Three new instructions:
umonitor - Sets up a linear address range to be
monitored by hardware and activates the monitor.
The address range should be a writeback memory
caching type.
umwait - A hint that allows the processor to
stop instruction execution and enter an
implementation-dependent optimized state
until occurrence of a class of events.
tpause - Directs the processor to enter an
implementation-dependent optimized state
until the TSC reaches the value in EDX:EAX.
Also modifying the description of the mfence
instruction, as the rep prefix (0xF3) was allowed
before, which would conflict with umonitor during
disassembly.
Before:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
mfence
After:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
umonitor %rax
Reviewers: craig.topper, zvi
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D45253
llvm-svn: 330462
Part of the DBI stream is a list of variable length structures
describing each module that contributes to the final executable.
One member of this structure is a section contribution entry that
describes the first section contribution in the output file for
the given module.
We have been leaving this structure unpopulated until now, so with
this patch it is now filled out correctly.
Differential Revision: https://reviews.llvm.org/D45832
llvm-svn: 330457
This was originally committed at rL328921 and reverted at rL329920 to
investigate failures in Chrome. This time I've added to the ReleaseNotes
to warn users of the potential of exposing UB and let me repeat that
here for more exposure:
Optimization of floating-point casts is improved. This may cause surprising
results for code that is relying on undefined behavior. Code sanitizers can
be used to detect affected patterns such as this:
int main() {
float x = 4294967296.0f;
x = (float)((int)x);
printf("junk in the ftrunc: %f\n", x);
return 0;
}
$ clang -O1 ftrunc.c -fsanitize=undefined ; ./a.out
ftrunc.c:5:15: runtime error: 4.29497e+09 is outside the range of
representable values of type 'int'
junk in the ftrunc: 0.000000
Original commit message:
fptosi / fptoui round towards zero, and that's the same behavior as ISD::FTRUNC,
so replace a pair of casts with the equivalent node. We don't have to account for
special cases (NaN, INF) because out-of-range casts are undefined.
Differential Revision: https://reviews.llvm.org/D44909
llvm-svn: 330437
Reapply the patches with a fix. Thanks Ilya and Hans for the reproducer!
This reverts commit r330416.
The issue was that removing predecessors invalidated uses that we stored
for rewrite. The fix is to finish manipulating with CFG before we select
uses for rewrite.
llvm-svn: 330431
This patch adds the ability for the ObjectYAML DWARFEmitter to calculate
the lengths of DIEs. This is accomplished by creating a DIEFixupVisitor
class which traverses the DWARF DIEs to calculate and fix up the lengths
in the Compile Unit header.
The DIEFixupVisitor can be extended in the future to enable more complex
fix ups which will enable simplified YAML string representations.
This is also very useful when using the YAML format in unit tests
because you no longer need to know the length of the compile unit when
writing the YAML string.
Differential commandeered from Chris Bieneman (beanz)
Differential revision: https://reviews.llvm.org/D30666
llvm-svn: 330421
Revert r330413: "[SSAUpdaterBulk] Use SmallVector instead of DenseMap for storing rewrites."
Revert r330403 "Reapply "[PR16756] Use SSAUpdaterBulk in JumpThreading." one more time."
r330403 commit seems to crash clang during our integrate while doing PGO build with the following stacktrace:
#2 llvm::SSAUpdaterBulk::RewriteAllUses(llvm::DominatorTree*, llvm::SmallVectorImpl<llvm::PHINode*>*)
#3 llvm::JumpThreadingPass::ThreadEdge(llvm::BasicBlock*, llvm::SmallVectorImpl<llvm::BasicBlock*> const&, llvm::BasicBlock*)
#4 llvm::JumpThreadingPass::ProcessThreadableEdges(llvm::Value*, llvm::BasicBlock*, llvm::jumpthreading::ConstantPreference, llvm::Instruction*)
#5 llvm::JumpThreadingPass::ProcessBlock(llvm::BasicBlock*)
The crash happens while compiling 'lib/Analysis/CallGraph.cpp'.
r3340413 is reverted due to conflicting changes.
llvm-svn: 330416
This patch adds a StatsFile option to LTO/Config.h and updates both
LLVMGold and llvm-lto2 to set it.
Reviewers: MatzeB, tejohnson, espindola
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D45531
llvm-svn: 330411
Summary:
This change fixes https://crbug.com/834474, a build failure caused by
LowerTypeTests not preserving .symver symbol versioning directives for
exported functions. Emit symver information to ThinLTO summary data and
then propagate symver directives for exported functions to the merged
module.
Emitting symver information to the summaries increases the size of
intermediate build artifacts for a Chromium build by less than 0.2%.
Reviewers: pcc
Reviewed By: pcc
Subscribers: tejohnson, mehdi_amini, eraman, llvm-commits, eugenis, kcc
Differential Revision: https://reviews.llvm.org/D45798
llvm-svn: 330387
This moves the EnableLinkOnceODROutlining flag from TargetPassConfig.cpp into
MachineOutliner.cpp. It also removes OutlineFromLinkOnceODRs from the
MachineOutliner constructor. This is now handled by the moved command-line
flag.
llvm-svn: 330373
Summary:
The following changes addresses the following two issues.
1) The existing loop rotation pass contains both loop latch simplification and loop rotation. So one flag RotationOnly is added to be passed to the loop rotation pass.
2) The threshold value is initialized with MAX_UINT since the loop rotation utility should not have threshold limit.
Reviewers: dmgreen, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D45582
llvm-svn: 330362
This forces these operations to be carried out via a
MaterializationResponsibility instance, ensuring responsibility is explicitly
tracked.
llvm-svn: 330356
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Patch by tkrupa
Differential Revision: https://reviews.llvm.org/D44785
llvm-svn: 330322
Summary: Documentation is built using the AutoBrief configuration option in docs/doxygen.cfg.in. This change removes the redundant brief tags from BasicBlock.h. I'm happy to write a sed script and remove all \brief tags as a separate commit later.
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45708
llvm-svn: 330242
Summary:
Add an LLVM intrinsic for type discriminated event logging with XRay.
Similar to the existing intrinsic for custom events, but also accepts
a type tag argument to allow plugins to be aware of different types
and semantically interpret logged events they know about without
choking on those they don't.
Relies on a symbol defined in compiler-rt patch D43668. I may wait
to submit before I can see demo everything working together including
a still to come clang patch.
Reviewers: dberris, pelikan, eizan, rSerge, timshen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45633
llvm-svn: 330219
GetArgumentVector (or GetCommandLineArguments) is very Windows-specific.
I think it doesn't make much sense to provide that function from sys::Process.
I also made a change so that the function takes a BumpPtrAllocator
instead of a SpecificBumpPtrAllocator. The latter is the class to call
dtors, but since char * is trivially destructible, we should use the
former class.
Differential Revision: https://reviews.llvm.org/D45641
llvm-svn: 330216
The DBI stream contains a list of module descriptors. At the
beginning of each descriptor is a structure representing the first
section contribution in the output file for that module. LLD
currently doesn't fill out this structure at all, but link.exe
does. So as a precursor to emitting this data in LLD, we first
need a way to dump it so that it can be checked.
This patch adds support for the dumping, and verifies via a test
that LLD emits bogus information.
llvm-svn: 330208
Duplicating this intrinsic is not generally valid because it has the side-effect
of decrementing the CTR. Any passes that duplicate it would need to be taught to
keep the regions formed completely disjoint.
This patch should be NFC for typical uses as CTRLoops runs after the remaining
loop passes. It only affects situations where the loop passes are scheduled on
the IR after the codegen passes (as is the case with some JIT pipelines).
Fixes https://bugs.llvm.org/show_bug.cgi?id=37050
llvm-svn: 330186
Using Config->is64() will treat ARM64 as Amd64, which is incorrect.
Furthermore, there are more esoteric architectures that could
theoretically be encountered. Just set it directly to the machine
type, which we already know anyway.
llvm-svn: 330157
materializing function definitions.
MaterializationUnit instances are responsible for resolving and finalizing
symbol definitions when their materialize method is called. By contract, the
MaterializationUnit must materialize all definitions it is responsible for and
no others. If it can not materialize all definitions (because of some error)
then it must notify the associated VSO about each definition that could not be
materialized. The MaterializationResponsibility class tracks this
responsibility, asserting that all required symbols are resolved and finalized,
and that no extraneous symbols are resolved or finalized. In the event of an
error it provides a convenience method for notifying the VSO about each
definition that could not be materialized.
llvm-svn: 330142
notifyMaterializationFailed.
The notifyMaterializationFailed method can determine which error to raise by
looking at which queue the pending queries are in (resolution or finalization).
llvm-svn: 330141
When emitting CodeView debug information, compiler-generated thunk routines
should be emitted using S_THUNK32 symbols instead of S_GPROC32_ID symbols so
Visual Studio can properly step into the user code. This initial support only
handles standard thunk ordinals.
Differential Revision: https://reviews.llvm.org/D43838
llvm-svn: 330132
Most of these are pretty trivial and obvious. Setting the toolchain
version to 14.11 is perhaps a little questionable, but we've been bitten
in the past where one of our version fields sidn't match MSVC's, and I
definitely don't want to go through that diagnosis again as it was
pretty time consuming and hard to track down.
I found all of these by using llvm-pdbutil export to dump the dbi and
pdb streams to a file, then using fc followed by llvm-pdbutil explain to
explain the mismatched bytes.
There are still some more, these are just the low hanging fruit.
Differential Revision: https://reviews.llvm.org/D45276
llvm-svn: 330130
Using Goldmont's cost tables for these two upcoming
atom archs.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45612
llvm-svn: 330109
Summary: As discussed in https://reviews.llvm.org/D45606, it makes more sense to name the class as SmallVectorMemoryBuffer
Reviewers: bkramer, dblaikie
Reviewed By: dblaikie
Subscribers: mehdi_amini, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D45661
llvm-svn: 330107
TargetSchedModel now always delegates to MCSchedModel the computation of
instruction latency and reciprocal throughput.
No functional change intended.
llvm-svn: 330099
Summary:
Since the class is used by both MCJIT and LTO, it makes more sense to move it to Support lib.
This is a follow up patch to r329929 and https://reviews.llvm.org/D45244
Reviewers: bkramer, dblaikie
Reviewed By: bkramer
Subscribers: mehdi_amini, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D45606
llvm-svn: 330093
Create convenience functions for printing error, warning and note to
stdout. Previously we had similar functions being used in dsymutil, but
given that this pattern is so common it makes sense to make it available
globally.
llvm-svn: 330091
As demonstrated by the regression tests added in this patch, the
following cases are valid cases:
1. A Function with no DISubprogram attached, but various debug info
related to its instructions, coming, for instance, from an inlined
function, also defined somewhere else in the same module;
2. ... or coming exclusively from the functions inlined and eliminated
from the module entirely.
The ValueMap shared between CloneFunctionInto calls within CloneModule
needs to contain identity mappings for all of the DISubprogram's to
prevent them from being duplicated by MapMetadata / RemapInstruction
calls, this is achieved via DebugInfoFinder collecting all the
DISubprogram's. However, CloneFunctionInto was missing calls into
DebugInfoFinder for functions w/o DISubprogram's attached, but still
referring DISubprogram's from within (case 1). This patch fixes that.
The fix above, however, exposes another issue: if a module contains a
DISubprogram referenced only indirectly from other debug info
metadata, but not attached to any Function defined within the module
(case 2), cloning such a module causes a DICompileUnit duplication: it
will be moved in indirecty via a DISubprogram by DebugInfoFinder first
(because of the first bug fix described above), without being
self-mapped within the shared ValueMap, and then will be copied during
named metadata cloning. So this patch makes sure DebugInfoFinder
visits DICompileUnit's referenced from DISubprogram's as it goes w/o
re-processing llvm.dbg.cu list over and over again for every function
cloned, and makes sure that CloneFunctionInto self-maps
DICompileUnit's referenced from the entire function, not just its own
DISubprogram attached that may also be missing.
The most convenient way of tesing CloneModule I found is to rely on
CloneModule call from `opt -run-twice`, instead of writing tedious
unit tests. That feature has a couple of properties that makes it hard
to use for this purpose though:
1. CloneModule doesn't copy source filename, making `opt -run-twice`
report it as a difference.
2. `opt -run-twice` does the second run on the original module, not
its clone, making the result of cloning completely invisible in opt's
actual output with and without `-run-twice` both, which directly
contradicts `opt -run-twice`s own error message.
This patch fixes this as well.
Reviewed By: aprantl
Reviewers: loladiro, GorNishanov, espindola, echristo, dexonsmith
Subscribers: vsk, debug-info, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D45593
llvm-svn: 330069
The function getMinimumVF(ElemWidth) will return the minimum VF for
a vector with elements of size ElemWidth bits. This value will only
apply to targets for which TTI::shouldMaximizeVectorBandwidth returns
true. The value of 0 indicates that there is no minimum VF.
Differential Revision: https://reviews.llvm.org/D45271
llvm-svn: 330062
We have a few functions that virtually all command wants to run on
process startup/shutdown. This patch adds InitLLVM class to do that
all at once, so that we don't need to copy-n-paste boilerplate code
to each llvm command's main() function.
Differential Revision: https://reviews.llvm.org/D45602
llvm-svn: 330046