: 233116
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
If we know that the sign bit of a value being sign extended is zero, we can use a zero extension instead. This is motivated by the fact that zero extensions are generally cheaper on x86 (and most other architectures?). We already apply a similar transform in DAGCombine, this just extends that to the IR level.
This comes up when we eagerly canonicalize gep indices to the width of a machine register (i64 on x86_64). To do so, we insert sign extensions (sext) to promote smaller types.
Differential Revision: http://reviews.llvm.org/D7255
llvm-svn: 229189
creating a non-internal header file for the InstCombine pass.
I thought about calling this InstCombiner.h or in some way more clearly
associating it with the InstCombiner clas that it is primarily defining,
but there are several other utility interfaces defined within this for
InstCombine. If, in the course of refactoring, those end up moving
elsewhere or going away, it might make more sense to make this the
combiner's header alone.
Naturally, this is a bikeshed to a certain degree, so feel free to lobby
for a different shade of paint if this name just doesn't suit you.
llvm-svn: 226783
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.
This is in preparation for porting this analysis to the new pass
manager.
No functionality changed, and updates inbound for Clang and Polly.
llvm-svn: 226078
Summary:
InstCombine infinite-loops for the testcase added
It is because InstCombine is generating instructions that can be
optimized by itself. Fix by not optimizing frem if the optimized
type is the same as original type.
rdar://problem/19150820
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6634
llvm-svn: 224097
We would attempt to replace an frem's operand with the same operand.
This would cause InstCombine to think real work was done, causing
InstCombine to enter an infinite loop.
This fixes the second part of PR21576.
llvm-svn: 222265
We would attempt to replace a fptrunc of an frem with an identical
fptrunc. This would cause the new fptrunc to be added to the worklist.
Of course, this results in an infinite loop because we will keep
visiting the newly created fptruncs.
This fixes PR21576.
llvm-svn: 222040
This patch removes a chunk of special case logic for folding
(float)sqrt((double)x) -> sqrtf(x)
in InstCombineCasts and handles it in the mainstream path of SimplifyLibCalls.
No functional change intended, but I loosened the restriction on the existing
sqrt testcases to allow for this optimization even without unsafe-fp-math because
that's the existing behavior.
I also added a missing test case for not shrinking the llvm.sqrt.f64 intrinsic
in case the result is used as a double.
Differential Revision: http://reviews.llvm.org/D5919
llvm-svn: 220514
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
In the original version of the patch the behaviour was like described in
the comment. This behaviour was changed before committing it without
updating the comment.
llvm-svn: 213117
As a follow-up to r210375 which canonicalizes addrspacecast
instructions, this patch canonicalizes addrspacecast constant
expressions.
Given clang uses ConstantExpr::getAddrSpaceCast to emit addrspacecast
cosntant expressions, this patch is also a step towards having the
frontend emit canonicalized addrspacecasts.
Piggyback a minor refactor in InstCombineCasts.cpp
Update three affected tests in addrspacecast-alias.ll,
access-non-generic.ll and constant-fold-gep.ll and added one new test in
constant-fold-address-space-pointer.ll
llvm-svn: 211004
addrspacecast X addrspace(M)* to Y addrspace(N)*
-->
bitcast X addrspace(M)* to Y addrspace(M)*
addrspacecast Y addrspace(M)* to Y addrspace(N)*
Updat all affected tests and add several new tests in addrspacecast.ll.
This patch is based on http://reviews.llvm.org/D2186 (authored by Matt
Arsenault) with fixes and more tests.
llvm-svn: 210375
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
header files and into the cpp files.
These files will require more touches as the header files actually use
DEBUG(). Eventually, I'll have to introduce a matched #define and #undef
of DEBUG_TYPE for the header files, but that comes as step N of many to
clean all of this up.
llvm-svn: 206777
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.
llvm-svn: 201827
InstCombine, in visitFPTrunc, applies the following optimization to sqrt calls:
(fptrunc (sqrt (fpext x))) -> (sqrtf x)
but does not apply the same optimization to llvm.sqrt. This is a problem
because, to enable vectorization, Clang generates llvm.sqrt instead of sqrt in
fast-math mode, and because this optimization is being applied to sqrt and not
applied to llvm.sqrt, sometimes the fast-math code is slower.
This change makes InstCombine apply this optimization to llvm.sqrt as well.
This fixes the specific problem in PR17758, although the same underlying issue
(optimizations applied to libcalls are not applied to intrinsics) exists for
other optimizations in SimplifyLibCalls.
llvm-svn: 194935
These functions used to assume that the lsb of an integer corresponds
to vector element 0, whereas for big-endian it's the other way around:
the msb is in the first element and the lsb is in the last element.
Fixes MultiSource/Benchmarks/mediabench/gsm/toast for z.
llvm-svn: 188155
The shift amount may be larger than the type leading to undefined behavior.
Limit the transform to constant shift amounts. While there update the bits to
clear in the result which may enable additional optimizations.
PR15959.
llvm-svn: 181604
The OptimizeIntToFloatBitCast converts shift-truncate sequences
into extractelement operations. The computation of the element
index to be used in the resulting operation is currently only
correct for little-endian targets.
This commit fixes the element index computation to be correct
for big-endian targets as well. If the target byte order is
unknown, the optimization cannot be performed at all.
llvm-svn: 178031
When considering folding a bitcast of an alloca into the alloca itself,
make sure we don't shrink the amount of memory being allocated, or
things rapidly go sideways.
rdar://13324424
llvm-svn: 176547
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
The later API is nicer than the former, and is correct regarding wrap-around offsets (if anyone cares).
There are a few more places left with duplicated code, which I'll remove soon.
llvm-svn: 171259
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
llvm-svn: 167222
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
llvm-svn: 167221