In ProcessMachCore::DoLoadCore when we have a standalone
binary and a 'main bin spec' LC_NOTE detailing the UUID and
load address, ProcessMachCore will do a (potentially slow)
lookup to try to find the binary and/or dSYM. For kernel and
userland corefile using 'main bin spec', we would follow the
normal schemes of locating them. DynamicLoaderDarwinKernel would
use the same (possibly expensive) calls to find the correct
binary. dyld by default would use the in-core-file binary image,
and so if the corefile didn't include the entire address space,
the LINKEDIT for dyld could be missing. This means we can't find
the dyld4::dyld_all_image_infos struct, which tells us where the
other binaries are loaded in memory.
Treat userland 'bin main spec' like we do standalone firmewares;
try the expensive checks to find the best dyld we can, before
falling back to using a memory module out of the corefile.
Also add a little TODO for myself in this load_standalone_binary
function that we should handle the case of a binary in the shared
cache correctly, creating a memory module in the corefile and
using the segment load addresses from that to set our segment
load addresses for the final binary.
rdar://89717101
The BL8_NOTOC_RM instruction was incorrectly producing a relocation that reqired
a TOC restore after the call. This patch fixes that issue and the notoc
relocation is now used.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D122012
This patch adds aligned_alloc as an entrypoint. Previously it was being
included implicitly.
Reviewed By: sivachandra
Differential Revision: https://reviews.llvm.org/D122362
The current code increment the indirect symbol offset with the LINKEDIT
slide every time ObjectFileMachO::ParseSymtab is called.
This resulted in a crash when calling add-dsym which causes us to
potentially re-parse the original binary's symbol table. There's a
separate question about whether we should re-parse the symbol table at
all which was fixed by D114288. Regardless, copying the load command is
cheap enough that this is still the right thing to do.
rdar://72337717
Differential revision: https://reviews.llvm.org/D122349
We were previously linking to libllvmlibc.a. But, with libllvmlibc.a now
including functions which depend on the loader, we will have to use the
LLVM libc loader as well. To avoid this, we will link to a special
library which is just a collection of SCUDO allocator entrypoints.
Reviewed By: michaelrj
Differential Revision: https://reviews.llvm.org/D122360
The assertion checks that the command output doesn't contain any null
bytes. I'm not sure if the intention was to make sure the string wasn't
shorter than the reported length or if this was a way to catch us
accidentally writing an (unformatted) null byte.
The consensus is that we don't want to have embedded nulls in the
command output, but that this isn't the right place to enforce that.
Differential revision: https://reviews.llvm.org/D122025
Add test for forall lowering use case.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D122356
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patch adds more lowering tests from the PFT to FIR.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D122354
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This patch primarily fixes the fenv implementation on Windows, since
Windows uses the MXCSR in place of the x87 status registers for storing
information about the floating point environment. This allows FEnv to
work correctly on Windows, and successfully build.
Reviewed By: lntue
Differential Revision: https://reviews.llvm.org/D121839
Currently we create offloading entries to register device variables with
the host. When we register a variable we will look up the symbol in the
device image and map the device address to the host address. This is a
problem when the symbol is declared with hidden visibility or internal
linkage. This means the symbol is not accessible externally and we
cannot get its address. We should still allow static variables to be
declared on the device, but ew should not create an offloading entry for
them so they exist independently on the host and device.
Fixes#54309
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D122352
This provides a way to create an operation without manipulating
OperationState directly. This is useful for creating unregistered ops.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D120787
This patch adds lowering tests for Fortran
interfaces.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D122326
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Add more use cases of lowering of derived types.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D122329
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Peter Steinfeld <psteinfeld@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Use `ProfileSummaryBuilder::DefaultCutoffs` for llvm-profdata detailed summary printing for Instr profile.
Differential Revision: https://reviews.llvm.org/D122210
Only use this on generic parser for now by not registering any dialect. For flushing out some parser bugs. The textual format is not meant to be load bearing in production runs, but still useful to remove edge cases/failures.
Differential Revision: https://reviews.llvm.org/D122267
Complete pseudo probes decoding can result in large memory usage. In practice only a small porting of the decoded probes are used in profile generation. I'm changing the full decoding mode to be decoding for profiled functions only, though we still do a full scan of the .pseudoprobe section due to a missing table-of-content but we don't have to build the in-memory data structure for functions not sampled.
To build the in-memory data structure for profiled functions only, I'm rewriting the previous non-recursive probe decoding logic to be recursive. This is easy to read and maintain.
I also have to change the previous representation of unsymbolized context from probe-based stack to address-based stack since the profiled functions are unknown yet by the time of virtual unwinding. The address-based stack will be converted to probe-based stack after virtual unwinding and on-demand probe decoding.
I'm seeing 20GB memory is saved for one of our internal large service.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D121643
This improves the getHostCPUName check for Apple M1 CPUs, which
previously would always be considered cyclone instead. This also enables
`-march=native` support when building on M1 CPUs which would previously
fail. This isn't as sophisticated as the X86 CPU feature checking which
consults the CPU via getHostCPUFeatures, but this is still better than
before. This CPU selection could also be invalid if this was run on an
iOS device instead, ideally we can improve those cases as they come up.
Differential Revision: https://reviews.llvm.org/D119788
Clang fails to diagnose:
```
void test() {
int j = 0;
for (int i = 0; i < 1000; i++)
j++;
return;
}
```
Reason: Missing support for UnaryOperator.
We should not warn with volatile variables... so add check for it.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D122271
All existing loader tests are switched to an integration test added with
the new rule. Also, the getenv test is now enabled as an integration test.
All loader tests have been moved to test/integration. Also, the simple
checker library for the previous loader tests has been moved to a
separate directory of its own.
A follow up change will perform more cleanup of the loader CMake rules
to eliminate now redundent options.
Reviewed By: lntue, michaelrj
Differential Revision: https://reviews.llvm.org/D122266
In some cases padding bubbles between sequential MFMA instructions may
lead to increased inter-wave performance. Add option to request to pad
some portion of these stall cycles with s_nops.
Fixes: SWDEV-326925
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D121437
There is potential for endless recursion if we try to determine the
underlying objects of a load, just to end up with the load as underlying
object. A proper solution will require us to pass a visited set around.
This will happen as we cleanup genericValueTraversal soon.
macOS 12.3 no longer ships non-3 python.
Almost all of these scripts were launched by ninja, and the GN files
already told it to run them under python3, so this is a fairly small
change. The main effect is that if you run them manually, you now
get the same behavior.
(A small set of scripts, gn.py, gen.py, sync_source_lists_from_cmake.py,
are for manual running. For these, it is an actual change.)
Differential Revision: https://reviews.llvm.org/D122345
Emitting at error at EOF will emit the diagnostic past the end of the file. When emitting an error during parsing at EOF, emit it at the previous character.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D122295
It behaves (mostly) like the LLVM_INSTALL_CCTOOLS_SYMLINKS option
in cmake.
The minor difference is that the llvm-objcopy symlinks bitcode_strip
and install_name_tool symlink to llvm-objcopy directly in the GN build,
while it's a bitcode_strip -> llvm-bitcode-strip -> objcopy chain
in the CMake build (and analogous for install_name_tool).
The implementation is very similar to the implementation of the
existing llvm_install_binutils_symlinks arg.
Differential Revision: https://reviews.llvm.org/D122312
When --disable-sample-loader-inlining is true, skip inline transformation, but merge profiles of inlined instances to outlining versions.
Differential Revision: https://reviews.llvm.org/D121862
This patch adds a lightweight assertion handler mechanism that can be
overriden at link-time in a fashion similar to `operator new`.
This is a third take on https://llvm.org/D121123 (which allowed customizing
the assertion handler at compile-time), and https://llvm.org/D119969
(which allowed customizing the assertion handler at runtime only).
This approach is, I think, the best of all three explored approaches.
Indeed, replacing the assertion handler in user code is ergonomic,
yet we retain the ability to provide a custom assertion handler when
deploying to older platforms that don't have a default handler in
the dylib.
As-is, this patch provides a pretty good amount of backwards compatibility
with the previous debug mode:
- Code that used to set _LIBCPP_DEBUG=0 in order to get basic assertions
in their code will still get basic assertions out of the box, but
those assertions will be using the new assertion handler support.
- Code that was previously compiled with references to __libcpp_debug_function
and friends will work out-of-the-box, no changes required. This is
because we provide the same symbols in the dylib as we used to.
- Code that used to set a custom __libcpp_debug_function will stop
compiling, because we don't provide that declaration anymore. Users
will have to migrate to the new way of setting a custom assertion
handler, which is extremely easy. I suspect that pool of users is
very limited, so breaking them at compile-time is probably acceptable.
The main downside of this approach is that code being compiled with
assertions enabled but deploying to an older platform where the assertion
handler didn't exist yet will fail to compile. However users can easily
fix the problem by providing a custom assertion handler and defining
the _LIBCPP_AVAILABILITY_CUSTOM_ASSERTION_HANDLER_PROVIDED macro to
let the library know about the custom handler. In a way, this is
actually a feature because it avoids a load-time error that one would
otherwise get when trying to run the code on the older target.
Differential Revision: https://reviews.llvm.org/D121478
These are based on tests that were included in the abandoned D122299.
Comments indicate what should or should not happen if we change
behavior in Negator.
This patch introduces 2 new lldb utility functions:
- lldbutil.start_listening_from: This can be called in the test setup to
create a listener and set it up for a specific event mask and add it
to the user-provided broadcaster's list.
- lldbutil.fetch_next_event: This will use fetch a single event from the
provided istener and return it if it matches the provided broadcaster.
The motivation behind this is to easily test new kinds of events
(i.e. Swift type-system progress events). However, this patch also
updates `TestProgressReporting.py` and `TestDiagnosticReporting.py`
to make use of these new helper functions.
Differential Revision: https://reviews.llvm.org/D122193
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Don't call EltVT.getSizeInBits() or SrcEltVT.getSizeInBits() a second
time. They are already in EltSize or SrcEltSize variables.
Refactor some comparisons to use multiply instead of division.
Before actually executing the ExtractAPIAction, clear the
CompilationInstance's input list and replace it with a single
synthesized file that just includes (or imports in ObjC) all the inputs.
Depends on D122141
Differential Revision: https://reviews.llvm.org/D122175