Summary:
Skip folds that rely on DataLayout::getTypeAllocSize(). For scalable
vector, only minimal type alloc size is known at compile-time.
Reviewers: sdesmalen, efriedma, spatel, apazos
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75892
Summary:
Support ConstantInt::get() and Constant::getAllOnesValue() for scalable
vector type, this requires ConstantVector::getSplat() to take in 'ElementCount',
instead of 'unsigned' number of element count.
This change is needed for D73753.
Reviewers: sdesmalen, efriedma, apazos, spatel, huntergr, willlovett
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74386
This is part of the IR sibling for:
D75576
(I'm splitting part of the transform as a separate commit
to reduce risk. I don't know of any bugs that might be
exposed by this improved folding, but it's hard to see
those in advance...)
Summary:
For scalable vector, index out-of-bound can not be determined at compile-time.
The same apply for VectorUtil findScalarElement().
Add test cases to check the functionality of SimplifyInsert/ExtractElementInst for scalable vector.
Reviewers: sdesmalen, efriedma, spatel, apazos
Reviewed By: efriedma
Subscribers: cameron.mcinally, tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75782
If a call argument has the "returned" attribute, we can simplify
the call to the value of that argument. The "-inst-simplify" pass
already handled this for the constant integer argument case via
known bits, which is invoked in SimplifyInstruction. However,
non-constant (or non-int) arguments are not handled at all right now.
This addresses one of the regressions from D75801.
Differential Revision: https://reviews.llvm.org/D75815
As pointed out by jdoerfert on D75815, we must be careful when
simplifying musttail calls: We can only replace the return value
if we can eliminate the call entirely. As we can't make this
guarantee for all consumers of InstSimplify, this patch disables
simplification of musttail calls. Without this patch, musttail
simplification currently results in module verification errors.
Differential Revision: https://reviews.llvm.org/D75824
Summary:
```
br i1 c, BB1, BB2:
BB1:
use1(c)
BB2:
use2(c)
```
In BB1 and BB2, c is never undef or poison because otherwise the branch would have triggered UB.
This is a resubmission of 952ad47 with crash fix of llvm/test/Transforms/LoopRotate/freeze-crash.ll.
Checked with Alive2
Reviewers: xbolva00, spatel, lebedev.ri, reames, jdoerfert, nlopes, sanjoy
Reviewed By: reames
Subscribers: jdoerfert, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75401
InstSimplify can fold icmps of gep where the base pointers are the
same and the offsets are constant. It does so by constructing a
constant expression icmp and assumes that it gets folded -- but
this doesn't actually happen, because GEP expressions can usually
only be folded by the target-dependent constant folding layer.
As such, we need to explicitly invoke it here.
Differential Revision: https://reviews.llvm.org/D75407
Spin-off from D75407. As described there, ConstantFoldConstant()
currently returns null for non-ConstantExpr/ConstantVector inputs,
but otherwise always returns non-null, independently of whether
any folding has happened or not.
This is confusing and makes consumer code more complicated.
I would expect either that ConstantFoldConstant() returns only if
it actually folded something, or that it always returns non-null.
I'm going to the latter possibility here, which appears to be more
useful considering existing usage.
Differential Revision: https://reviews.llvm.org/D75543
Summary:
```
br i1 c, BB1, BB2:
BB1:
use1(c)
BB2:
use2(c)
```
In BB1 and BB2, c is never undef or poison because otherwise the branch would have triggered UB.
Checked with Alive2
Reviewers: xbolva00, spatel, lebedev.ri, reames, jdoerfert, nlopes, sanjoy
Reviewed By: reames
Subscribers: jdoerfert, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75401
Summary:
* Most of the simplifications in SimplifyShuffleVectorInst depend on the
concrete value of, or the length of the mask vector. For scalable
vectors, this cannot be known at compile time.
** for these tests, detect if the vector is scalable before attempting
the transformation
* The functions ShuffleVectorInst::getMaskValue and
ShuffleVectorInst::getShuffleMask access the value of the constant mask.
However, since the length of the mask is unknown at compile time, these
function do not work for scalable vectors. Add asserts to ensure that
the input mask is not scalable
Reviewers: efriedma, sdesmalen, apazos, chrisj, huihuiz
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73555
This addresses https://bugs.llvm.org/show_bug.cgi?id=42801.
The m_c_ICmp() matcher is changed to provide the swapped predicate
if the operands are swapped.
Existing uses of m_c_ICmp() fall in one of two categories: Working
on equality predicates only, where swapping is irrelevant.
Or performing a manual swap, in which case this patch removes it.
The only exception is the foldICmpWithLowBitMaskedVal() fold, which
does not swap the predicate, and instead reasons about whether
a swap occurred or not for each predicate. Getting the swapped
predicate allows us to merge the logic for pairs of predicates,
instead of duplicating it.
Differential Revision: https://reviews.llvm.org/D72976
As mentioned in D72643, we'd like to be able to assert that any select
of equivalent constants has been removed before we're deep into InstCombine.
But there's a loophole in that assertion for vectors with undef elements
that don't match exactly.
This patch should close that gap. If we have undefs, we can't safely
propagate those unless both constants elements for that lane are undef.
Differential Revision: https://reviews.llvm.org/D72958
This is step 1 of damage control assuming that we need to remove several
over-reaching folds for select-of-booleans because they can cause
miscompiles as shown in D72396.
The scalar case seems obviously safe:
https://rise4fun.com/Alive/jSj
And I don't think there's any danger for vectors either - if the
condition is poisoned, then the select must be poisoned too, so undef
elements don't make any difference.
Differential Revision: https://reviews.llvm.org/D72412
shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
This is another missing shuffle fold pattern uncovered by the
shuffle correctness fix from D70246.
The problem was visible in the post-commit thread example, but
we managed to overcome the limitation for that particular case
with D71220.
This is something like the inverse of the previous fix - there
we didn't demand the inserted scalar, and here we are only
demanding an inserted scalar.
Differential Revision: https://reviews.llvm.org/D71488
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
This fixes the buildbot failures.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
Removed code duplication in ThreadCmpOverSelect and broke it
into several smaller functions for reusing them.
Differential Revision: https://reviews.llvm.org/D71158
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
Summary:
Same as D60846 and D69571 but with a fix for the problem encountered
after them. Both times it was a missing context adjustment in the
handling of PHI nodes.
The reproducers created from the bugs that caused the old commits to be
reverted are included.
Reviewers: nikic, nlopes, mkazantsev, spatel, dlrobertson, uabelho, hakzsam, hans
Subscribers: hiraditya, bollu, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71181
This is another transform suggested in PR44153:
https://bugs.llvm.org/show_bug.cgi?id=44153
The backend for some targets already manages to get
this if it converts copysign to bitwise logic.
This is correct for any value including NaN/inf.
We don't have this fold directly in the backend either,
but x86 manages to get it after converting things to bitops.
This caused miscompiles of Chromium (https://crbug.com/1023818). The reduced
repro is small enough to fit here:
$ cat /tmp/a.c
unsigned char f(unsigned char *p) {
unsigned char result = 0;
for (int shift = 0; shift < 1; ++shift)
result |= p[0] << (shift * 8);
return result;
}
$ bin/clang -O2 -S -o - /tmp/a.c | grep -A4 f:
f: # @f
.cfi_startproc
# %bb.0: # %entry
xorl %eax, %eax
retq
That's nicely optimized, but I don't think it's the right result :-)
> Same as D60846 but with a fix for the problem encountered there which
> was a missing context adjustment in the handling of PHI nodes.
>
> The test that caused D60846 to be reverted was added in e15ab8f277.
>
> Reviewers: nikic, nlopes, mkazantsev,spatel, dlrobertson, uabelho, hakzsam
>
> Subscribers: hiraditya, bollu, llvm-commits
>
> Tags: #llvm
>
> Differential Revision: https://reviews.llvm.org/D69571
This reverts commit 57dd4b03e4.
Same as D60846 but with a fix for the problem encountered there which
was a missing context adjustment in the handling of PHI nodes.
The test that caused D60846 to be reverted was added in e15ab8f277.
Reviewers: nikic, nlopes, mkazantsev,spatel, dlrobertson, uabelho, hakzsam
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69571
In similar fashion to D67721, we can simplify FMA multiplications if any
of the operands is NaN or undef. In instcombine, we will simplify the
FMA to an fadd with a NaN operand, which in turn gets folded to NaN.
Note that this just changes SimplifyFMAFMul, so we still not catch the
case where only the Add part of the FMA is Nan/Undef.
Reviewers: cameron.mcinally, mcberg2017, spatel, arsenm
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D68265
llvm-svn: 373459
This is intended to be similar to the constant folding results from
D67446
and earlier, but not all operands are constant in these tests, so the
responsibility for folding is left to InstSimplify.
Differential Revision: https://reviews.llvm.org/D67721
llvm-svn: 373455
Because we do not constant fold multiplications in SimplifyFMAMul,
we match 1.0 and 0.0 for both operands, as multiplying by them
is guaranteed to produce an exact result (if it is allowed to do so).
Note that it is not enough to just swap the operands to ensure a
constant is on the RHS, as we want to also cover the case with
2 constants.
Reviewers: lebedev.ri, spatel, reames, scanon
Reviewed By: lebedev.ri, reames
Differential Revision: https://reviews.llvm.org/D67553
llvm-svn: 372915
As @reames pointed out post-commit, rL371518 adds additional rounding
in some cases, when doing constant folding of the multiplication.
This breaks a guarantee llvm.fma makes and must be avoided.
This patch reapplies rL371518, but splits off the simplifications not
requiring rounding from SimplifFMulInst as SimplifyFMAFMul.
Reviewers: spatel, lebedev.ri, reames, scanon
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D67434
llvm-svn: 372899
Summary:
I don't have a direct motivational case for this,
but it would be good to have this for completeness/symmetry.
This pattern is basically the motivational pattern from
https://bugs.llvm.org/show_bug.cgi?id=43251
but with different predicate that requires that the offset is non-zero.
The completeness bit comes from the fact that a similar pattern (offset != zero)
will be needed for https://bugs.llvm.org/show_bug.cgi?id=43259,
so it'd seem to be good to not overlook very similar patterns..
Proofs: https://rise4fun.com/Alive/21b
Also, there is something odd with `isKnownNonZero()`, if the non-zero
knowledge was specified as an assumption, it didn't pick it up (PR43267)
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67411
llvm-svn: 371718
This was actually the original intention in D67332,
but i messed up and forgot about it.
This patch was originally part of D67411, but precommitting this.
llvm-svn: 371630
Summary:
This is motivated by D67122 sanitizer check enhancement.
That patch seemingly worsens `-fsanitize=pointer-overflow`
overhead from 25% to 50%, which strongly implies missing folds.
In this particular case, given
```
char* test(char& base, unsigned long offset) {
return &base + offset;
}
```
it will end up producing something like
https://godbolt.org/z/LK5-iH
which after optimizations reduces down to roughly
```
define i1 @t0(i8* nonnull %base, i64 %offset) {
%base_int = ptrtoint i8* %base to i64
%adjusted = add i64 %base_int, %offset
%non_null_after_adjustment = icmp ne i64 %adjusted, 0
%no_overflow_during_adjustment = icmp uge i64 %adjusted, %base_int
%res = and i1 %non_null_after_adjustment, %no_overflow_during_adjustment
ret i1 %res
}
```
Without D67122 there was no `%non_null_after_adjustment`,
and in this particular case we can get rid of the overhead:
Here we add some offset to a non-null pointer,
and check that the result does not overflow and is not a null pointer.
But since the base pointer is already non-null, and we check for overflow,
that overflow check will already catch the null pointer,
so the separate null check is redundant and can be dropped.
Alive proofs:
https://rise4fun.com/Alive/WRzq
There are more patterns of "unsigned-add-with-overflow", they are not handled here,
but this is the main pattern, that we currently consider canonical,
so it makes sense to handle it.
https://bugs.llvm.org/show_bug.cgi?id=43246
Reviewers: spatel, nikic, vsk
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits, reames
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67332
llvm-svn: 371349
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Summary:
Now that with D65143/D65144 we've produce `@llvm.umul.with.overflow`,
and with D65147 we've flattened the CFG, we now can see that
the guard may have been there to prevent division by zero is redundant.
We can simply drop it:
```
----------------------------------------
Name: no overflow or zero
%iszero = icmp eq i4 %y, 0
%umul = smul_overflow i4 %x, %y
%umul.ov = extractvalue {i4, i1} %umul, 1
%umul.ov.not = xor %umul.ov, -1
%retval.0 = or i1 %iszero, %umul.ov.not
ret i1 %retval.0
=>
%iszero = icmp eq i4 %y, 0
%umul = smul_overflow i4 %x, %y
%umul.ov = extractvalue {i4, i1} %umul, 1
%umul.ov.not = xor %umul.ov, -1
%retval.0 = or i1 %iszero, %umul.ov.not
ret i1 %umul.ov.not
Done: 1
Optimization is correct!
```
Note that this is inverted from what we have in a previous patch,
here we are looking for the inverted overflow bit.
And that inversion is kinda problematic - given this particular
pattern we neither hoist that `not` closer to `ret` (then the pattern
would have been identical to the one without inversion,
and would have been handled by the previous patch), neither
do the opposite transform. But regardless, we should handle this too.
I've filled [[ https://bugs.llvm.org/show_bug.cgi?id=42720 | PR42720 ]].
Reviewers: nikic, spatel, xbolva00, RKSimon
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65151
llvm-svn: 370351