Commit Graph

33 Commits

Author SHA1 Message Date
Chandler Carruth 2f1fd1658f [PM] Port ScalarEvolution to the new pass manager.
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.

I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.

But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.

To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.

To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.

With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.

Differential Revision: http://reviews.llvm.org/D12063

llvm-svn: 245193
2015-08-17 02:08:17 +00:00
Chandler Carruth 96ada25bf3 [PM/AA] Remove all of the dead AliasAnalysis pointers being threaded
through APIs that are no longer necessary now that the update API has
been removed.

This will make changes to the AA interfaces significantly less
disruptive (I hope). Either way, it seems like a really nice cleanup.

llvm-svn: 242882
2015-07-22 09:52:54 +00:00
David Majnemer 453f7a1480 [LoopUnroll] Use undef for phis with no value live
We would create a phi node with a zero initialized operand instead of
undef in the case where no value was originally available.  This was
problematic for x86_mmx which has no null value.

llvm-svn: 241143
2015-07-01 05:38:07 +00:00
Alexey Samsonov ea20199b48 [LoopUnroll] Use IRBuilder to create branch instructions.
Use IRBuilder::Create(Cond)?Br instead of constructing instructions
manually with BranchInst::Create(). It's consistent with other
uses of IRBuilder in this pass, and has an additional important
benefit:

Using IRBuilder will ensure that new branch instruction will get
the same debug location as original terminator instruction it will
eventually replace.

For now I'm not adding a testcase, as currently original terminator
instruction also lack debug location due to missing debug location
propagation in BasicBlock::splitBasicBlock. That is, the testcase
will accompany the fix for the latter I'm going to mail soon.

llvm-svn: 239550
2015-06-11 18:25:44 +00:00
Sanjoy Das e178f46965 [LoopUnrollRuntime] Avoid high-cost trip count computation.
Summary:
Runtime unrolling of loops needs to emit an expression to compute the
loop's runtime trip-count.  Avoid runtime unrolling if this computation
will be expensive.

Depends on D8993.

Reviewers: atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8994

llvm-svn: 234846
2015-04-14 03:20:38 +00:00
Sanjoy Das 71190feca5 [LoopUnrollRuntime] Clean up a predicate.
Clean up a predicate I added in r229731, fix the relevant comment and
add a test case.  The earlier version is confusing to read and was also
buggy (probably not a coincidence) till Alexey fixed it in r233881.

llvm-svn: 234701
2015-04-12 01:24:01 +00:00
Alexey Samsonov f96cde9f68 Fix a bug indicated by -fsanitize=shift-exponent.
llvm-svn: 233881
2015-04-02 01:30:10 +00:00
Mehdi Amini a28d91d81b DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.

This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.

I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.

I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.

Test Plan:

Reviewers: echristo

Subscribers: llvm-commits

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
2015-03-10 02:37:25 +00:00
Kevin Qin 65b07b8e1b Revert r231630 - Run LICM pass after loop unrolling pass.
As it broke llvm bootstrap.

llvm-svn: 231635
2015-03-09 07:26:37 +00:00
Kevin Qin a998735def Run LICM pass after loop unrolling pass.
Runtime unrollng will introduce a runtime check in loop prologue.
If the unrolled loop is a inner loop, then the proglogue will be inside
the outer loop. LICM pass can help to promote the runtime check out if
the checked value is loop invariant.

llvm-svn: 231630
2015-03-09 06:14:07 +00:00
Sanjoy Das 11b279a832 Partial fix for bug 22589
Don't spend the entire iteration space in the scalar loop prologue if
computing the trip count overflows.  This change also gets rid of the
backedge check in the prologue loop and the extra check for
overflowing trip-count.

Differential Revision: http://reviews.llvm.org/D7715

llvm-svn: 229731
2015-02-18 19:32:25 +00:00
Philip Reames 9198b33b48 Teach SplitBlockPredecessors how to handle landingpad blocks.
Patch by: Igor Laevsky <igor@azulsystems.com>

"Currently SplitBlockPredecessors generates incorrect code in case if basic block we are going to split has a landingpad. Also seems like it is fairly common case among it's users to conditionally call either SplitBlockPredecessors or SplitLandingPadPredecessors. Because of this I think it is reasonable to add this condition directly into SplitBlockPredecessors."

Differential Revision: http://reviews.llvm.org/D7157

llvm-svn: 227390
2015-01-28 23:06:47 +00:00
Chandler Carruth d450056c78 [PM] Replace the Pass argument to SplitEdge with specific analyses used
and updated.

This may appear to remove handling for things like alias analysis when
splitting critical edges here, but in fact no callers of SplitEdge
relied on this. Similarly, all of them wanted to preserve LCSSA if there
was any update of the loop info. That makes the interface much simpler.

With this, all of BasicBlockUtils.h is free of Pass arguments and
prepared for the new pass manager. This is tho majority of utilities
that relied on pass arguments.

llvm-svn: 226459
2015-01-19 12:36:53 +00:00
Chandler Carruth 0eae112009 [PM] Lift the analyses into the interface for
SplitLandingPadPredecessors and remove the Pass argument from its
interface.

Another step to the utilities being usable with both old and new pass
managers.

llvm-svn: 226426
2015-01-19 03:03:39 +00:00
Chandler Carruth b5797b659f [PM] Pull the analyses used for another utility routine into its API
rather than relying on the pass object.

This one is a bit annoying, but will pay off. First, supporting this one
will make the next one much easier, and for utilities like LoopSimplify,
this is moving them (slowly) closer to not having to pass the pass
object around throughout their APIs.

llvm-svn: 226396
2015-01-18 09:21:15 +00:00
Chandler Carruth 32c52c7e04 [PM] Sink the specific analyses preserved by SplitBlock into its
interface, removing Pass from its interface.

This also makes those analyses optional so that passes which don't even
preserve these (or use them) can skip the logic entirely.

llvm-svn: 226394
2015-01-18 02:39:37 +00:00
Chandler Carruth 691addc25f [PM] Now that LoopInfo isn't in the Pass type hierarchy, it is much
cleaner to derive from the generic base.

Thise removes a ton of boiler plate code and somewhat strange and
pointless indirections. It also remove a bunch of the previously needed
friend declarations. To fully remove these, I also lifted the verify
logic into the generic LoopInfoBase, which seems good anyways -- it is
generic and useful logic even for the machine side.

llvm-svn: 226385
2015-01-18 01:25:51 +00:00
Duncan P. N. Exon Smith 5bf8fef580 IR: Split Metadata from Value
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532.  Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.

I have a follow-up patch prepared for `clang`.  If this breaks other
sub-projects, I apologize in advance :(.  Help me compile it on Darwin
I'll try to fix it.  FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.

This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.

Here's a quick guide for updating your code:

  - `Metadata` is the root of a class hierarchy with three main classes:
    `MDNode`, `MDString`, and `ValueAsMetadata`.  It is distinct from
    the `Value` class hierarchy.  It is typeless -- i.e., instances do
    *not* have a `Type`.

  - `MDNode`'s operands are all `Metadata *` (instead of `Value *`).

  - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
    replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.

    If you're referring solely to resolved `MDNode`s -- post graph
    construction -- just use `MDNode*`.

  - `MDNode` (and the rest of `Metadata`) have only limited support for
    `replaceAllUsesWith()`.

    As long as an `MDNode` is pointing at a forward declaration -- the
    result of `MDNode::getTemporary()` -- it maintains a side map of its
    uses and can RAUW itself.  Once the forward declarations are fully
    resolved RAUW support is dropped on the ground.  This means that
    uniquing collisions on changing operands cause nodes to become
    "distinct".  (This already happened fairly commonly, whenever an
    operand went to null.)

    If you're constructing complex (non self-reference) `MDNode` cycles,
    you need to call `MDNode::resolveCycles()` on each node (or on a
    top-level node that somehow references all of the nodes).  Also,
    don't do that.  Metadata cycles (and the RAUW machinery needed to
    construct them) are expensive.

  - An `MDNode` can only refer to a `Constant` through a bridge called
    `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).

    As a side effect, accessing an operand of an `MDNode` that is known
    to be, e.g., `ConstantInt`, takes three steps: first, cast from
    `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
    third, cast down to `ConstantInt`.

    The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
    metadata schema owners transition away from using `Constant`s when
    the type isn't important (and they don't care about referring to
    `GlobalValue`s).

    In the meantime, I've added transitional API to the `mdconst`
    namespace that matches semantics with the old code, in order to
    avoid adding the error-prone three-step equivalent to every call
    site.  If your old code was:

        MDNode *N = foo();
        bar(isa             <ConstantInt>(N->getOperand(0)));
        baz(cast            <ConstantInt>(N->getOperand(1)));
        bak(cast_or_null    <ConstantInt>(N->getOperand(2)));
        bat(dyn_cast        <ConstantInt>(N->getOperand(3)));
        bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));

    you can trivially match its semantics with:

        MDNode *N = foo();
        bar(mdconst::hasa               <ConstantInt>(N->getOperand(0)));
        baz(mdconst::extract            <ConstantInt>(N->getOperand(1)));
        bak(mdconst::extract_or_null    <ConstantInt>(N->getOperand(2)));
        bat(mdconst::dyn_extract        <ConstantInt>(N->getOperand(3)));
        bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));

    and when you transition your metadata schema to `MDInt`:

        MDNode *N = foo();
        bar(isa             <MDInt>(N->getOperand(0)));
        baz(cast            <MDInt>(N->getOperand(1)));
        bak(cast_or_null    <MDInt>(N->getOperand(2)));
        bat(dyn_cast        <MDInt>(N->getOperand(3)));
        bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));

  - A `CallInst` -- specifically, intrinsic instructions -- can refer to
    metadata through a bridge called `MetadataAsValue`.  This is a
    subclass of `Value` where `getType()->isMetadataTy()`.

    `MetadataAsValue` is the *only* class that can legally refer to a
    `LocalAsMetadata`, which is a bridged form of non-`Constant` values
    like `Argument` and `Instruction`.  It can also refer to any other
    `Metadata` subclass.

(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)

llvm-svn: 223802
2014-12-09 18:38:53 +00:00
Michael Zolotukhin 0dcae71449 Fix a trip-count overflow issue in LoopUnroll.
Currently LoopUnroll generates a prologue loop before the main loop
body to execute first N%UnrollFactor iterations. Also, this loop is
used if trip-count can overflow - it's determined by a runtime check.

However, we've been mistakenly optimizing this loop to a linear code for
UnrollFactor = 2, not taking into account that it also serves as a safe
version of the loop if its trip-count overflows.

llvm-svn: 222451
2014-11-20 20:19:55 +00:00
Kevin Qin fc02e3c363 Use a loop to simplify the runtime unrolling prologue.
Runtime unrolling will create a prologue to execute the extra
iterations which is can't divided by the unroll factor. It
generates an if-then-else sequence to jump into a factor -1
times unrolled loop body, like

    extraiters = tripcount % loopfactor
    if (extraiters == 0) jump Loop:
    if (extraiters == loopfactor) jump L1
    if (extraiters == loopfactor-1) jump L2
    ...
    L1:  LoopBody;
    L2:  LoopBody;
    ...
    if tripcount < loopfactor jump End
    Loop:
    ...
    End:

It means if the unroll factor is 4, the loop body will be 7
times unrolled, 3 are in loop prologue, and 4 are in the loop.
This commit is to use a loop to execute the extra iterations
in prologue, like

        extraiters = tripcount % loopfactor
        if (extraiters == 0) jump Loop:
        else jump Prol
 Prol:  LoopBody;
        extraiters -= 1                 // Omitted if unroll factor is 2.
        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
        if (tripcount < loopfactor) jump End
 Loop:
 ...
 End:

Then when unroll factor is 4, the loop body will be copied by
only 5 times, 1 in the prologue loop, 4 in the original loop.
And if the unroll factor is 2, new loop won't be created, just
as the original solution.

llvm-svn: 218604
2014-09-29 11:15:00 +00:00
Duncan P. N. Exon Smith 6c99015fe2 Revert "[C++11] Add predecessors(BasicBlock *) / successors(BasicBlock *) iterator ranges."
This reverts commit r213474 (and r213475), which causes a miscompile on
a stage2 LTO build.  I'll reply on the list in a moment.

llvm-svn: 213562
2014-07-21 17:06:51 +00:00
Manuel Jacob d11beffef4 [C++11] Add predecessors(BasicBlock *) / successors(BasicBlock *) iterator ranges.
Summary: This patch introduces two new iterator ranges and updates existing code to use it.  No functional change intended.

Test Plan: All tests (make check-all) still pass.

Reviewers: dblaikie

Reviewed By: dblaikie

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D4481

llvm-svn: 213474
2014-07-20 09:10:11 +00:00
Benjamin Kramer 0bf086f80f LoopUnrollRuntime: Check for overflow in the trip count calculation.
Fixes PR19823.

llvm-svn: 211436
2014-06-21 13:46:25 +00:00
Craig Topper e73658ddbb [C++] Use 'nullptr'.
llvm-svn: 207394
2014-04-28 04:05:08 +00:00
Craig Topper f40110f4d8 [C++] Use 'nullptr'. Transforms edition.
llvm-svn: 207196
2014-04-25 05:29:35 +00:00
Chandler Carruth 964daaaf19 [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all of the header #include lines, lib/Transforms/...
edition.

This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.

Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.

llvm-svn: 206844
2014-04-22 02:55:47 +00:00
Chandler Carruth 9fb823bbd4 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

llvm-svn: 171366
2013-01-02 11:36:10 +00:00
Chandler Carruth ed0881b2a6 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

llvm-svn: 169131
2012-12-03 16:50:05 +00:00
Benjamin Kramer bde9176663 Fix typos found by http://github.com/lyda/misspell-check
llvm-svn: 157885
2012-06-02 10:20:22 +00:00
Andrew Trick d29cd732d4 Allow NULL LoopPassManager argument in UnrollLoop. PR12734.
llvm-svn: 156358
2012-05-08 02:52:09 +00:00
Jakub Staszak 1b1d523d9e - Use getExitingBlock instead of getExitingBlocks.
- Remove trailing spaces.

llvm-svn: 146854
2011-12-18 21:52:30 +00:00
Jakub Staszak f5b32e52db SplitBlockPredecessors uses ArrayRef instead of Data and Size.
llvm-svn: 146277
2011-12-09 21:19:53 +00:00
Andrew Trick d04d152998 Add -unroll-runtime for unrolling loops with run-time trip counts.
Patch by Brendon Cahoon!

This extends the existing LoopUnroll and LoopUnrollPass. Brendon
measured no regressions in the llvm test suite with -unroll-runtime
enabled. This implementation works by using the existing loop
unrolling code to unroll the loop by a power-of-two (default 8). It
generates an if-then-else sequence of code prior to the loop to
execute the extra iterations before entering the unrolled loop.

llvm-svn: 146245
2011-12-09 06:19:40 +00:00