to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
There are a few leftovers in rL343163 which span two lines. This commit
changes these llvm::sort(C.begin(), C.end, ...) to llvm::sort(C, ...)
llvm-svn: 343426
This patch splits off some abstractions used by dsymutil's dwarf linker
and moves them into separate header and implementation files. This
almost halves the number of LOC in DwarfLinker.cpp and makes it a lot
easier to understand what functionality lives where.
Differential revision: https://reviews.llvm.org/D48647
llvm-svn: 335749
Create convenience functions for printing error, warning and note to
stdout. Previously we had similar functions being used in dsymutil, but
given that this pattern is so common it makes sense to make it available
globally.
llvm-svn: 330091
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: JDevlieghere, zturner, echristo, dberris, friss
Reviewed By: echristo
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D45141
llvm-svn: 328943
Now that almost all functionality of Apple's dsymutil has been
upstreamed, the open source variant can be used as a drop in
replacement. Hence we feel it's no longer necessary to have the llvm
prefix.
Differential revision: https://reviews.llvm.org/D44527
llvm-svn: 327790
This is a follow-up to r327137 where we unified error handling for the
DwarfLinker. This replaces calls to errs() and outs() with the
appropriate ostream wrapper everywhere in dsymutil.
llvm-svn: 327411
Summary:
Xcode's dsymutil emits a __swift_ast DWARF section, which is required for debugging,
and which contains a byte-for-byte dump of the swiftmodule file.
Add this feature to llvm-dsymutil.
Tested with `gobjdump --dwarf=info -s`, by verifying that the contents of
`__DWARF.__swift_ast` match between Xcode's dsymutil and llvm-dsymutil
(Xcode's dwarfdump and llvm-dwarfdump don't currently recognize the
__swift_ast section).
Reviewers: aprantl, friss
Subscribers: llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D38504
llvm-svn: 315066
Summary:
Xcode's dsymutil emits a __swift_ast DWARF section, which is required for debugging,
and which contains a byte-for-byte dump of the swiftmodule file.
Add this feature to llvm-dsymutil.
Tested with `gobjdump --dwarf=info -s`, by verifying that the contents of
`__DWARF.__swift_ast` match between Xcode's dsymutil and llvm-dsymutil
(Xcode's dwarfdump and llvm-dwarfdump don't currently recognize the
__swift_ast section).
Reviewers: aprantl, friss
Subscribers: llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D38504
llvm-svn: 315014
Summary:
Xcode's dsymutil emits a __swift_ast DWARF section, which is required for debugging,
and which contains a byte-for-byte dump of the swiftmodule file.
Add this feature to llvm-dsymutil.
Tested with `gobjdump --dwarf=info -s`, by verifying that the contents of
`__DWARF.__swift_ast` match between Xcode's dsymutil and llvm-dsymutil
(Xcode's dwarfdump and llvm-dwarfdump don't currently recognize the
__swift_ast section).
Reviewers: aprantl, friss
Subscribers: llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D38504
llvm-svn: 315004
Summary:
All changes are pretty straight-forward. I chose to use TimePoints with
second precision, as that is all that seems to be required here.
Reviewers: friss, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25908
llvm-svn: 286358
Produce another specific error message for a malformed Mach-O file when a symbol’s
string index is past the end of the string table. The existing test case in test/Object/macho-invalid.test
for macho-invalid-symbol-name-past-eof now reports the error with the message indicating
that a symbol at a specific index has a bad sting index and that bad string index value.
Again converting interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. Where the existing code reported the error with a
string message or an error code it was converted to do the same. There is some
code for this that could be factored into a routine but I would like to leave that for
the code owners post-commit to do as they want for handling an llvm::Error. An
example of how this could be done is shown in the diff in
lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h which had a Check() routine
already for std::error_code so I added one like it for llvm::Error .
Also there some were bugs in the existing code that did not deal with the
old ErrorOr<> return values. So now with Expected<> since they must be
checked and the error handled, I added a TODO and a comment:
“// TODO: Actually report errors helpfully” and a call something like
consumeError(NameOrErr.takeError()) so the buggy code will not crash
since needed to deal with the Error.
Note there fixes needed to lld that goes along with this that I will commit right after this.
So expect lld not to built after this commit and before the next one.
llvm-svn: 266919
llvm-dsymutil was misinterpreting the value of common symbols as their
address when it actually contains their size. This didn't impact
llvm-dsymutil's ability to link the debug information for common symbols
because these are always found by name and not by address. Things could
however go wrong when the size of a common object matched the object
file address of another symbol. Depending on the link order of the symbols
the common object might incorrectly evict this other object from the
address to symbol mapping, and then link the evicted symbol with a wrong
binary address.
Use the new ability to have symbols without an object file address to fix
this.
llvm-svn: 259318
This change just changes the data structure that ties symbol names,
object file address and linked binary addresses to accept mappings
with no object file address. Such symbol mappings are not fed into
the debug map yet, so this patch is NFC.
A subsequent patch will make use of this functionality for common
symbols.
llvm-svn: 259317
llvm-dsymutil needs to emit dSYM companion bundles. These are binary files
that replicate some of the orignal binary file properties (sections and
symbols). To get acces to these properties, pass the binary path in the
debug map.
llvm-svn: 246011
The DWARF linker isn't touched by this, the implementation links
individual files and merges them together into a fat binary by
calling out to the 'lipo' utility.
The main change is that the MachODebugMapParser can now return
multiple debug maps for a single binary.
The test just verifies that lipo would be invoked correctly, but
doesn't actually generate a binary. This mimics the way clang
tests its external iplatform tools integration.
llvm-svn: 244087
This patch allows llvm-dsymutil to read universal (aka fat) macho object
files and archives. The patch touches nearly everything in the BinaryHolder,
but it is fairly mechinical: the methods that returned MemoryBufferRefs or
ObjectFiles now return a vector of those, and the high-level access function
takes a triple argument to select the architecture.
There is no support yet for handling fat executables and thus no support for
writing fat object files.
llvm-svn: 243096
The debug map contains the timestamp of the object files in references.
We do not check these in the general case, but it's really useful if
you have archives where different versions of an object file have been
appended. This allows llvm-dsymutil to find the right one.
llvm-svn: 242965
getSymbolValue now returns a value that in convenient for most callers:
* 0 for undefined
* symbol size for common symbols
* offset/address for symbols the rest
Code that needs something more specific can check getSymbolFlags.
llvm-svn: 241605
At least not in the interface exposed by ObjectFile. This matches what ELF and
COFF implement.
Adjust existing code that was expecting them to have values. No overall
functionality change intended.
Another option would be to change the interface and the ELF and COFF
implementations to say that the value of a common symbol is its size.
llvm-svn: 241593
This function can really fail since the string table offset can be out of
bounds.
Using ErrorOr makes sure the error is checked.
Hopefully a lot of the boilerplate code in tools/* can go away once we have
a diagnostic manager in Object.
llvm-svn: 241297
The main use of the YAML debug map format is for testing inside LLVM. If we have IR
files in the tests used to generate object files, then we obviously don't know the
addresses of the symbols inside the object files beforehand.
This change lets the YAML import lookup the addresses in the object files and rewrite
them. This will allow to have test that really don't need any binary input.
llvm-svn: 239189
It will get a bit bigger in an upcoming commit. No need to have all
of that in the header.
Also move parseYAMLDebugMap() to the same place as the serialization
code. This way it will be able to share a private Context object with
it.
llvm-svn: 239185
Doing so will allow us to also accept a YAML debug map in input as using
YAMLIO gives us the parsing for free. Being able to have textual debug
maps will in turn allow much more control over the tests, because 1/
no need to check-in a binary containing the debug map and 2/ it will allow
to use the same objects/IR files with made-up debug-maps to test
different scenari.
llvm-svn: 238781
The debug map embedded by ld64 in binaries conatins function sizes.
These sizes are less precise than the ones given by the debug information
(byte granularity vs linker atom granularity), but they might cover code
that is referenced in the line table but not in the DIE tree (that might
very well be a compiler bug that I need to investigate later).
Anyway, extracting that information is necessary to be able to mimic
dsymutil's behavior exactly.
llvm-svn: 232300
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
The goal of this tool is to replicate Darwin's dsymutil functionality
based on LLVM. dsymutil is a DWARF linker. Darwin's linker (ld64) does
not link the debug information, it leaves it in the object files in
relocatable form, but embbeds a `debug map` into the executable that
describes where to find the debug information and how to relocate it.
When releasing/archiving a binary, dsymutil is called to link all the DWARF
information into a `dsym bundle` that can distributed/stored along with
the binary.
With this commit, the LLVM based dsymutil is just able to parse the STABS
debug maps embedded by ld64 in linked binaries (and not all of them, for
example archives aren't supported yet).
Note that the tool directory is called dsymutil, but the executable is
currently called llvm-dsymutil. This discrepancy will disappear once the
tool will be feature complete. At this point the executable will be renamed
to dsymutil, but until then you do not want it to override the system one.
Differential Revision: http://reviews.llvm.org/D6242
llvm-svn: 224134
The goal of this tool is to replicate Darwin's dsymutil functionality
based on LLVM. dsymutil is a DWARF linker. Darwin's linker (ld64) does
not link the debug information, it leaves it in the object files in
relocatable form, but embbeds a `debug map` into the executable that
describes where to find the debug information and how to relocate it.
When releasing/archiving a binary, dsymutil is called to link all the DWARF
information into a `dsym bundle` that can distributed/stored along with
the binary.
With this commit, the LLVM based dsymutil is just able to parse the STABS
debug maps embedded by ld64 in linked binaries (and not all of them, for
example archives aren't supported yet).
Note that the tool directory is called dsymutil, but the executable is
currently called llvm-dsymutil. This discrepancy will disappear once the
tool will be feature complete. At this point the executable will be renamed
to dsymutil, but until then you do not want it to override the system one.
Differential Revision: http://reviews.llvm.org/D6242
llvm-svn: 223793