Assume that, ModelA has scheduling resource for InstA and ModelB has scheduling resource for InstB. This is what the llvm::MCSchedClassDesc looks like:
llvm::MCSchedClassDesc ModelASchedClasses[] = {
...
InstA, 0, ...
InstB, -1,...
};
llvm::MCSchedClassDesc ModelBSchedClasses[] = {
...
InstA, -1,...
InstB, 0,...
};
The -1 means invalid num of macro ops, while it is valid if it is >=0. This is what we look like now:
llvm::MCSchedClassDesc ModelASchedClasses[] = {
...
InstA, 0, ...
InstB, 0,...
};
llvm::MCSchedClassDesc ModelBSchedClasses[] = {
...
InstA, 0,...
InstB, 0,...
};
And compiler hit the assertion here because the SCDesc is valid now for both InstA and InstB.
Differential Revision: https://reviews.llvm.org/D67950
llvm-svn: 374524
When an instruction has an encoding definition for only a subset of
the available HwModes, ensure we just avoid generating an encoding
rather than crash.
llvm-svn: 374150
https://reviews.llvm.org/D66773
The OpTypes::OperandType was creating an enum for all records that
inherit from Operand, but in reality there are operands for instructions
that inherit from other types too. In particular, RegisterOperand and
RegisterClass. This commit adds those types to the list of operand types
that are tracked by the OperandType enum.
Patch by: nlguillemot
llvm-svn: 372641
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
Much like ValueTypeByHwMode/RegInfoByHwMode, this patch allows targets
to modify an instruction's encoding based on HwMode. When the
EncodingInfos field is non-empty the Inst and Size fields of the Instruction
are ignored and taken from EncodingInfos instead.
As part of this promote getHwMode() from TargetSubtargetInfo to MCSubtargetInfo.
This is NFC for all existing targets - new code is generated only if targets
use EncodingByHwMode.
llvm-svn: 372320
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
Summary:
Also fixup rL371928 for cases that occur on our out-of-tree backend
There were still quite a few intermediate APInts and this caused the
compile time of MCCodeEmitter for our target to jump from 16s up to
~5m40s. This patch, brings it back down to ~17s by eliminating pretty
much all of them using two new APInt functions (extractBitsAsZExtValue(),
insertBits() but with a uint64_t). The exact conditions for eliminating
them is that the field extracted/inserted must be <=64-bit which is
almost always true.
Note: The two new APInt API's assume that APInt::WordSize is at least
64-bit because that means they touch at most 2 APInt words. They
statically assert that's true. It seems very unlikely that someone
is patching it to be smaller so this should be fine.
Reviewers: jmolloy
Reviewed By: jmolloy
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67686
llvm-svn: 372243
Some VLIW instruction sets are Very Long Indeed. Using uint64_t constricts the Inst encoding to 64 bits (naturally).
This change switches CodeEmitter to a mode that uses APInts when Inst's bitwidth is > 64 bits (NFC for existing targets).
When Inst.BitWidth > 64 the prototype changes to:
void TargetMCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,
SmallVectorImpl<MCFixup> &Fixups,
APInt &Inst,
APInt &Scratch,
const MCSubtargetInfo &STI);
The Inst parameter returns the encoded instruction, the Scratch parameter is used internally for manipulating operands and is exposed so that the underlying storage can be reused between calls to getBinaryCodeForInstr. The goal is to elide any APInt constructions that we can.
Similarly the operand encoding prototype changes to:
getMachineOpValue(const MCInst &MI, const MCOperand &MO, APInt &op, SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI);
That is, the operand is passed by reference as APInt rather than returned as uint64_t.
To reiterate, this APInt mode is enabled only when Inst.BitWidth > 64, so this change is NFC for existing targets.
llvm-svn: 371928
The scalar f64 patterns don't work yet because they fail on multiple
results from the unused implicit def of scc in the result bit
operation.
llvm-svn: 371542
This was only using the correct register constraints if this was the
final result instruction. If the extract was a sub instruction of the
result, it would attempt to use GIR_ConstrainSelectedInstOperands on a
COPY, which won't work. Move the handling to
createAndImportSubInstructionRenderer so it works correctly.
I don't fully understand why runOnPattern and
createAndImportSubInstructionRenderer both need to handle these
special cases, and constrain them with slightly different methods. If
I remove the runOnPattern handling, it does break the constraint when
the final result instruction is EXTRACT_SUBREG.
llvm-svn: 371150
This is a special case because one node maps to two different G_
instructions, and the operand order is changed.
This mostly enables G_FCMP for AMDPGPU. G_ICMP is still manually
selected for now since it has the SALU and VALU complication to deal
with.
llvm-svn: 370280
Reuse the logic for INSERT_SUBREG to also import SUBREG_TO_REG patterns.
- Split `inferSuperRegisterClass` into two functions, one which tries to use
an existing TreePatternNode (`inferSuperRegisterClassForNode`), and one that
doesn't. SUBREG_TO_REG doesn't have a node to leverage, which is the cause
for the split.
- Rename GlobalISelEmitterInsertSubreg.td to GlobalISelEmitterSubreg.td and
update it.
- Update impacted tests in the AArch64 and X86 backends.
This is kind of a hit/miss for code size improvements/regressions. E.g. in
add-ext.ll, we now get some identity copies. This isn't really anything the
importer can handle, since it's caused by a later pass introducing the copy for
the sake of correctness.
Differential Revision: https://reviews.llvm.org/D66769
llvm-svn: 370254
I thought `llvm::sort` was stable for some reason but it's not.
Use `llvm::stable_sort` in `CodeGenTarget::getSuperRegForSubReg`.
Original patch: https://reviews.llvm.org/D66498
llvm-svn: 370084
When EXPENSIVE_CHECKS are enabled, GlobalISelEmitterSubreg.td doesn't get
stable output.
Reverting while I debug it.
See: https://reviews.llvm.org/D66498
llvm-svn: 370080
This teaches the importer to handle INSERT_SUBREG instructions.
We were missing patterns involving INSERT_SUBREG in AArch64. It appears in
AArch64InstrInfo.td 107 times, and 14 times in AArch64InstrFormats.td.
To meaningfully import it, the GlobalISelEmitter needs to know how to infer a
super register class for a given register class.
This patch introduces the following:
- `getSuperRegForSubReg`, a function which finds the largest register class
which supports a value type and subregister index
- `inferSuperRegisterClass`, a function which finds the appropriate super
register class for an INSERT_SUBREG'
- `inferRegClassFromPattern`, a function which allows for some trivial
lookthrough into instructions
- `getRegClassFromLeaf`, a helper function which returns the register class for
a leaf `TreePatternNode`
- Support for subregister index operands in `importExplicitUseRenderer`
It also
- Updates tests in each backend which are impacted by the change
- Adds GlobalISelEmitterSubreg.td to test that we import and skip the expected
patterns
As a result of this patch, INSERT_SUBREG patterns in X86 may use the
LOW32_ADDR_ACCESS_RBP register class instead of GR32. This is correct, since the
register class contains the same registers as GR32 (except with the addition of
RBP). So, this also teaches X86 to handle that register class. This is in line
with X86ISelLowering, which treats this as a GR class.
Differential Revision: https://reviews.llvm.org/D66498
llvm-svn: 369973
This requires std::intializer_list to be a literal type, which it is
starting with C++14. The downside is that std::bitset is still not
constexpr-friendly so this change contains a re-implementation of most
of it.
Shrinks clang by ~60k.
llvm-svn: 369847
Overloaded intrinsics can use iPTRAny in used/input operands.
The GlobalISelEmitter doesn't know that these are pointers, so it treats them
as scalars. As a result, these intrinsics can't be imported.
This teaches the GlobalISelEmitter to recognize these as pointers rather than
scalars.
Differential Revision: https://reviews.llvm.org/D65756
llvm-svn: 369455
AMDGPU has some buffer intrinsics which theoretically could use
this. Some of the generated tables include the 3 and 4 element vector
versions of these rounded to 64-bits, which is ambiguous. Add these to
help the table disambiguate these.
Assertion change is for the path odd sized vectors now take for R600.
v3i16 is widened to v4i16, which then needs to be promoted to v4i32.
llvm-svn: 369038
Factor out commonly-used target code from the GlobalISelEmitter tests into
a GlobalISelEmitterCommon.td file. This is tested by the original
GlobalISelEmitter.td test.
This reduces the amount of boilerplate code necessary for tests like this.
Differential Revision: https://reviews.llvm.org/D65777
llvm-svn: 368757
Summary:
The problem:
When an operand had bits explicitly set to "1" (as in the InitValue.td test case attached), the decoder was ignoring those bits, and the DecoderMethod was receiving an input where the bits were still zero.
The solution:
We added an "InitValue" variable that stores the initial value of the operand based on what bits were explicitly initialized to 1 in TableGen code. The generated decoder code then uses that initial value to initialize the "tmp" variable, then calls fieldFromInstruction to read the values for the remaining bits that were left unknown in TableGen.
This is mainly useful when there are variations of an instruction that differ based on what bits are set in the operands, since this change makes it possible to access those bits in a DecoderMethod. The DecoderMethod can use those bits to know how to handle the input.
Patch by Nicolas Guillemot
Reviewers: craig.topper, dsanders, fhahn
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D63741
llvm-svn: 368458
This was causing a bug where non-truncating stores would be selected instead of truncating ones.
Differential Revision: https://reviews.llvm.org/D64845
llvm-svn: 367737
AMDGPU uses some custom code predicates for testing alignments.
I'm still having trouble comprehending the behavior of predicate bits
in the PatFrag hierarchy. Any attempt to abstract these properties
unexpectdly fails to apply them.
llvm-svn: 367373
If an intrinsic is defined without outputs, but having side effects,
it still can be removed completely from the program. This patch makes
TableGen not set Attribute::ReadNone for intrinsics which
are declared with IntrHasSideEffects.
Differential Revision: https://reviews.llvm.org/D64414
llvm-svn: 366312
Rather than an array of std::initializer_list, generate a table of
offsets and a flat array of the operands for getOperandType. This is a
bit more efficient on platforms that don't manage to get the array of
inintializer_lists initialized at link time (I'm looking at you
macOS). It's also quite quite a bit faster to compile.
llvm-svn: 366278
The InstrInfoEmitter outputs an enum called "OperandType" which gives
numerical IDs to each operand type. This patch makes use of this enum
to define a function called "getOperandType", which allows looking up
the type of an operand given its opcode and operand index.
Patch by Nicolas Guillemot. Thanks!
Differential Revision: https://reviews.llvm.org/D63320
llvm-svn: 366274
This was failing to import the AMDGPU truncstore patterns. The
truncating stores from 32-bit to 8/16 were then somehow being
incorrectly selected to a 4-byte store.
A separate check is emitted for the LLT size in comparison to the
specific memory VT, which looks strange to me but makes sense based on
the hierarchy of PatFrags used for the default truncstore PatFrags.
llvm-svn: 366129
Currently AMDGPU uses a CodePatPred to check address spaces from the
MachineMemOperand. Introduce a new first class property so that the
existing patterns can be easily modified to uses the new generated
predicate, which will also be handled for GlobalISel.
I would prefer these to match against the pointer type of the
instruction, but that would be difficult to get working with
SelectionDAG compatbility. This is much easier for now and will avoid
a painful tablegen rewrite for all the loads and stores.
I'm also not sure if there's a better way to encode multiple address
spaces in the table, rather than putting the number to expect.
llvm-svn: 366128
Some out of tree backend require larger vector type. Since maintaining the changes out of tree is difficult due to the many manual changes needed when adding a new type we are adding it even if no backend currently use it.
Differential Revision: https://reviews.llvm.org/D64141
Patch by Thomas Raoux!
llvm-svn: 365274
When a Tablegen instruction description uses `OperandWithDefaultOps`,
isel patterns for that instruction don't have to fill in the default
value for the operand in question. But the flip side is that they
actually //can't// override the defaults even if they want to.
This will be very inconvenient for the Arm backend, when we start
wanting to write isel patterns that generate the many MVE predicated
vector instructions, in the form with predication actually enabled. So
this small Tablegen fix makes it possible to write an isel pattern
either with or without values for a defaulted operand, and have the
default values filled in only if they are not overridden.
If all the defaulted operands come at the end of the instruction's
operand list, there's a natural way to match them up to the arguments
supplied in the pattern: consume pattern arguments until you run out,
then fill in any missing instruction operands with their default
values. But if defaulted and non-defaulted operands are interleaved,
it's less clear what to do. This does happen in existing targets (the
first example I came across was KILLGT, in the AMDGPU/R600 backend),
and of course they expect the previous behaviour (that the default for
those operands is used and a pattern argument is not consumed), so for
backwards compatibility I've stuck with that.
Reviewers: nhaehnle, hfinkel, dmgreen
Subscribers: mehdi_amini, javed.absar, tpr, kristof.beyls, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63814
llvm-svn: 365114
r363233 rewrote a bunch of the Intrin Emitter code, however the new
function to update the arg codes did not properly consider a pointer to
an any. This patch adds that logic.
Differential Revision: https://reviews.llvm.org/D63507
llvm-svn: 364364
This allows using anything that isn't a literal integer as the bounds
for a foreach. Some of the diagnostics aren't perfect, but nobody ever
accused tablegen of having good errors. For example, the existing
wording suggests a bitrange is valid, but as far as I can tell this
has never worked.
Fixes bug 41958.
llvm-svn: 361434
If you have more than one schedule model in your TableGen target
definitions, then the diagnostic "No schedule information for
instruction 'foo'" is rather unhelpful, because it doesn't tell you
_which_ schedule model is missing the necessary information (or, as it
might be, missing the UnsupportedFeatures definition that would stop
it thinking it needed it).
Extended the message to include the name of the schedule model that
it's complaining about.
Reviewers: nhaehnle, hfinkel, javedabsar, efriedma, javed.absar
Reviewed By: javed.absar
Subscribers: javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60559
llvm-svn: 358389
Summary:
```
``!listsplat(a, size)``
A list value that contains the value ``a`` ``size`` times.
Example: ``!listsplat(0, 2)`` results in ``[0, 0]``.
```
I plan to use this in X86ScheduleBdVer2.td for LoadRes handling.
This is a little bit controversial because unlike every other binary operator
the types aren't identical.
Reviewers: stoklund, javed.absar, nhaehnle, craig.topper
Reviewed By: javed.absar
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60367
llvm-svn: 358117
When one mistakenly specifies 'def' instead of using 'defm',
the error message is quite misleading: 'Couldn't find class..'
Instead, it should recommend using defm if the multiclass of
same name exists.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D59294
llvm-svn: 356985
AMDGPU would like to use these MVTs.
Differential Revision: https://reviews.llvm.org/D58901
Change-Id: I6125fea810d7cc62a4b4de3d9904255a1233ae4e
llvm-svn: 356351
These two values correspond to the 'Empty' and 'Tombstone' special
keys defined by DenseMapInfo<int64_t>, which means that neither one
can be used as a key in DenseMap<int64_t, anything>. Hence, if you try
to use either of those values as an int literal, IntInit::get() fails
an assertion when it tries to insert them into its static cache of
int-literal objects.
Fixed by replacing the DenseMap with a std::map, which doesn't intrude
on the space of legal values of the key type.
Reviewers: nhaehnle, hfinkel, javedabsar, efriedma
Reviewed By: efriedma
Subscribers: fhahn, efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59016
llvm-svn: 355900
Currently one can concatenate strings using hash(#),
but not lists, although that would be a natural thing to do.
This patch allows one to write something like:
def : A<!listconcat([1,2], [3,4])>;
simply as :
def : A<[1,2] # [3,4]>;
This was missing feature was highlighted by Nicolai
at FOSDEM talk.
Reviewed by: nhaehnle, hfinkel
Differential Revision: https://reviews.llvm.org/D58895
llvm-svn: 355414
This is a small addition to arithmetic operations that improves
expressiveness of the language.
Differential Revision: https://reviews.llvm.org/D58775
llvm-svn: 355187
Summary:
This adds support for defining patterns for global isel using pointer
types, for example:
def : Pat<(load GPR32:$src),
(p1 (LOAD GPR32:$src))>;
DAGISelEmitter will ignore the pointer information and treat these
types as integers with the same bit-width as the pointer type.
Reviewers: dsanders, rtereshin, arsenm
Reviewed By: arsenm
Subscribers: Petar.Avramovic, wdng, rovka, kristof.beyls, jfb, volkan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57065
llvm-svn: 354510
If we run into a pattern that looks like this:
add
(complex $x, $y)
(complex $x, $z)
We should skip the pattern instead of asserting/doing something unpredictable.
This makes us return an Error in that case, and adds a testcase for skipped
patterns.
Differential Revision: https://reviews.llvm.org/D57980
llvm-svn: 353586