This reverts commit r267833 as it breaks the build. It looks like some work in progress got
committed together with the actual fix, but I'm not sure which one is which, so I'll revert the
whole patch and let author resumbit it after fixing the build error.
llvm-svn: 267861
In templated const functions, trying to run an expression would produce the
error
error: out-of-line definition of '$__lldb_expr' does not match any declaration in 'foo'
member declaration does not match because it is const qualified
error: 1 error parsing expression
which is no good. It turned out we don't actually need to worry about "const,"
we just need to be consistent about the declaration of the expression and the
FunctionDecl we inject into the class for "this."
Also added a test case.
<rdar://problem/24985958>
llvm-svn: 267833
There's an open bug with calling functions in the inferior. And Windows doesn't have the POSIX function getpid().
Differential Revision: http://reviews.llvm.org/D19626
llvm-svn: 267800
Use __attribute__((regparm(x))) to ensure the compiler enregisters at least some arguments when calling functions.
Differential Revision: http://reviews.llvm.org/D19548
llvm-svn: 267616
Python 3.5 is pickier about the distinction between chars and bytes (and strings and bytearrays) than Python 2.7.
Differential Revision: http://reviews.llvm.org/D19510
llvm-svn: 267562
Summary:
lldb-server tests are currently being skipped on the
check-lldb target. This is because we get the path of
lldb-server by modifying the path to the lldb executable.
However, by this point, we've changed directories, and a
relative path to the build/bin directory will no longer point
to the location of lldb-server.
Storing an absolute path solves this issue.
Reviewers: vharron, zturner, tfiala, labath
Subscribers: labath, lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D19082
llvm-svn: 267463
Summary:
"gcc" is equivalent to "ehframe" in ProcessGDBRemote, but
only "ehframe" was a valid response in the test suite.
Reviewers: tfiala, jasonmolenda, clayborg
Subscribers: lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D18807
llvm-svn: 267459
Test added in r267248 exposed a bug in handling of dwarf produced by clang>=3.9, which causes a
crash during expression evaluation. Skip the test until this is sorted out.
llvm-svn: 267407
This option evaluates an expression and, if the result is of pointer type, treats it as if it was an array of that many elements and displays such elements
This has a couple subtle points but is mostly as straightforward as it sounds
Add a parray N <expr> alias for this new mode
Also, extend the --object-description mode to do the moral equivalent of the above but display each element in --object-description mode
Add a poarray N <expr> alias for this
llvm-svn: 267372
Some older versions of clang emitted bit offsets that were negative and these bitfields would have their bitfield-ness stripped off and it would cause a clang assertion in clang assertions were enabled. I updated the bitfield C test to make sure we don't regress.
<rdar://problem/21082998>
llvm-svn: 267248
This change moves all the test event handling and its related
ResultsFormatter classes out of the packages/Python/lldbsuite/test dir
into a packages/Python/lldbsuite/test_event package. Formatters are
moved into a sub-package under that.
I am limiting the scope of this change to just the motion and a few
minor issues caught by a static Python checker (e.g. removing unused
import statements).
This is a pre-step for adding package-level tests to the test event
system. I also intend to simplify test event results formatter selection
after I make sure this doesn't break anybody.
See:
http://reviews.llvm.org/D19288
Reviewed by:
Pavel Labath
llvm-svn: 266885
Also does the following:
* adopts PEP8 naming convention for OptionalWith class (now
optional_with).
* moves test_runner/lldb_utils.py to lldbsuite/support/optional_with.py.
* packages tests in a subpackage of test_runner per recommendations in
http://the-hitchhikers-guide-to-packaging.readthedocs.org/en/latest/creation.html
Tests can be run from within pacakges/Python/lldbsuite/test via this
command:
python -m unittest discover test_runner
The primary cleanup this allows is avoiding the need to muck with the
PYTHONPATH variable from within the source files. This also aids some
of the static code checkers as they don't need to run code to determine
the proper python path.
llvm-svn: 266710
This ensure lldbinline.test_file paths are tracked as .py
files rather than .pyc files.
Also, this change adds an assert to the test infrastructure
if a filename that is not ending in .py is attempted to be
added to the test events infrastructure where we track test
results.
See:
http://reviews.llvm.org/D19215
Earlier revision reviewed by:
Pavel Labath
llvm-svn: 266664
The race boiled down to this:
If a test worker queue is able to run the test inferior and
clean up before the dosep.py listener socket is spun up, and
the worker queue is the last one (as would be the case when
there's only one test rerunning in the rerun queue), then
the test suite will exit the main loop before having a chance
to process any test events coming from the test inferior or
the worker queue job control.
I found this race to be far more likely on fast hardware.
Our Linux CI is one such example. While it will show
up primarily during meta test events generated by
a worker thread when a test inferior times out or
exits with an exceptional exit (e.g. seg fault), it only
requires that the OS takes longer to hook up the
listener socket than it takes for the final test inferior
and worker thread to shut down.
See:
http://reviews.llvm.org/D19214
reviewed by:
Pavel Labath
llvm-svn: 266624
Summary:
The original breakpoint location test was failing for linux, because the compilers here tend to
merge the full-object and subobject destructors even at -O0 (as a result, we are getting only 2
breakpoint locations, and not 4 as the test expected. The fixup in r266164 substantially weakened
the test, as it now did not check whether both kinds of destructors were being found.
Because of these contraints, I have altered the logic of the test. It sets the
breakpoint by name, and then independently verifies that the breakpoint is set on the correct
demangled symbol name (which is not very meaningful since both kinds of destructors demangle to
the same name) *and* the correct symbol address (which is obtained by looking up the mangled
symbol name).
Reviewers: clayborg
Subscribers: ovyalov, zturner, lldb-commits
Differential Revision: http://reviews.llvm.org/D19052
llvm-svn: 266416
The android dirty stderr problem has uncovered an issue where lldbutil.expect_state_changes was
reading events other than state change events, which resulted in general confusion. Make it more
strict to accept *only* state changes.
llvm-svn: 266327
Summary:
On some android targets, a binary can produce additional garbage (e.g. warning messages from the
dynamic linker) on the standard error, which confuses some tests. This relaxes the stderr
expectations for targets known for their chattyness.
Reviewers: tfiala, ovyalov
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: http://reviews.llvm.org/D19114
llvm-svn: 266326
A number of test cases were failing on big-endian systems simply due to
byte order assumptions in the tests themselves, and no underlying bug
in LLDB.
These two test cases:
tools/lldb-server/lldbgdbserverutils.py
python_api/process/TestProcessAPI.py
actually check for big-endian target byte order, but contain Python errors
in the corresponding code paths.
These test cases:
functionalities/data-formatter/data-formatter-python-synth/TestDataFormatterPythonSynth.py
functionalities/data-formatter/data-formatter-smart-array/TestDataFormatterSmartArray.py
functionalities/data-formatter/synthcapping/TestSyntheticCapping.py
lang/cpp/frame-var-anon-unions/TestFrameVariableAnonymousUnions.py
python_api/sbdata/TestSBData.py (first change)
could be fixed to check for big-endian target byte order and update the
expected result strings accordingly. For the two synthetic tests, I've
also updated the source to make sure the fake_a value is always nonzero
on both big- and little-endian platforms.
These test case:
python_api/sbdata/TestSBData.py (second change)
functionalities/memory/cache/TestMemoryCache.py
simply accessed memory with the wrong size, which wasn't noticed on LE
but fails on BE.
Differential Revision: http://reviews.llvm.org/D18985
llvm-svn: 266315
This fixes several test case failure on s390x caused by the fact that
on this platform, the default "char" type is unsigned.
- In ClangASTContext::GetBuiltinTypeForEncodingAndBitSize we should return
an explicit *signed* char type for encoding eEncodingSint and bit size 8,
instead of the default platform char type (which may be unsigned).
This fix matches existing code in ClangASTContext::GetIntTypeFromBitSize,
and fixes the TestClangASTContext.TestBuiltinTypeForEncodingAndBitSize
unit test case.
- The test/expression_command/char/TestExprsChar.py test case is known to
fail on platforms defaulting to unsigned char (pr23069), and just needs
to be xfailed on s390x like on arm.
- The test/functionalities/watchpoint/watchpoint_on_vectors/main.c test
case defines a vector of "char" and implicitly assumes to be signed.
Use an explicit "signed char" instead.
Differential Revision: http://reviews.llvm.org/D18979
llvm-svn: 266309
This patch adds support for Linux on SystemZ:
- A new ArchSpec value of eCore_s390x_generic
- A new directory Plugins/ABI/SysV-s390x providing an ABI implementation
- Register context support
- Native Linux support including watchpoint support
- ELF core file support
- Misc. support throughout the code base (e.g. breakpoint opcodes)
- Test case updates to support the platform
This should provide complete support for debugging the SystemZ platform.
Not yet supported are optional features like transaction support (zEC12)
or SIMD vector support (z13).
There is no instruction emulation, since our ABI requires that all code
provide correct DWARF CFI at all PC locations in .eh_frame to support
unwinding (i.e. -fasynchronous-unwind-tables is on by default).
The implementation follows existing platforms in a mostly straightforward
manner. A couple of things that are different:
- We do not use PTRACE_PEEKUSER / PTRACE_POKEUSER to access single registers,
since some registers (access register) reside at offsets in the user area
that are multiples of 4, but the PTRACE_PEEKUSER interface only allows
accessing aligned 8-byte blocks in the user area. Instead, we use a s390
specific ptrace interface PTRACE_PEEKUSR_AREA / PTRACE_POKEUSR_AREA that
allows accessing a whole block of the user area in one go, so in effect
allowing to treat parts of the user area as register sets.
- SystemZ hardware does not provide any means to implement read watchpoints,
only write watchpoints. In fact, we can only support a *single* write
watchpoint (but this can span a range of arbitrary size). In LLDB this
means we support only a single watchpoint. I've set all test cases that
require read watchpoints (or multiple watchpoints) to expected failure
on the platform. [ Note that there were two test cases that install
a read/write watchpoint even though they nowhere rely on the "read"
property. I've changed those to simply use plain write watchpoints. ]
Differential Revision: http://reviews.llvm.org/D18978
llvm-svn: 266308
result_formatter used inspect.getfile() to get the python file name, which returned "*.pyc" if
the bytecode file was present. This resulted in files being displayed with the wrong extension,
and more critically, would confuse the rerun logic because it would try to rerun the pyc file
(which resulted in an empty rerun list as unittest refused to run those).
Fix: use inspect.getsourcefile() instead.
I am not sure why does was not an issue before. I can only assume that some system update
tricked python into producing bytecode files more aggressively.
llvm-svn: 266192
When run with the multiprocess test runner, the getchar() trick doesn't work, so ninja check-lldb would fail on this test, but running the test directly worked fine.
Differential Revision: http://reviews.llvm.org/D19035
llvm-svn: 266145
(lldb) b ~Foo
(lldb) b Foo::~Foo
(lldb) b Bar::Foo::~Foo
Improved out C++ breakpoint locations tests as well to cover this issue.
<rdar://problem/25577252>
llvm-svn: 266139
The result variables aren't useful, and if you have a breakpoint on a
common function you can generate a lot of these. So I changed the
code that checks the condition to set ResultVariableIsInternal in the
EvaluateExpressionOptions that we pass to the execution.
Unfortunately, the check for this variable was done in the wrong place
(the static UserExpression::Evaluate) which is not how breakpoint
conditions execute expressions (UserExpression::Execute). So I moved
the check to UserExpression::Execute (which Evaluate also calls) and made the
overridden method DoExecute.
llvm-svn: 266093