destructors of abstract classes. It's undefined behavior to actually
call the destructor (e.g., via delete), but the presence of code that
calls this destructor doesn't make the program
ill-formed. Fixes <rdar://problem/9819242>.
llvm-svn: 136180
that the destructor body is trivial and that all member variables also have either
trivial destructors or trivial destructor bodies, we don't need to initialize the
vtable pointers since no virtual member functions will be called on the destructor.
Fixes PR9181.
llvm-svn: 131368
simplify the logic of initializing function parameters so that we don't need
both a variable declaration and a type in FunctionArgList. This also means
that we need to propagate the CGFunctionInfo down in a lot of places rather
than recalculating it from the FAL. There's more we can do to eliminate
redundancy here, and I've left FIXMEs behind to do it.
llvm-svn: 127314
is not defined in the current translation unit. Doing so lead to compile errors
such as PR9114.
Instead, when CodeGen is building the vtable, don't try to emit a definition
for functions that aren't marked used in the current translation unit.
Fixes PR9114.
llvm-svn: 124768
process, perform a number of refactorings:
- Move MiscNameMangler member functions to MangleContext
- Remove GlobalDecl dependency from MangleContext
- Make MangleContext abstract and move Itanium/Microsoft functionality
to their own classes/files
- Implement ASTContext::createMangleContext and have CodeGen use it
No (intended) functionality change.
llvm-svn: 123386
data members by delaying the emission of the initializer until after
linkage and visibility have been set on the global. Also, don't
emit a guard unless the variable actually ends up with vague linkage,
and don't use thread-safe statics in any case.
llvm-svn: 118336
more closely parallel the computation of linkage. This gets us to a state
much closer to what gcc emits, modulo bugs, which will undoubtedly arise in
abundance.
llvm-svn: 117147
implement ARM array cookies. Also fix a few unfortunate bugs:
- throwing dtors in deletes prevented the allocation from being deleted
- adding the cookie to the new[] size was not being considered for
overflow (and, more seriously, was screwing up the earlier checks)
- deleting an array via a pointer to array of class type was not
causing any destructors to be run and was passing the unadjusted
pointer to the deallocator
- lots of address-space problems, in case anyone wants to support
free store in a variant address space :)
llvm-svn: 112814
class; they should just be completely opaque throughout IR gen now,
although I haven't really audited that.
Fix a bug apparently inherited from gcc-4.2 where we failed to null-check
member data pointers when performing derived-to-base or base-to-derived
conversions on them.
llvm-svn: 111789
Make CGT defer to the ABI on all member pointer types.
This requires giving CGT a handle to the ABI.
It's way easier to make that work if we avoid lazily creating the ABI.
Make it so.
llvm-svn: 111786
pointers. I find the resulting code to be substantially cleaner, and it
makes it very easy to use the same APIs for data member pointers (which I have
conscientiously avoided here), and it avoids a plethora of potential
inefficiencies due to excessive memory copying, but we'll have to see if it
actually works.
llvm-svn: 111776
the ABI code. Implement correct semantics for these on ARM.
I believe this completes the implementation of member function pointers
on ARM.
I think I'm going to switch member function pointers over to be
non-aggregates while I have all this in mind.
llvm-svn: 111774
duplication between the constant and non-constant paths in all of this.
Implement ARM ABI semantics for member pointer constants and conversion.
llvm-svn: 111772
isn't possible to compute.
This patch is mostly refactoring; the key change is the addition of the code
starting with the comment, "Check whether the function has a computable LLVM
signature." The solution here is essentially the same as the way the
vtable code handles such functions.
llvm-svn: 105151