followed by an identifier as declaration specificer (except for ObjC).
This allows e.g. an out-of-line C++ member function definitions to be
recognized as functions and not as variable declarations if the type
name for the first parameter is not recognized as a type--say, when there
is a function name shadowing an enum type name and the parameter is
missing the "enum" keyword needed to distinguish the two.
Note that returning TPResult::Error() instead of TPResult::True()
appears to have the same end result, while TPResult::Ambiguous()
results in a crash.
llvm-svn: 155163
* Alternative tokens (such as 'compl') are treated as identifiers in
attribute names.
* An attribute-list can start with a comma.
* An ellipsis may not be used with either of our currently-supported
C++11 attributes.
llvm-svn: 154381
* In C++11, '[[' is ill-formed unless it starts an attribute-specifier. Reject
array sizes and array indexes which begin with a lambda-expression. Recover by
parsing the lambda as a lambda.
* In Objective-C++11, either '[' could be the start of a message-send.
Fully disambiguate this case: it turns out that the grammars of message-sends,
lambdas and attributes do not actually overlap. Accept any occurrence of '[['
where either '[' starts a message send, but reject a lambda in an array index
just like in C++11 mode.
Implement a couple of changes to the attribute wording which occurred after our
attributes implementation landed:
* In a function-declaration, the attributes go after the exception specification,
not after the right paren.
* A reference type can have attributes applied.
* An 'identifier' in an attribute can also be a keyword. Support for alternative
tokens (iso646 keywords) in attributes to follow.
And some bug fixes:
* Parse attributes after declarator-ids, even if they are not simple identifiers.
* Do not accept attributes after a parenthesized declarator.
* Accept attributes after an array size in a new-type-id.
* Partially disamiguate 'delete' followed by a lambda. More work is required
here for the case where the lambda-introducer is '[]'.
llvm-svn: 154369
Specifically, using a an integer outside [0, 1] as a boolean constant seems to
be an easy mistake to make with things like "x == a || b" where the author
intended "x == a || x == b".
The bug caused by calling SkipUntil with three token kinds was also identified
by a VC diagnostic & reported by Francois Pichet as review feedback for my
commit r154163. I've included test cases to verify the error recovery that was
broken/poorly implemented due to this bug.
The other fix (lib/Sema/SemaExpr.cpp) seems like that code was never actually
reached in any of Clang's tests & is related to Objective C features I'm not
familiar with, so I've not been able to construct a test case for it. Perhaps
someone else can.
llvm-svn: 154325
a type specifier and can be combined with unsigned. This allows libstdc++4.7 to
be used with clang in c++98 mode.
Several other changes are still required for libstdc++4.7 to work with clang in
c++11 mode.
llvm-svn: 153999
that provides the behavior of the C++11 library trait
std::is_trivially_constructible<T, Args...>, which can't be
implemented purely as a library.
Since __is_trivially_constructible can have zero or more arguments, I
needed to add Yet Another Type Trait Expression Class, this one
handling arbitrary arguments. The next step will be to migrate
UnaryTypeTrait and BinaryTypeTrait over to this new, more general
TypeTrait class.
Fixes the Clang side of <rdar://problem/10895483> / PR12038.
llvm-svn: 151352
C++11, and with braced-init-list initializers in conditions. This exposed an
ambiguity with enum underlying types versus bitfields, which we resolve by
treating 'enum E : T {' as always defining an enumeration (even if it would
only successfully parse as a bitfield). This appears to be g++ compatible.
llvm-svn: 151227
is a declaration-stmt or an expression, we can discern a subset of cases where
the user erred in omitting the typename keyword before a dependent type name.
Fixes PR11358!
llvm-svn: 148896
lifetime is well-known and restricted, cleaning them up manually is easy to miss and cause a leak.
Use it to plug the leaking of TemplateIdAnnotation objects. rdar://9634138.
llvm-svn: 133610
'__is_literal' type trait for GCC compatibility. At least one relased
version if libstdc++ uses this name for the trait despite it not being
documented anywhere.
llvm-svn: 130078
This introduces a few APIs on the AST to bundle up the standard-based
logic so that programmatic clients have access to exactly the same
behavior.
There is only one serious FIXME here: checking for non-trivial move
constructors and move assignment operators. Those bits need to be added
to the declaration and accessors provided.
This implementation should be enough for the uses of __is_trivial in
libstdc++ 4.6's C++98 library implementation.
Ideas for more thorough test cases or any edge cases missing would be
appreciated. =D
llvm-svn: 130057
AttributeLists do not accumulate over the lifetime of parsing, but are
instead reused. Also make the arguments array not require a separate
allocation, and make availability attributes store their stuff in
augmented memory, too.
llvm-svn: 128209
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
template specialization types. This also required some parser tweaks,
since we were losing track of the nested-name-specifier's source
location information in several places in the parser. Other notable
changes this required:
- Sema::ActOnTagTemplateIdType now type-checks and forms the
appropriate type nodes (+ source-location information) for an
elaborated-type-specifier ending in a template-id. Previously, we
used a combination of ActOnTemplateIdType and
ActOnTagTemplateIdType that resulted in an ElaboratedType wrapped
around a DependentTemplateSpecializationType, which duplicated the
keyword ("class", "struct", etc.) and nested-name-specifier
storage.
- Sema::ActOnTemplateIdType now gets a nested-name-specifier, which
it places into the returned type-source location information.
- Sema::ActOnDependentTag now creates types with source-location
information.
llvm-svn: 126808
semantics after the C++0x is_convertible type trait. This
implementation is not 100% complete, because it allows access errors
to be hard errors (rather than just evaluating false).
Original patch by Steven Watanabe!
llvm-svn: 124425
involving rvalue references, to start scoping out what is and what
isn't implemented. In the process, tweak some standards citations,
type desugaring, and teach the tentative parser about && in
ptr-operator.
llvm-svn: 123913
parameter packs (C++0x [dcl.fct]p13), including disambiguation between
unnamed function parameter packs and varargs (C++0x [dcl.fct]p14) for
cases like
void f(T...)
where T may or may not contain unexpanded parameter packs.
llvm-svn: 122520
disambiguate between an expression (for a bit-field width) and a type
(for a fixed underlying type). Since the disambiguation can be
expensive (due to tentative parsing), we perform a simplistic
disambiguation based on one-token lookahead before going into the
full-blown tentative parsing. Based on a patch by Daniel Wallin.
llvm-svn: 120582
sends. These are far trickier than instance messages, because we
typically have something like
NSArray alloc]
where it appears to be a declaration of a variable named "alloc" up
until we see the ']' (or a ':'), and at that point we can't backtrace.
So, we use a combination of syntactic and semantic disambiguation to
treat this as a message send only when the type is an Objective-C type
and it has the syntax of a class message send (which would otherwise
be ill-formed).
llvm-svn: 114057
- move DeclSpec &c into the Sema library
- move ParseAST into the Parse library
Reflect this change in a thousand different includes.
Reflect this change in the link orders.
llvm-svn: 111667
parser is looking at a declaration or an expression, use a '=' to
conclude that we are parsing a declaration.
This is wrong. However, our previous approach of finding a comma after
the '=' is also wrong, because the ',' could be part of a
template-argument-list. So, for now we're going to use the same wrong
heuristic as GCC and Visual C++, because less real-world code is
likely to be broken this way. I've opened PR7655 to keep track of our
wrongness; note also the XFAIL'd test.
Fixes <rdar://problem/8193163>.
llvm-svn: 108459
propagating error conditions out of the various annotate-me-a-snowflake
routines. Generally (but not universally) removes redundant diagnostics
as well as, you know, not crashing on bad code. On the other hand,
I have just signed myself up to fix fiddly parser errors for the next
week. Again.
llvm-svn: 97221
The following attributes are currently supported in C++0x attribute
lists (and in GNU ones as well):
- align() - semantics believed to be conformant to n3000, except for
redeclarations and what entities it may apply to
- final - semantics believed to be conformant to CWG issue 817's proposed
wording, except for redeclarations
- noreturn - semantics believed to be conformant to n3000, except for
redeclarations
- carries_dependency - currently ignored (this is an optimization hint)
llvm-svn: 89543
their members, including member class template, member function
templates, and member classes and functions of member templates.
To actually parse the nested-name-specifiers that qualify the name of
an out-of-line definition of a member template, e.g.,
template<typename X> template<typename Y>
X Outer<X>::Inner1<Y>::foo(Y) {
return X();
}
we need to look for the template names (e.g., "Inner1") as a member of
the current instantiation (Outer<X>), even before we have entered the
scope of the current instantiation. Since we can't do this in general
(i.e., we should not be looking into all dependent
nested-name-specifiers as if they were the current instantiation), we
rely on the parser to tell us when it is parsing a declaration
specifier sequence, and, therefore, when we should consider the
current scope specifier to be a current instantiation.
Printing of complicated, dependent nested-name-specifiers may be
somewhat broken by this commit; I'll add tests for this issue and fix
the problem (if it still exists) in a subsequent commit.
llvm-svn: 80044
a paren expression without considering the context past the parentheses.
Behold:
(T())x; - type-id
(T())*x; - type-id
(T())/x; - expression
(T()); - expression
llvm-svn: 72260
instantiation for C++ typename-specifiers such as
typename T::type
The parsing of typename-specifiers is relatively easy thanks to
annotation tokens. When we see the "typename", we parse the
typename-specifier and produce a typename annotation token. There are
only a few places where we need to handle this. We currently parse the
typename-specifier form that terminates in an identifier, but not the
simple-template-id form, e.g.,
typename T::template apply<U, V>
Parsing of nested-name-specifiers has a similar problem, since at this
point we don't have any representation of a class template
specialization whose template-name is unknown.
Semantic analysis is only partially complete, with some support for
template instantiation that works for simple examples.
llvm-svn: 67875
disambiguation contexts, so that we properly parse template arguments
such as
A<int()>
as type-ids rather than as expressions. Since this can be confusing
(especially when the template parameter is a non-type template
parameter), we try to give a friendly error message.
Almost, eliminate a redundant error message (that should have been a
note) and add some ultra-basic checks for non-type template
arguments.
llvm-svn: 64189
.def file for each library. This means that adding a diagnostic
to sema doesn't require all the other libraries to be rebuilt.
Patch by Anders Johnsen!
llvm-svn: 63111
warning: statement was disambiguated as declaration
because it is currently firing in cases where the declaration would
not actually parse as a statement. We'd love to bring this warning
back if we can make it more accurate.
llvm-svn: 61137
This was the motivation of the following changes:
-'TentativeParsingResult' enum is replaced by a 'TPResult' class that basically encapsulates the enum.
-TPR_true, TPR_false, TPR_ambiguous, and TPR_error enum constants are replaced by TPResult::True(), TPResult::False(), etc. calls that return a TPResult object.
-Also fixed the subtle bug in Parser::isCXXFunctionDeclarator (caught by the above changes as a compilation error).
llvm-svn: 57125
'ParseTentative.cpp' implements the functionality needed to resolve ambiguous C++ statements, to either a declaration or an expression, by "tentatively parsing" them.
llvm-svn: 57084