shuffle before inserting on a 256-bit vector.
- Add AVX versions of movd/movq instructions
- Introduce a few COPY patterns to match insert_subvector instructions.
This turns a trivial insert_subvector instruction into a register copy,
coalescing the xmm into a ymm and avoid emiting on more instruction.
llvm-svn: 136002
unwind encoding for that function. This simply crawls through the prolog looking
for machine instrs marked as "frame setup". It can calculate from these what the
compact unwind should look like.
This is currently disabled because of needed linker support. But initial tests
look good.
llvm-svn: 135922
the way to go. Doing this here will prevent several node matches later,
and would have to force looking all the way through several
VINSERTF128/VEXTRACTF128 chains to optimize simple things.
llvm-svn: 135730
and was actually very wrong, fix it and make it simpler. Also remove the
ConcatVectors function, which is unused now.
- Fix a introduction of useless nodes in r126664 and r126264. The
VUNPCKL* should never be introduced cause we don't want duplicate
nodes for 128 AVX and non-AVX modes, the actual instruction
difference only exists during isel, but not for target specific DAG
nodes. We only introduce V* target nodes when there is no 128-bit
version already there.
- Fix a fragile test and make it more useful.
llvm-svn: 135729
instruction introduced in AVX, which can operate on 128 and 256-bit vectors.
It considers a 256-bit vector as two independent 128-bit lanes. It can permute
any 32 or 64 elements inside a lane, and restricts the second lane to
have the same permutation of the first one. With the improved splat support
introduced early today, adding codegen for this instruction enable more
efficient 256-bit code:
Instead of:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vextractf128 $1, %ymm0, %xmm1
shufps $1, %xmm1, %xmm1
movss %xmm1, 28(%rsp)
movss %xmm1, 24(%rsp)
movss %xmm1, 20(%rsp)
movss %xmm1, 16(%rsp)
vextractf128 $0, %ymm0, %xmm0
shufps $1, %xmm0, %xmm0
movss %xmm0, 12(%rsp)
movss %xmm0, 8(%rsp)
movss %xmm0, 4(%rsp)
movss %xmm0, (%rsp)
vmovaps (%rsp), %ymm0
We get:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vpermilps $85, %ymm0, %ymm0
llvm-svn: 135662
refactor the code and add a bunch of comments. The final shuffle
emitted by handling 256-bit types is suitable for the VPERM shuffle
instruction which is going to be introduced in a next commit (with
a testcase which cover this commit)
llvm-svn: 135661
- Introduce JITDefault code model. This tells targets to set different default
code model for JIT. This eliminates the ugly hack in TargetMachine where
code model is changed after construction.
llvm-svn: 135580
(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
llvm-svn: 135468
to MCRegisterInfo. Also initialize the mapping at construction time.
This patch eliminate TargetRegisterInfo from TargetAsmInfo. It's another step
towards fixing the layering violation.
llvm-svn: 135424