It's possible (albeit strange) for $HOME to intentionally
point somewhere other than the user's home directory as
reported by the password database. Our test shouldn't fail
in this case. This patch updates the test to pull directly
from the password database before unsetting $HOME, rather
than comparing the return value of home_directory() to the
original value of the environment variable.
llvm-svn: 298514
This is something of an edge case, but when the $HOME environment
variable is not set, we can still look in the password database
to get the current user's home directory.
Added a test for this by getting the value of $HOME, then unsetting
it, then calling home_directory() and verifying that it succeeds
and that the value is the same as what we originally read from
the environment.
llvm-svn: 298513
StringMap's iterators did not support LLVM's
iterator_facade_base, which made it unusable in various
STL algorithms or with some of our range adapters.
This patch makes both StringMapConstIterator as well as
StringMapIterator support iterator_facade_base.
With this in place, it is easy to make an iterator adapter
that iterates over only keys, and whose value_type is
StringRef. So I add StringMapKeyIterator as well, and
provide the method StringMap::keys() that returns a
range that can be iterated.
Differential Revision: https://reviews.llvm.org/D31171
llvm-svn: 298436
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
In doing so, clean up the MD5 interface a little. Most
existing users only care about the lower 8 bytes of an MD5,
but for some users that care about the upper and lower,
there wasn't a good interface. Furthermore, consumers
of the MD5 checksum were required to handle endianness
details on their own, so it seems reasonable to abstract
this into a nicer interface that just gives you the right
value.
Differential Revision: https://reviews.llvm.org/D31105
llvm-svn: 298322
Users often call getArgumentList().size(), which is a linear way to get
the number of function arguments. arg_size(), on the other hand, is
constant time.
In general, the fact that arguments are stored in an iplist is an
implementation detail, so I've removed it from the Function interface
and moved all other users to the argument container APIs (arg_begin(),
arg_end(), args(), arg_size()).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D31052
llvm-svn: 298010
Previously which path syntax we supported dependend on what
platform we were compiling LLVM on. While this is normally
desirable, there are situations where we need to be able to
handle a path that we know was generated on a remote host.
Remote debugging, for example, or parsing debug info.
99% of the code in LLVM for handling paths was platform
agnostic and literally just a few branches were gated behind
pre-processor checks, so this changes those sites to use
runtime checks instead, and adds a flag to every path
API that allows one to override the host native syntax.
Differential Revision: https://reviews.llvm.org/D30858
llvm-svn: 298004
This change adds support for functions to set and get file permissions, in a similar manner to the C++17 permissions() function in <filesystem>. The setter uses chmod on Unix systems and SetFileAttributes on Windows, setting the permissions as passed in. The getter simply uses the existing status() function.
Prior to this change, status() would always return an unknown value for the permissions on a Windows file, making it impossible to test the new function on Windows. I have therefore added support for this as well. On Linux, prior to this change, the permissions included the file type, which should actually be accessed via a different member of the file_status class.
Note that on Windows, only the *_write permission bits have any affect - if any are set, the file is writable, and if not, the file is read-only. This is in common with what MSDN describes for their behaviour of std::filesystem::permissions(), and also what boost::filesystem does.
The motivation behind this change is so that we can easily test behaviour on read-only files in LLVM unit tests, but I am sure that others may find it useful in some situations.
Reviewers: zturner, amccarth, aaron.ballman
Differential Revision: https://reviews.llvm.org/D30736
llvm-svn: 297945
The idea is that the policy string fully specifies the policy and is portable
between clients.
Differential Revision: https://reviews.llvm.org/D31020
llvm-svn: 297927
Summary:
Previously, ParseCommandLineOptions returns false and ignores error messages
when IgnoreErrors. It would be useful to also return error messages if users
decide to check parsing result instead of having the program exit on error.
Reviewers: chandlerc, mehdi_amini, rnk
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30893
llvm-svn: 297810
This commit adds a unit test to the file system tests to verify the behavior of
the directory iterator and recursive directory iterator with broken symlinks.
This test is Unix only.
llvm-svn: 297669
There were some issues in the implementation of enumerate()
preventing it from being used in various contexts. These were
all related to the fact that it did not supporter llvm's
iterator_facade_base class. So this patch adds support for that
and additionally exposes a new helper method to_vector() that
will evaluate an entire range and store the results in a
vector.
Differential Revision: https://reviews.llvm.org/D30853
llvm-svn: 297633
If raw_fd_ostream is constructed with the path of "-", it claims
ownership of the stdout file descriptor. This means that it closes
stdout when it is destroyed. If there are multiple users of
raw_fd_ostream wrapped around stdout, then a crash can occur because
of operations on a closed stream.
An example of this would be running something like "clang -S -o - -MD
-MF - test.cpp". Alternatively, using outs() (which creates a local
version of raw_fd_stream to stdout) anywhere combined with such a
stream usage would cause the crash.
The fix duplicates the stdout file descriptor when used within
raw_fd_ostream, so that only that particular descriptor is closed when
the stream is destroyed.
Patch by James Henderson!
llvm-svn: 297624
r297310 began inserting red zones around allocations under ASan, which
perturbs the alignment of subsequent allocations. Deliberately specify
this in two places where it matters.
Fixes failures when these tests are run under ASan and UBSan together.
Reviewed by Duncan Exon Smith.
rdar://problem/30980047
llvm-svn: 297540
The problem can occur in presence of subregs. If we are swapping two
instructions defining different subregs of the same register we will
get a new liveout from a block. We need to preserve value number for
block's liveout for successor block's livein to match.
Differential Revision: https://reviews.llvm.org/D30558
llvm-svn: 297534
Summary: There is no need to check profile count as only CallInst will have metadata attached.
Reviewers: eraman
Reviewed By: eraman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30799
llvm-svn: 297500
LLVM already has real_path like functionality, but it is
cumbersome to use and involves clean up after (e.g. you have
to call openFileForRead, then close the resulting FD).
Furthermore, on Windows it doesn't work for directories since
opening a directory and opening a file require slightly
different flags.
So I add a simple function `real_path` which works for all
paths on all platforms and has a simple to use interface.
In doing so, I add the ability to opt in to resolving tilde
expressions (e.g. ~/foo), which are normally handled by
the shell.
Differential Revision: https://reviews.llvm.org/D30668
llvm-svn: 297483
We currently have to insert bits via a temporary variable of the same size as the target with various shift/mask stages, resulting in further temporary variables, all of which require the allocation of memory for large APInts (MaskSizeInBits > 64).
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::insertBits() helper method which avoids the temporary memory allocation and masks/inserts the raw bits directly into the target.
Differential Revision: https://reviews.llvm.org/D30780
llvm-svn: 297458
Summary:
Similar to SmallPtrSet, this makes find and count work with both const
referneces and const pointers.
Reviewers: dblaikie
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D30713
llvm-svn: 297424
We already have a function create_directories() which can create
an entire tree, and remove() which can remove an empty directory,
but we do not have remove_directories() which can remove an entire
tree. This patch adds such a function.
Because removing a directory tree can have dangerous consequences
when the tree contains a directory symlink, the patch here updates
the existing directory_iterator construct to optionally not follow
symlinks (previously it would always follow symlinks). The delete
algorithm uses this flag so that for symlinks, only the links are
removed, and not the targets.
On Windows this is implemented with SHFileOperation, which also
does not recurse into symbolic links or junctions.
Differential Revision: https://reviews.llvm.org/D30676
llvm-svn: 297314
rL295768 introduced this test that fails if LLVM is built and tested on
an NFS share. Delete the test as discussed on the corresponing commit
thread. The only feasible solution would have been to introduce
environment variables and to en/disable the test conditionally.
llvm-svn: 297260
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
The problem with the previous commit appears to have been that TableGen was including CodeGen/LowLevelType.h instead of Support/LowLevelTypeImpl.h.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 297241
Fix SmallPtrSet::iterator behaviour and creation ReverseIterate is true.
- Any function that creates an iterator now uses
SmallPtrSet::makeIterator, which creates an iterator that
dereferences to the given pointer.
- In reverse-iterate mode, initialze iterator::End with "CurArray"
instead of EndPointer.
- In reverse-iterate mode, the current node is iterator::Buffer[-1].
iterator::operator* and SmallPtrSet::makeIterator are the only ones
that need to know.
- Fix the assertions for reverse-iterate mode.
This fixes the tests Danny B added in r297182, and adds a couple of
others to confirm that dereferencing does the right thing, regardless of
how the iterator was found, and that iteration works correctly from each
return from find.
llvm-svn: 297234
Broadcom Vulcan is now Cavium ThunderX2T99.
LLVM Bugzilla: http://bugs.llvm.org/show_bug.cgi?id=32113
Minor fixes for the alignments of loops and functions for
ThunderX T81/T83/T88 (better performance).
Patch was tested with SpecCPU2006.
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D30510
llvm-svn: 297190
More module problems. This time it only showed up in the stage 2 compile of
clang-x86_64-linux-selfhost-modules-2 but not the stage 1 compile.
Somehow, this change causes the build to need Attributes.gen before it's been
generated.
llvm-svn: 297188
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 297177
This extends an earlier change that did similar for add and sub operations.
With this first patch we lose the fastpath for the single word case as operator&= and friends don't support it. This can be added there if we think that's important.
I had to change some functions in the APInt class since the operator overloads were moved out of the class and can't be used inside the class now. The getBitsSet change collides with another outstanding patch to implement it with setBits. But I didn't want to make this patch dependent on that series.
I've also removed the Or, And, Xor functions which were rarely or never used. I already commited two changes to remove the only uses of Or that existed.
Differential Revision: https://reviews.llvm.org/D30612
llvm-svn: 297121
We currently have methods to set a specified number of low bits, a specified number of high bits, or a range of bits. But looking at some existing code it seems sometimes we want to set the high bits starting from a certain bit. Currently we do this with something like getHighBits(BitWidth, BitWidth - StartBit). Or once we start switching to setHighBits, setHighBits(BitWidth - StartBit) or setHighBits(getBitWidth() - StartBit).
Particularly for the latter case it would be better to have a convenience method like setBitsFrom(StartBit) so we don't need to mention the bit width that's already known to the APInt object.
I considered just making setBits have a default value of UINT_MAX for the hiBit argument and we would internally MIN it with the bit width. So if it wasn't specified it would be treated as bit width. This would require removing the assertion we currently have on the value of hiBit and may not be as readable.
Differential Revision: https://reviews.llvm.org/D30602
llvm-svn: 297114
This patch implements getLowBitsSet/getHighBitsSet/getBitsSet in terms of the new setLowBits/setHighBits/setBits methods by making an all 0s APInt and then calling the appropriate set method.
This also adds support to setBits to allow loBits/hiBits to be in the other order to match with getBitsSet behavior.
Differential Revision: https://reviews.llvm.org/D30563
llvm-svn: 297112
Summary:
There are quite a few places in the code base that do something like the following to set the high or low bits in an APInt.
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
For BitWidths larger than 64 this creates a short lived APInt with malloced storage. I think it might even call malloc twice. Its better to just provide methods that can set the necessary bits without the temporary APInt.
I'll update usages that benefit in a separate patch.
Reviewers: majnemer, MatzeB, davide, RKSimon, hans
Reviewed By: hans
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30525
llvm-svn: 297111
David Blaikie pointed out that the `setForceChildren` API is no longer needed and should be removed from the DWARF Generator APIs.
Also the DWARFDebugInfoTest file had some copy pasted comments that are not relevant. I've removed them.
llvm-svn: 297056
Summary:
This makes operator~ take the APInt by value so if it came from a temporary APInt the move constructor will get invoked and it will be able to reuse the memory allocation from the temporary.
This is similar to what was already done for 2s complement negation.
Reviewers: hans, davide, RKSimon
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30614
llvm-svn: 296997
Fixes PR32142.
r287232 accidentally increased the recursion threshold for
CompareValueComplexity from 2 to 32. This change reverses that change
by introducing a separate flag for CompareValueComplexity's threshold.
llvm-svn: 296992
In the DWARF 4 Spec section 7.2.2, data in many DWARF sections, and some DWARF structures start with "Initial Length Values", which are a 32-bit length, and an optional 64-bit length if the 32 bit value == UINT32_MAX.
This patch abstracts the Initial Length type in YAML, and extends its use to all the DWARF structures that are supported in the DWARFYAML code that have Initial Length values.
llvm-svn: 296911
After several smaller patches to get most of the core improvements
finished up, this patch is a straight move and header fixup of
the source.
Differential Revision: https://reviews.llvm.org/D30266
llvm-svn: 296810
Take DW_FORM_implicit_const attribute value into account when profiling
DIEAbbrevData.
Currently if we have two similar types with implicit_const attributes and
different values we end up with only one abbrev in .debug_abbrev section.
For example consider two structures: S1 with implicit_const attribute ATTR
and value VAL1 and S2 with implicit_const ATTR and value VAL2.
The .debug_abbrev section will contain only 1 related record:
[N] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL1
// ....
This is incorrect as struct S2 (with VAL2) will use abbrev record with VAL1.
With this patch we will have two different abbreviations here:
[N] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL1
// ....
[M] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL2
// ....
llvm-svn: 296691
This was due to the test stream choosing an arbitrary partition
index for introducing the discontinuity rather than choosing
an index that would be correctly aligned for the type of data.
Also added an assertion into FixedStreamArray so that this will
be caught on all bots in the future, and not just the UBSan bot.
llvm-svn: 296661
This re-adds all the binary stream tests. This was reverted due
to some misaligned reads. For now the offending test is
disabled while I investigate.
llvm-svn: 296643
I already created a BinaryStreamError class for this purpose,
so update the code to use that on the remaining occurrences
of errc values.
This should also address the issue which led to r296583.
llvm-svn: 296640
Windows does not treat `~` as a reference to home directory, so the call
to `llvm::sys::path::native` on, say, `~/somedir` produces `~\somedir`,
which has different meaning than the original path. With this change
tilde is expanded on Windows to user profile directory. Such behavior
keeps original meaning of the path and is consistent with the algorithm
of `llvm::sys::path::home_directory`.
Differential Revision: https://reviews.llvm.org/D27527
llvm-svn: 296590
Unfortunately, mingw's libstdc++ doesn't provide winsock2 errors.
That said, we should avoid raising OS-oriented error code in our code.
For now, I suggest to define custom error from std::error_category.
See also; https://reviews.llvm.org/D20592
llvm-svn: 296583
Unfortunately, mingw's libstdc++ doesn't provide winsock2 errors.
That said, we should avoid raising OS-oriented error code in our code.
For now, I suggest to define custom error from std::error_category.
See also; https://reviews.llvm.org/D20592
llvm-svn: 296581
A bug was uncovered where if you have a StreamRef whose ViewOffset
is > 0, then when you call readLongestContiguousChunk it will
succeed even when it shouldn't, and it always return you a
buffer that was taken as if the ViewOffset was 0.
Fixed this bug and added a test for it.
llvm-svn: 296556
Requesting DWARF v5 will now get you the new compile-unit and
type-unit headers. llvm-dwarfdump will also recognize them.
Differential Revision: http://reviews.llvm.org/D30206
llvm-svn: 296514
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 296474
Before the endianness was specified on each call to read
or write of the StreamReader / StreamWriter, but in practice
it's extremely rare for streams to have data encoded in
multiple different endiannesses, so we should optimize for the
99% use case.
This makes the code cleaner and more general, but otherwise
has NFC.
llvm-svn: 296415
This was reverted because it was breaking some builds, and
because of incorrect error code usage. Since the CL was
large and contained many different things, I'm resubmitting
it in pieces.
This portion is NFC, and consists of:
1) Renaming classes to follow a consistent naming convention.
2) Fixing the const-ness of the interface methods.
3) Adding detailed doxygen comments.
4) Fixing a few instances of passing `const BinaryStream& X`. These
are now passed as `BinaryStreamRef X`.
llvm-svn: 296394
fallible functions.
Some fallible functions (those returning Error or Expected<T>) may only fail
for a subset of their inputs. For example, a "safe" square root function will
succeed for all finite positive inputs:
Expected<double> safeSqrt(double d) {
if (d < 0 && !isnan(d) && !isinf(d))
return make_error<...>("Cannot sqrt -ve values, nans or infs");
return sqrt(d);
}
At a safe callsite for such a function, checking the error return value is
redundant:
if (auto ValOrErr = safeSqrt(42.0)) {
// use *ValOrErr.
} else
llvm_unreachable("safeSqrt should always succeed for +ve values");
The cantFail function wraps this check and extracts the contained value,
simplifying control flow:
double Result = cantFail(safeSqrt(42.0));
This function should be used with care: it is a programmatic error to wrap a
call with cantFail if it can in fact fail. For debug builds this will
result in llvm_unreachable being called. For release builds the behavior is
undefined.
Use of this function is likely to be rare in library code, but more common
for tool and unit-test code where inputs and mock functions may be known to be
safe.
llvm-svn: 296384
Summary:
Previously we used to return a bogus result, 0, for IR like `ashr %val,
-1`.
I've also added an assert checking that `ComputeNumSignBits` at least
returns 1. That assert found an already checked in test case where we
were returning a bad result for `ashr %val, -1`.
Fixes PR32045.
Reviewers: spatel, majnemer
Reviewed By: spatel, majnemer
Subscribers: efriedma, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D30311
llvm-svn: 296273
The current pattern for extract bits in range is typically:
Mask.lshr(BitOffset).trunc(SubSizeInBits);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation of memory for the temporary variable.
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::extractBits() helper method which avoids the temporary memory allocation.
Differential Revision: https://reviews.llvm.org/D30336
llvm-svn: 296272
r296215, "[PDB] General improvements to Stream library."
r296217, "Disable BinaryStreamTest.StreamReaderObject temporarily."
r296220, "Re-enable BinaryStreamTest.StreamReaderObject."
r296244, "[PDB] Disable some tests that are breaking bots."
r296249, "Add static_cast to silence -Wc++11-narrowing."
std::errc::no_buffer_space should be used for OS-oriented errors for socket transmission.
(Seek discussions around llvm/xray.)
I could substitute s/no_buffer_space/others/g, but I revert whole them ATM.
Could we define and use LLVM errors there?
llvm-svn: 296258
This has to do with big endian, but I can't fix it until
Monday. The code itself is fine, just the tests are wrong.
Disabling 3 tests for now.
llvm-svn: 296244
This adds various new functionality and cleanup surrounding the
use of the Stream library. Major changes include:
* Renaming of all classes for more consistency / meaningfulness
* Addition of some new methods for reading multiple values at once.
* Full suite of unit tests for reader / writer functionality.
* Full set of doxygen comments for all classes.
* Streams now store their own endianness.
* Fixed some bugs in a few of the classes that were discovered
by the unit tests.
llvm-svn: 296215
This is part of a larger effort to get the Stream code moved
up to Support. I don't want to do it in one large patch, in
part because the changes are so big that it will treat everything
as file deletions and add, losing history in the process.
Aside from that though, it's just a good idea in general to
make small changes.
So this change only changes the names of the Stream related
source files, and applies necessary source fix ups.
llvm-svn: 296211
The current pattern for extract bits in range is typically:
Mask.lshr(BitOffset).trunc(SubSizeInBits);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation of memory for the temporary variable.
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::extractBits() helper method which avoids the temporary memory allocation.
Differential Revision: https://reviews.llvm.org/D30336
llvm-svn: 296147
The current pattern for extract bits in range is typically:
Mask.lshr(BitOffset).trunc(SubSizeInBits);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation of memory for the temporary variable.
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::extractBits() helper method which avoids the temporary memory allocation.
Differential Revision: https://reviews.llvm.org/D30336
llvm-svn: 296141
The current pattern for setting bits in range is typically:
Mask |= APInt::getBitsSet(MaskSizeInBits, LoPos, HiPos);
Which can be particularly slow for large APInts (MaskSizeInBits > 64) as they require the allocation memory for the temporary variable.
This is one of the key compile time issues identified in PR32037.
This patch adds the APInt::setBits() helper method which avoids the temporary memory allocation completely, this first implementation uses setBit() internally instead but already significantly reduces the regression in PR32037 (~10% drop). Additional optimization may be possible.
I investigated whether there is need for APInt::clearBits() and APInt::flipBits() equivalents but haven't seen these patterns to be particularly common, but reusing the code would be trivial.
Differential Revision: https://reviews.llvm.org/D30265
llvm-svn: 296102
This commit provides `zip_{first,shortest}` with the standard member types and
methods expected of iterators (e.g., `difference_type`), in order for zip to be
used with other adaptors, such as `make_filter_range`.
Support for reverse iteration has also been added.
Differential Revision: https://reviews.llvm.org/D30246
llvm-svn: 296036
Summary:
The helper will be used in a later change. This change itself is NFC
since the only user of this new function is its unit test.
Reviewers: majnemer, efriedma
Reviewed By: efriedma
Subscribers: efriedma, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D30184
llvm-svn: 296035
Add updater to passes that now need it.
Move around code in MemorySSA to expose needed functions.
Summary: Mostly cleanup
Reviewers: george.burgess.iv
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30221
llvm-svn: 295887
Summary:
This lets one add aliasing stores to the updater.
(i'm next going to move the creation/etc functions to the updater)
Reviewers: george.burgess.iv
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30154
llvm-svn: 295677
The current ObjectLinkingLayer (now RTDyldObjectLinkingLayer) links objects
in-process using MCJIT's RuntimeDyld class. In the near future I hope to add new
object linking layers (e.g. a remote linking layer that links objects in the JIT
target process, rather than the client), so I'm renaming this class to be more
descriptive.
llvm-svn: 295636
This set of patches adds support for Cavium ThunderX ARM64 processors:
* ThunderX
* ThunderX T81
* ThunderX T83
* ThunderX T88
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D28891
llvm-svn: 295475
Summary:
JumpThreading for guards feature has been reverted at https://reviews.llvm.org/rL295200
due to the following problem: the feature used the following algorithm for detection of
diamond patters:
1. Find a block with 2 predecessors;
2. Check that these blocks have a common single parent;
3. Check that the parent's terminator is a branch instruction.
The problem is that these checks are insufficient. They may pass for a non-diamond
construction in case if those two predecessors are actually the same block. This may
happen if parent's terminator is a br (either conditional or unconditional) to a block
that ends with "switch" instruction with exactly two branches going to one block.
This patch re-enables the JumpThreading for guards and fixes this issue by adding the
check that those found predecessors are actually different blocks. This guarantees that
parent's terminator is a conditional branch with exactly 2 different successors, which
is now ensured by assertions. It also adds two more tests for this situation (with parent's
terminator being a conditional and an unconditional branch).
Patch by Max Kazantsev!
Reviewers: anna, sanjoy, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30036
llvm-svn: 295410
Some PDBs or object files can contain references to other PDBs
where the real type information lives. When this happens,
all type indices in the original PDB are meaningless because
their records are not there.
With this patch we add the ability to pull type info from those
secondary PDBs.
Differential Revision: https://reviews.llvm.org/D29973
llvm-svn: 295382
Fixes PR 31921
Summary:
Predicateinfo requires an ugly workaround to try to avoid literal
struct types due to the intrinsic mangling not being implemented.
This workaround actually does not work in all cases (you can hit the
assert by bootstrapping with -print-predicateinfo), and can't be made
to work without DFS'ing the type (IE copying getMangledStr and using a
version that detects if it would crash).
Rather than do that, i just implemented the mangling. It seems
simple, since they are unified structurally.
Looking at the overloaded-mangling testcase we have, it actually turns
out the gc intrinsics will *also* crash if you try to use a literal
struct. Thus, the testcase added fails before this patch, and works
after, without needing to resort to predicateinfo.
Reviewers: chandlerc, davide
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D29925
llvm-svn: 295253
Summary:
In rL291613, the section name was interned in LLVMContext. However,
this broke the ability to remove the section from a GlobalObject,
because it tried to intern empty strings, which is not allowed.
Fix that and add an appropriate regression test.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D29795
llvm-svn: 295238
Changed format specifiers to use format macro constant for pointer type.
Moved width part of format specifier in the correct place for formatting members a and b.
Added a unit test to confirm the output.
Differential Revision: https://reviews.llvm.org/D28957
llvm-svn: 295173
handler args.
The specialization just inherits from the std::decay'd response handler type.
This allows member functions (via MemberFunctionWrapper) to be used as async
handlers.
llvm-svn: 295151
Summary:
This is achieved by generalizing the expression selecting the StringRef
format_provider. Now, anything that can be converted to a StringRef will
use it's formatter.
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29898
llvm-svn: 295064
Launch policies provided a mechanism for running RPC handlers on a background
thread (unblocking the main RPC receiver thread). Async handlers generalize
this by passing the responder function (the function that sends the RPC return
value) as an argument to the handler. The handler can optionally do its work on
a background thread (the same way launch policies do), but can also (a) can
inspect the call arguments before deciding to run the work on a different
thread, or (b) can use the responder in a subsequent RPC call (e.g. in the
handler of a callAsync), allowing the handler to call back to the originator (or
to a 3rd party) without blocking the listener thread, and without launching a
new thread.
llvm-svn: 295030
Summary:
In preparation for graph comparison and filtering, this is a library for
representing graphs in LLVM. This will enable easier encapsulation and reuse
of graphs in llvm-xray.
Depends on D28999, D28225
Reviewers: dblaikie, dberris
Reviewed By: dberris
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D29005
llvm-svn: 294717
Summary:
In preparation for graph comparison and filtering, this is a library for
representing graphs in LLVM. This will enable easier encapsulation and reuse
of graphs in llvm-xray.
Depends on D28999, D28225
Reviewers: dblaikie, dberris
Reviewed By: dberris
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D29005
llvm-svn: 294713
LLVM defines `PTHREAD_LIB` which is used by AddLLVM.cmake and various projects
to correctly link the threading library when needed. Unfortunately
`PTHREAD_LIB` is defined by LLVM's `config-ix.cmake` file which isn't installed
and therefore can't be used when configuring out-of-tree builds. This causes
such builds to fail since `pthread` isn't being correctly linked.
This patch attempts to fix that problem by renaming and exporting
`LLVM_PTHREAD_LIB` as part of`LLVMConfig.cmake`. I renamed `PTHREAD_LIB`
because It seemed likely to cause collisions with downstream users of
`LLVMConfig.cmake`.
llvm-svn: 294690
Add support for padded SLEB128 values, and support for writing SLEB128
values to buffers rather than to ostreams, similar to the existing
ULEB128 support.
llvm-svn: 294675
Somewhat amazingly, this only requires teaching it to clean them up when
deleting a dead function from the graph. And we already have exactly the
necessary data structures to do that in the parent RefSCCs.
This allows ArgPromote to work in a much simpler way be merely letting
reference edges linger in the graph after the causing IR is deleted. We
will clean up these edges when we run any function pass over the IR, but
don't remove them eagerly.
This avoids all of the quadratic update issues both in the current pass
manager and in my previous attempt with the new pass manager.
Differential Revision: https://reviews.llvm.org/D29579
llvm-svn: 294663
Gcc supports target armv7ve which is armv7-a with virtualization
extensions. This change adds support for this in llvm for gcc
compatibility.
Also remove redundant FeatureHWDiv, FeatureHWDivARM for a few models as
this is specified automatically by FeatureVirtualization.
Patch by Manoj Gupta.
Differential Revision: https://reviews.llvm.org/D29472
llvm-svn: 294661
disturbing the graph or having to update edges.
This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.
LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
from `Function*` edges to `Node*` edges.
All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!
Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.
The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.
The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.
Differential Revision: https://reviews.llvm.org/D29577
llvm-svn: 294653
Summary:
This patch allows JumpThreading also thread through guards.
Virtually, guard(cond) is equivalent to the following construction:
if (cond) { do something } else {deoptimize}
Yet it is not explicitly converted into IFs before lowering.
This patch enables early threading through guards in simple cases.
Currently it covers the following situation:
if (cond1) {
// code A
} else {
// code B
}
// code C
guard(cond2)
// code D
If there is implication cond1 => cond2 or !cond1 => cond2, we can transform
this construction into the following:
if (cond1) {
// code A
// code C
} else {
// code B
// code C
guard(cond2)
}
// code D
Thus, removing the guard from one of execution branches.
Patch by Max Kazantsev!
Reviewers: reames, apilipenko, igor-laevsky, anna, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29620
llvm-svn: 294617
Add explicit conversions between forward and reverse ilist iterators.
These follow the conversion conventions of std::reverse_iterator, which
are off-by-one: the newly-constructed "reverse" iterator dereferences to
the previous node of the one sent in. This has the benefit of
converting reverse ranges in place:
- If [I, E) is a valid range,
- then [reverse(E), reverse(I)) gives the same range in reverse order.
ilist_iterator::getReverse() is unchanged: it returns a reverse iterator
to the *same* node.
llvm-svn: 294349
Summary:
The formatter has three knobs:
- the user can choose which time unit to use for formatting (default: whatever is the unit of the input)
- he can choose whether the unit gets displayed (default: yes)
- he can affect the way the number itself is formatted via standard number formatting options (default:default)
Reviewers: zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29481
llvm-svn: 294326
into CRTP base classes.
This can sometimes happen and not cause an immediate failure when the
derived class is, itself, a template. You can end up essentially calling
methods on the wrong derived type but a type where many things will
appear to "work".
To fail fast and with a clear error message we can use a static_assert,
but we have to stash that static_assert inside a method body or nested
type that won't need to be completed while building the base class. I've
tried to pick a reasonably small number of places that seemed like they
would definitely get triggered on use.
This is the last of the patch series defending against this that I have
planned, so far no bugs other than the original were found.
llvm-svn: 294275
SCEV.
This test was immediately the slowest test in 'check-llvm' even in an
optimized build and was driving up the total test time by 50% for me.
Sanjoy has filed a PR about the quadratic behavior in SCEV but it is
also concerning that the test still passes given that r294181 added
a threshold at 32 to SCEV. I've followed up on the original patch to
figure out how this test should work long-term, but for now I want to
get check-llvm to be fast again.
llvm-svn: 294241
iteration.
The lazy formation of RefSCCs isn't really the most important part of
the laziness here -- that has to do with walking the functions
themselves -- and isn't essential to maintain. Originally, there were
incremental update algorithms that relied on updates happening
predominantly near the most recent RefSCC formed, but those have been
replaced with ones that have much tighter general case bounds at this
point. We do still perform asserts that only scale well due to this
incrementality, but those are easy to place behind EXPENSIVE_CHECKS.
Removing this simplifies the entire analysis by having a single up-front
step that builds all of the RefSCCs in a direct Tarjan walk. We can even
easily replace this with other or better algorithms at will and with
much less confusion now that there is no iterator-based incremental
logic involved. This removes a lot of complexity from LCG.
Another advantage of moving in this direction is that it simplifies
testing the system substantially as we no longer have to worry about
observing and mutating the graph half-way through the RefSCC formation.
We still need a somewhat special iterator for RefSCCs because we want
the iterator to remain stable in the face of graph updates. However,
this now merely involves relative indexing to the current RefSCC's
position in the sequence which isn't too hard.
Differential Revision: https://reviews.llvm.org/D29381
llvm-svn: 294227
for a quite big function with source like
%add = add nsw i32 %mul, %conv
%mul1 = mul nsw i32 %add, %conv
%add2 = add nsw i32 %mul1, %add
%mul3 = mul nsw i32 %add2, %add
; repeat couple of thousands times
that can be produced by loop unroll, getAddExpr() tries to recursively construct SCEV and runs almost infinite time.
Added recursion depth restriction (with new parameter to set it)
Reviewers: sanjoy
Subscribers: hfinkel, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D28158
llvm-svn: 294181
Summary: As per title. I ran into that limitation of the API doing some other work, so I though that'd be a nice addition.
Reviewers: jroelofs, compnerd, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29503
llvm-svn: 294063
If LLVM was configured with an x86_64-apple-macosx host triple, this
test would fail, as the API works but the triple isn't in the whitelist.
llvm-svn: 293990
Add both cores to the target parser and TableGen. Test that eabi
attributes are set correctly for both cores. Additionally, test the
absence and presence of MOVT in Cortex-M23 and Cortex-M33, respectively.
Committed on behalf of Sanne Wouda.
Reviewers : rengolin, olista01.
Differential Revision: https://reviews.llvm.org/D29073
llvm-svn: 293761
Summary: Extend the MemorySSAUpdater API to allow movement to arbitrary places
Reviewers: davide, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29239
llvm-svn: 293363
insertUse, moveBefore and moveAfter operations.
Summary:
This creates a basic MemorySSA updater that handles arbitrary
insertion of uses and defs into MemorySSA, as well as arbitrary
movement around the CFG. It replaces the current splice API.
It can be made to handle arbitrary control flow changes.
Currently, it uses the same updater algorithm from D28934.
The main difference is because MemorySSA is single variable, we have
the complete def and use list, and don't need anyone to give it to us
as part of the API. We also have to rename stores below us in some
cases.
If we go that direction in that patch, i will merge all the updater
implementations (using an updater_traits or something to provide the
get* functions we use, called read*/write* in that patch).
Sadly, the current SSAUpdater algorithm is way too slow to use for
what we are doing here.
I have updated the tests we have to basically build memoryssa
incrementally using the updater api, and make sure it still comes out
the same.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29047
llvm-svn: 293356
Summary:
This is the first in a series of patches to add a simple, generalized updater to MemorySSA.
For MemorySSA, every def is may-def, instead of the normal must-def.
(the best way to think of memoryssa is "everything is really one variable, with different versions of that variable at different points in the program).
This means when updating, we end up having to do a bunch of work to touch defs below and above us.
In order to support this quickly, i have ilist'd all the defs for each block. ilist supports tags, so this is quite easy. the only slightly messy part is that you can't have two iplists for the same type that differ only whether they have the ownership part enabled or not, because the traits are for the value type.
The verifiers have been updated to test that the def order is correct.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29046
llvm-svn: 293085
AssertingVH that delays any reported error until the handle is *used*.
This allows data structures to contain handles which become dangling
provided the data structure is cleaned up afterward rather than used for
anything interesting.
The implementation is moderately horrible in part because it works to
leave AssertingVH in place, undisturbed. If at some point there is
consensus that this is simply how AssertingVH should be used, it can be
substantially simplified.
This remains a boring pointer in a non-asserts build as you would
expect. The only place we pay cost is in asserts builds.
I plan to use this as a basis for replacing the asserting VHs that
currently dangle in the new PM until invalidation occurs in both LVI and
SCEV.
Differential Revision: https://reviews.llvm.org/D29061
llvm-svn: 292925
The test fails when there is a symlink on the path because then the path
returned by current_path will not match the one we have set. Instead of
doing a string match check the unique id of the two files.
llvm-svn: 292916
Summary:
This adds a cross-platform way of setting the current working directory
analogous to the existing current_path() function used for retrieving
it. The function will be used in lldb.
Reviewers: rafael, silvas, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29035
llvm-svn: 292907
This refactor allows parallel calls to be made via an arbitrary async call
dispatcher. In particular, this allows ParallelCallGroup to be used with
derived RPC classes that expose custom async RPC call operations.
llvm-svn: 292891
Summary:
This seemed to be an oversight seeing as DenseMap has these conversions.
This patch does the following:
- Adds a default constructor to the iterators.
- Allows DenseSet::ConstIterators to be copy constructed from DenseSet::Iterators
- Allows mutual comparison between Iterators and ConstIterators.
All of these are available in the DenseMap implementation, so the implementation here is trivial.
Reviewers: dblaikie, dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28999
llvm-svn: 292879
Summary:
There's a comment in XorSlowCase that says "0^0==1" which isn't true. 0 xored with 0 is still 0. So I don't think we need to clear any unused bits here.
Now there is no difference between XorSlowCase and AndSlowCase/OrSlowCase other than the operation being performed
Reviewers: majnemer, MatzeB, chandlerc, bkramer
Reviewed By: MatzeB
Subscribers: chfast, llvm-commits
Differential Revision: https://reviews.llvm.org/D28986
llvm-svn: 292873
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
llvm-svn: 292848
Summary:
This patch changes the layout of DoubleAPFloat, and adjust all
operations to do either:
1) (IEEEdouble, IEEEdouble) -> (uint64_t, uint64_t) -> PPCDoubleDoubleImpl,
then run the old algorithm.
2) Do the right thing directly.
1) includes multiply, divide, remainder, mod, fusedMultiplyAdd, roundToIntegral,
convertFromString, next, convertToInteger, convertFromAPInt,
convertFromSignExtendedInteger, convertFromZeroExtendedInteger,
convertToHexString, toString, getExactInverse.
2) includes makeZero, makeLargest, makeSmallest, makeSmallestNormalized,
compare, bitwiseIsEqual, bitcastToAPInt, isDenormal, isSmallest,
isLargest, isInteger, ilogb, scalbn, frexp, hash_value, Profile.
I could split this into two patches, e.g. use
1) for all operatoins first, then incrementally change some of them to
2). I didn't do that, because 1) involves code that converts data between
PPCDoubleDoubleImpl and (IEEEdouble, IEEEdouble) back and forth, and may
pessimize the compiler. Instead, I find easy functions and use
approach 2) for them directly.
Next step is to implement move multiply and divide from 1) to 2). I don't
have plans for other functions in 1).
Differential Revision: https://reviews.llvm.org/D27872
llvm-svn: 292839
This adds the last remaining core feature of the loop pass pipeline in
the new PM and removes the last of the really egregious hacks in the
LICM tests.
Sadly, this requires really substantial changes in the unittests in
order to provide and maintain simplified loops. This is particularly
hard because for example LoopSimplify will try to fold undef branches to
an ideal direction and simplify the loop accordingly.
Differential Revision: https://reviews.llvm.org/D28766
llvm-svn: 292709
Summary: This patch adds some new APIs to enable using the YAML DWARF representation in unit tests. The most basic new API is DWARFYAML::EmitDebugSections which converts a YAML string into a series of owned MemoryBuffer objects stored in a StringMap. The string map can then be used to construct a DWARFContext for parsing in place of an ObjectFile.
Reviewers: dblaikie, clayborg
Subscribers: mgorny, fhahn, jgosnell, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D28828
llvm-svn: 292634
loops in a function.
These are relatively confusing to talk about and compute correctly so it
seems really good to write down their implementation in one place. I've
replaced one place we needed this in the loop PM infrastructure and
I have another place in a pending patch that wants it.
We can't quite use this for the core loop PM walk because there we're
sometimes working on a sub-forest.
I'll add the expected unittests before committing this but wanted to
make sure folks were happy with these names / comments.
Credit goes to Richard Smith for the idea for naming the order where siblings
are in reverse program order but the tree traversal remains preorder.
Differential Revision: https://reviews.llvm.org/D28932
llvm-svn: 292569
This was being parsed / serialized ad-hoc inside the code
for a specific PDB stream. But this data structure is used
in multiple ways / places within the PDB format. To be able
to re-use it we need to raise this code out and make it more
generic. In doing so, a number of bugs are fixed in the
original implementation, and support is added for growing
the hash table and deleting items from the hash table,
which had either been omitted or incorrect implemented in
the initial version.
Differential Revision: https://reviews.llvm.org/D28715
llvm-svn: 292535
The scaling is done with reference to the the new frequency of a reference block.
Differential Revision: https://reviews.llvm.org/D28535
llvm-svn: 292507
Enable an ELFObjectFile to read the its arm build attributes to
produce a target triple with a specific ARM architecture.
llvm-objdump now uses this functionality to automatically produce
a more accurate target.
Differential Revision: https://reviews.llvm.org/D28769
llvm-svn: 292366
other test cases.
Summary: Refactor out LoopInfo computation so that it can be
used by other test cases.
So i am changing this test proactively for later commit, which will use
this function.
Reviewers: sanjoy, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28778
llvm-svn: 292250
No any changes, will follow up with D28807 commit containing APLi change for clang
to fix build issues happened.
Original commit message:
[Support/Compression] - Change zlib API to return Error instead of custom status.
Previously API returned custom enum values.
Patch changes it to return Error with string description.
That should help users to report errors in universal way.
Differential revision: https://reviews.llvm.org/D28684
llvm-svn: 292226
Previously API returned custom enum values.
Patch changes it to return Error with string description.
That should help users to report errors in universal way.
Differential revision: https://reviews.llvm.org/D28684
llvm-svn: 292214
This is another step towards unifying all LibFunc prototype checks.
This work started in r267758 (D19469); add the remaining checks.
Also add a unittest that checks each libfunc declared with a known-valid
and known-invalid prototype. New libfuncs added in the future are
required to have prototype checking in place; the known-valid test will
fail otherwise.
Differential Revision: https://reviews.llvm.org/D28030
llvm-svn: 292188
Summary:
Use getLoopLatch in place of isLoopSimplifyForm. we do not need
to know whether the loop has a preheader nor dedicated exits.
Reviewers: hfinkel, sanjoy, atrick, mkuper
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D28724
llvm-svn: 292078
This patch adds a new class NameHashTableBuilder which creates /names streams.
This patch contains a test to confirm that a stream created by
NameHashTableBuilder can be read by NameHashTable reader class.
Differential Revision: https://reviews.llvm.org/D28707
llvm-svn: 292040
mark it as never invalidated in the new PM.
The old PM already required this to work, and after a discussion with
Hal this seems to really be the only sensible answer. The cache
gracefully degrades as the IR is mutated, and most things which do this
should already be incrementally updating the cache.
This gets rid of a bunch of logic preserving and testing the
invalidation of this analysis.
llvm-svn: 292039
extractProfTotalWeight checks if the profile type is sample profile, but
before that we have to ensure that summary is available. Also expanded
the unittest to test the case where there is no summar
Differential Revision: https://reviews.llvm.org/D28708
llvm-svn: 291982
This allows us efficiently look for more than one attribute, something that is quite common in DWARF consumption.
Differential Revision: https://reviews.llvm.org/D28704
llvm-svn: 291967
Removed all DWARFDie::getAttributeValueAs*() calls.
Renamed:
Optional<DWARFFormValue> DWARFDie::getAttributeValue(dwarf::Attribute);
To:
Optional<DWARFFormValue> DWARFDie::find(dwarf::Attribute);
Added:
Optional<DWARFFormValue> DWARFDie::findRecursively(dwarf::Attribute);
All decoding of Optional<DWARFFormValue> values are now done using the dwarf::to*() functions from DWARFFormValue.h:
Old code:
auto DeclLine = DWARFDie.getAttributeValueAsSignedConstant(DW_AT_decl_line).getValueOr(0);
New code:
auto DeclLine = toUnsigned(DWARFDie.find(DW_AT_decl_line), 0);
This composition helps us since we can now easily do:
auto DeclLine = toUnsigned(DWARFDie.findRecursively(DW_AT_decl_line), 0);
This allows us to easily find attribute values in the current DIE only (the first new code above) or in any DW_AT_abstract_origin or DW_AT_specification Dies using the line above. Note that the code line length is shorter and more concise.
Differential Revision: https://reviews.llvm.org/D28581
llvm-svn: 291959
Summary:
Revert [ARM] Fix ubig32_t read in ARMAttributeParser
Now using support functions to read data instead of trying to
perform casts.
===========================================================
Revert [ARM] Enable objdump to construct triple for ARM
Now that The ARMAttributeParser has been moved into the library,
it has been modified so that it can parse the attributes without
printing them and stores them in a map. ELFObjectFile now queries
the attributes to fill out the architecture details of a provided
triple for 'arm' and 'thumb' targets. llvm-objdump uses this new
functionality.
Subscribers: llvm-commits, samparker, aemerson, mgorny
Differential Revision: https://reviews.llvm.org/D28683
llvm-svn: 291911
Now that The ARMAttributeParser has been moved into the library,
it has been modified so that it can parse the attributes without
printing them and stores them in a map. ELFObjectFile now queries
the attributes to fill out the architecture details of a provided
triple for 'arm' and 'thumb' targets. llvm-objdump uses this new
functionality.
Differential Revision: https://reviews.llvm.org/D28281
llvm-svn: 291898
* Add is{Hot|Cold}CallSite methods
* Fix a bug in isHotBB where it was looking for MD_prof on a return instruction
* Use MD_prof data only if sample profiling was used to collect profiles.
* Add an unit test to ProfileSummaryInfo
Differential Revision: https://reviews.llvm.org/D28584
llvm-svn: 291878
r291503, "Lift the 10-type limit for AlignedCharArrayUnion"
r291514, "Fix MSVC build of AlignedCharArrayUnion"
r291515, "Revert the attempt to optimize the constexpr functions. MSVC does not handle this yet"
r291519, "Try once again to fix the MSVC build of AlignedCharArrayUnion"
They has been failing on i686-linux.
llvm-svn: 291875
Now we only support returning Optional<> values and have changed all clients over to use Optional::getValueOr().
Differential Revision: https://reviews.llvm.org/D28569
llvm-svn: 291686
the latter to the Transforms library.
While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.
Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.
We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.
This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.
I haven't split the unittest though because testing one component
without the other seems nearly intractable.
Differential Revision: https://reviews.llvm.org/D28452
llvm-svn: 291662
arguments much like the CGSCC pass manager.
This is a major redesign following the pattern establish for the CGSCC layer to
support updates to the set of loops during the traversal of the loop nest and
to support invalidation of analyses.
An additional significant burden in the loop PM is that so many passes require
access to a large number of function analyses. Manually ensuring these are
cached, available, and preserved has been a long-standing burden in LLVM even
with the help of the automatic scheduling in the old pass manager. And it made
the new pass manager extremely unweildy. With this design, we can package the
common analyses up while in a function pass and make them immediately available
to all the loop passes. While in some cases this is unnecessary, I think the
simplicity afforded is worth it.
This does not (yet) address loop simplified form or LCSSA form, but those are
the next things on my radar and I have a clear plan for them.
While the patch is very large, most of it is either mechanically updating loop
passes to the new API or the new testing for the loop PM. The code for it is
reasonably compact.
I have not yet updated all of the loop passes to correctly leverage the update
mechanisms demonstrated in the unittests. I'll do that in follow-up patches
along with improved FileCheck tests for those passes that ensure things work in
more realistic scenarios. In many cases, there isn't much we can do with these
until the loop simplified form and LCSSA form are in place.
Differential Revision: https://reviews.llvm.org/D28292
llvm-svn: 291651
Support for DW_FORM_implicit_const DWARFv5 feature.
When this form is used attribute value goes to .debug_abbrev section (as SLEB).
As this form would break any debug tool which doesn't support DWARFv5
it is guarded by dwarf version check. Attempt to use this form with
dwarf version <= 4 is considered a fatal error.
Differential Revision: https://reviews.llvm.org/D28456
llvm-svn: 291599
In some cases StructurizeCfg updates root node, but dominator info
remains unchanges, it causes crash when expensive checks are enabled.
To cope with this problem a new method was added to DominatorTreeBase
that allows adding new root nodes, it is called in StructurizeCfg to
put dominator tree in sync.
This change fixes PR27488.
Differential Revision: https://reviews.llvm.org/D28114
llvm-svn: 291530
This patch uses C++11 parameter packs and constexpr functions
to allow AlignedCharArrayUnion to hold an arbitrary number of
types.
Differential Revision: https://reviews.llvm.org/D28429
llvm-svn: 291503
If we split a filename into `Name` and `Prefix`, `Prefix` is at most
145 bytes. We had a bug that didn't split a path correctly. This bug
was pointed out by Rafael in the post commit review.
This patch adds a unit test for TarWriter to verify the fix.
llvm-svn: 291494
APICalls allows groups of functions to be composed into an API that can be
registered as a unit with an RPC endpoint. Doing registration on a-whole API
basis (rather than per-function) allows missing API functions to be detected
early.
APICalls also allows Function membership to be tested at compile-time. This
allows clients to write static assertions that functions to be called are
members of registered APIs.
llvm-svn: 291380
I somehow wrote this fix and then lost it prior to commit. Really sorry
about the noise. This should fix some issues with hacking add_definition
to do things with warning flags.
llvm-svn: 291033
This required re-working the streaming support and lit's support for
'--gtest_list_tests' but otherwise seems to be a clean upgrade.
Differential Revision: https://reviews.llvm.org/D28154
llvm-svn: 291029
If this is a problem for anyone (shared_ptr is two pointers in size,
whereas IntrusiveRefCntPtr is 1 - and the ref count control block that
make_shared adds is probably larger than the one int in RefCountedBase)
I'd prefer to address this by adding a lower-overhead version of
shared_ptr (possibly refactoring IntrusiveRefCntPtr into such a thing)
to avoid the intrusiveness - this allows memory ownership to remain
orthogonal to types and at least to me, seems to make code easier to
understand (since no implicit ownership acquisition can happen).
This recommits 291006, reverted in r291007.
llvm-svn: 291016
If this is a problem for anyone (shared_ptr is two pointers in size,
whereas IntrusiveRefCntPtr is 1 - and the ref count control block that
make_shared adds is probably larger than the one int in RefCountedBase)
I'd prefer to address this by adding a lower-overhead version of
shared_ptr (possibly refactoring IntrusiveRefCntPtr into such a thing)
to avoid the intrusiveness - this allows memory ownership to remain
orthogonal to types and at least to me, seems to make code easier to
understand (since no implicit ownership acquisition can happen).
llvm-svn: 291006
This just removes the usage of llvm::reverse and llvm::seq. That makes
it harder to handle the empty case correctly and so I've also added
a test there.
This is just a shot in the dark at what might be behind the buildbot
failures. I can't reproduce any issues locally including with ASan...
I feel like I'm missing something...
llvm-svn: 290954
This is both convenient and more efficient as we can skip any
intermediate reallocation of the vector.
This usage pattern came up in a subsequent patch on the pass manager,
but it seems generically useful so I factored it out and added unittests
here.
llvm-svn: 290952
This test was testing that we could correctly find the parent of a DIE, but it was actually just testing the special case where a DIE's depth was 1. This corrects that error by adding an extra level into the the DWARF to ensure that we correctly get the parent by looking for the parent with a depth that is 1 less than the current depth.
Differential Revision: https://reviews.llvm.org/D28261
llvm-svn: 290918
I'm not sure if this was intentional, but today
isGuaranteedToTransferExecutionToSuccessor returns true for readonly and
argmemonly calls that may throw. This commit changes the function to
not implicitly infer nounwind this way.
Even if we eventually specify readonly calls as not throwing,
isGuaranteedToTransferExecutionToSuccessor is not the best place to
infer that. We should instead teach FunctionAttrs or some other such
pass to tag readonly functions / calls as nounwind instead.
llvm-svn: 290794
The bug was introduced in r289619.
Reviewers: Mehdi Amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28134
llvm-svn: 290749
Summary:
This class is unnecessary.
Its comment indicated that it was a compile error to allocate an
instance of a class that inherits from RefCountedBaseVPTR on the stack.
This may have been true at one point, but it's not today.
Moreover you really do not want to allocate *any* refcounted object on
the stack, vptrs or not, so if we did have a way to prevent these
objects from being stack-allocated, we'd want to apply it to regular
RefCountedBase too, obviating the need for a separate RefCountedBaseVPTR
class.
It seems that the main way RefCountedBaseVPTR provides safety is by
making its subclass's destructor virtual. This may have been helpful at
one point, but these days clang will emit an error if you define a class
with virtual functions that inherits from RefCountedBase but doesn't
have a virtual destructor.
Reviewers: compnerd, dblaikie
Subscribers: cfe-commits, klimek, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D28162
llvm-svn: 290717
analyses when we're about to break apart an SCC.
We can't wait until after breaking apart the SCC to invalidate things:
1) Which SCC do we then invalidate? All of them?
2) Even if we invalidate all of them, a newly created SCC may not have
a proxy that will convey the invalidation to functions!
Previously we only invalidated one of the SCCs and too late. This led to
stale analyses remaining in the cache. And because the caching strategy
actually works, they would get used and chaos would ensue.
Doing invalidation early is somewhat pessimizing though if we *know*
that the SCC structure won't change. So it turns out that the design to
make the mutation API force the caller to know the *kind* of mutation in
advance was indeed 100% correct and we didn't do enough of it. So this
change also splits two cases of switching a call edge to a ref edge into
two separate APIs so that callers can clearly test for this and take the
easy path without invalidating when appropriate. This is particularly
important in this case as we expect most inlines to be between functions
in separate SCCs and so the common case is that we don't have to so
aggressively invalidate analyses.
The LCG API change in turn needed some basic cleanups and better testing
in its unittest. No interesting functionality changed there other than
more coverage of the returned sequence of SCCs.
While this seems like an obvious improvement over the current state, I'd
like to revisit the core concept of invalidating within the CG-update
layer at all. I'm wondering if we would be better served forcing the
callers to handle the invalidation beforehand in the cases that they
can handle it. An interesting example is when we want to teach the
inliner to *update and preserve* analyses. But we can cross that bridge
when we get there.
With this patch, the new pass manager an build all of the LLVM test
suite at -O3 and everything passes. =D I haven't bootstrapped yet and
I'm sure there are still plenty of bugs, but this gives a nice baseline
so I'm going to increasingly focus on fleshing out the missing
functionality, especially the bits that are just turned off right now in
order to let us establish this baseline.
llvm-svn: 290664
due to a call cycle.
This actually crashed the ref removal before.
I've added a unittest that covers this kind of interesting graph
structure and mutation.
llvm-svn: 290645
Fix a warning detected by gcc 6:
warning: cast from type 'const void*' to type 'uint8_t* {aka unsigned char*}' casts away qualifiers [-Wcast-qual]
llvm-svn: 290618
that require deferred invalidation.
This handles the other real-world invalidation scenario that we have
cases of: a function analysis which caches references to a module
analysis. We currently do this in the AA aggregation layer and might
well do this in other places as well.
Since this is relative rare, the technique is somewhat more cumbersome.
Analyses need to register themselves when accessing the outer analysis
manager's proxy. This proxy is already necessarily present to allow
access to the outer IR unit's analyses. By registering here we can track
and trigger invalidation when that outer analysis goes away.
To make this work we need to enhance the PreservedAnalyses
infrastructure to support a (slightly) more explicit model for "sets" of
analyses, and allow abandoning a single specific analyses even when
a set covering that analysis is preserved. That allows us to describe
the scenario of preserving all Function analyses *except* for the one
where deferred invalidation has triggered.
We also need to teach the invalidator API to support direct ID calls
instead of always going through a template to dispatch so that we can
just record the ID mapping.
I've introduced testing of all of this both for simple module<->function
cases as well as for more complex cases involving a CGSCC layer.
Much like the previous patch I've not tried to fully update the loop
pass management layer because that layer is due to be heavily reworked
to use similar techniques to the CGSCC to handle updates. As that
happens, we'll have a better testing basis for adding support like this.
Many thanks to both Justin and Sean for the extensive reviews on this to
help bring the API design and documentation into a better state.
Differential Revision: https://reviews.llvm.org/D27198
llvm-svn: 290594
constant expression and to correctly form function reference edges
through them without crashing because one of the operands (the
`BasicBlock` isn't actually a constant despite being an operand of
a constant).
llvm-svn: 290581
This recommits r290512 that was reverted when MSVC failed to compile it. Since
then I've played with various approaches using rextester.com (where I was able
to reproduce the failure) and think that I have a solution thanks in part to
the help of Dave Blaikie! It seems MSVC just has a defective `decltype` in this
version. Manually writing out the type seems to do the trick, even though it is
.... quite complicated.
Original commit message:
This allows both defining convenience iterator/range accessors on types
which walk across N different independent ranges within the object, and
more direct and simple usages with range based for loops such as shown
in the unittest. The same facilities are used for both. They end up
quite small and simple as it happens.
I've also switched an iterator on `Module` to use this. I would like to
add another convenience iterator that includes even more sequences as
part of it and seeing this one already present motivated me to actually
abstract it away and introduce a general utility.
Differential Revision: https://reviews.llvm.org/D28093
llvm-svn: 290528
multiple asynchronous RPC calls.
ParallelCallGroup allows multiple asynchronous calls to be dispatched,
and provides a wait method that blocks until all asynchronous calls have
been executed on the remote and all return value handlers run on the
local machine.
This will allow, for example, the JIT client to issue memory allocation calls
for all sections in parallel, then block until all memory has been allocated
on the remote and the allocated addresses registered with the client, at which
point the JIT client can proceed to applying relocations.
llvm-svn: 290523
This code doesn't work on MSVC for reasons that elude me and I've not
yet covinced a workaround to compile cleanly so reverting for now while
I play with it.
llvm-svn: 290513
This allows both defining convenience iterator/range accessors on types
which walk across N different independent ranges within the object, and
more direct and simple usages with range based for loops such as shown
in the unittest. The same facilities are used for both. They end up
quite small and simple as it happens.
I've also switched an iterator on `Module` to use this. I would like to
add another convenience iterator that includes even more sequences as
part of it and seeing this one already present motivated me to actually
abstract it away and introduce a general utility.
Differential Revision: https://reviews.llvm.org/D28093
llvm-svn: 290512
This patch fixes some ASAN unittest failures on FreeBSD. See the
cfe-commits email thread for r290169 for more on those.
According to the LangRef, the allocsize attribute only tells us about
the number of bytes that exist at the memory location pointed to by the
return value of a function. It does not necessarily mean that the
function will only ever allocate. So, we need to be very careful about
treating functions with allocsize as general allocation functions. This
patch makes us fully conservative in this regard, though I suspect that
we have room to be a bit more aggressive if we want.
This has a FIXME that can be fixed by a relatively straightforward
refactor; I just wanted to keep this patch minimal. If this sticks, I'll
come back and fix it in a few days.
llvm-svn: 290397
from the old pass manager in the new one.
I'm not trying to support (initially) the numerous options that are
currently available to customize the pass pipeline. If we end up really
wanting them, we can add them later, but I suspect many are no longer
interesting. The simplicity of omitting them will help a lot as we sort
out what the pipeline should look like in the new PM.
I've also documented to the best of my ability *why* each pass or group
of passes is used so that reading the pipeline is more helpful. In many
cases I think we have some questionable choices of ordering and I've
left FIXME comments in place so we know what to come back and revisit
going forward. But for now, I've left it as similar to the current
pipeline as I could.
Lastly, I've had to comment out several places where passes are not
ported to the new pass manager or where the loop pass infrastructure is
not yet ready. I did at least fix a few bugs in the loop pass
infrastructure uncovered by running the full pipeline, but I didn't want
to go too far in this patch -- I'll come back and re-enable these as the
infrastructure comes online. But I'd like to keep the comments in place
because I don't want to lose track of which passes need to be enabled
and where they go.
One thing that seemed like a significant API improvement was to require
that we don't build pipelines for O0. It seems to have no real benefit.
I've also switched back to returning pass managers by value as at this
API layer it feels much more natural to me for composition. But if
others disagree, I'm happy to go back to an output parameter.
I'm not 100% happy with the testing strategy currently, but it seems at
least OK. I may come back and try to refactor or otherwise improve this
in subsequent patches but I wanted to at least get a good starting point
in place.
Differential Revision: https://reviews.llvm.org/D28042
llvm-svn: 290325
In order for the llvm DWARF parser to be used in LLDB we will need to be able to get the parent of a DIE. This patch adds that functionality by changing the DWARFDebugInfoEntry class to store a depth field instead of a sibling index. Using a depth field allows us to easily calculate the sibling and the parent without increasing the size of DWARFDebugInfoEntry.
I tested llvm-dsymutil on a debug version of clang where this fully parses DWARF in over 1200 .o files to verify there was no serious regression in performance.
Added a full suite of unit tests to test this functionality.
Differential Revision: https://reviews.llvm.org/D27995
llvm-svn: 290274
GlobPattern is a class to handle glob pattern matching. Currently
only LLD is using that, but technically that feature is not specific
to linkers, so in this patch I move that file to LLVM.
Differential Revision: https://reviews.llvm.org/D27969
llvm-svn: 290212
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
DWARF 4 and later supports encoding the PC as an address or as as offset from the low PC. Clients using DWARFDie should be insulated from how to extract the high PC value. This function takes care of extracting the form value and looking for the correct form.
Differential Revision: https://reviews.llvm.org/D27885
llvm-svn: 290131
unittests/ADT/TwineTest.cpp:106:38: error: field 'Count' will be initialized after base 'llvm::FormatAdapter<int>' [-Werror,-Wreorder]
explicit formatter(int &Count) : Count(Count), FormatAdapter(0) {}
llvm-svn: 290029
BPI may trigger signed overflow UB while computing branch probabilities for
cold calls or to unreachables. For example, with our current choice of weights,
we'll crash if there are >= 2^12 branches to an unreachable.
Use a safer BranchProbability constructor which is better at handling fractions
with large denominators.
Changes since the initial commit:
- Use explicit casts to ensure that multiplication operands are 64-bit
ints.
rdar://problem/29368161
Differential Revision: https://reviews.llvm.org/D27862
llvm-svn: 290022
This reverts commit r290016. It breaks this bot, even though the test
passes locally:
http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/32956/
AnalysisTests: /home/bb/ninja-x64-msvc-RA-centos6/llvm-project/llvm/lib/Support/BranchProbability.cpp:52: static llvm::BranchProbability llvm::BranchProbability::getBranchProbability(uint64_t, uint64_t): Assertion `Numerator <= Denominator && "Probability cannot be bigger than 1!"' failed.
llvm-svn: 290019
BPI may trigger signed overflow UB while computing branch probabilities
for cold calls or to unreachables. For example, with our current choice
of weights, we'll crash if there are >= 2^12 branches to an unreachable.
Use a safer BranchProbability constructor which is better at handling
fractions with large denominators.
rdar://problem/29368161
Differential Revision: https://reviews.llvm.org/D27862
llvm-svn: 290016
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
Summary:
This replaces the format member search, which was quite complicated, with a more
direct approach to detecting whether a class should be formatted using the
format-member method. Instead we use a special type llvm::format_adapter, which
every adapter must inherit from. Then the search can be simply implemented with
the is_base_of type trait.
Aside from the simplification, I like this way more because it makes it more
explicit that you are supposed to use this type only for adapter-like
formattings, and the other approach (format_provider overloads) should be used
as a default (a mistake I made when first trying to use this library).
The only slight change in behaviour here is that now choose the format-adapter
branch even if the format member invocation will fail to compile (e.g. because it is a
non-const member function and we are passing a const adapter), whereas
previously we would have gone on to search for format_providers for the type.
However, I think that is actually a good thing, as it probably means the
programmer did something wrong.
Reviewers: zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27679
llvm-svn: 289795
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
This way it will be easier to expand DIFile (e.g., to contain checksum) without the need to modify the createCompileUnit() API.
Reviewers: llvm-commits, rnk
Differential Revision: https://reviews.llvm.org/D27762
llvm-svn: 289702
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Summary:
Given a flag (-mllvm -reverse-iterate) this patch will enable iteration of SmallPtrSet in reverse order.
The idea is to compile the same source with and without this flag and expect the code to not change.
If there is a difference in codegen then it would mean that the codegen is sensitive to the iteration order of SmallPtrSet.
This is enabled only with LLVM_ENABLE_ABI_BREAKING_CHECKS.
Reviewers: chandlerc, dexonsmith, mehdi_amini
Subscribers: mgorny, emaste, llvm-commits
Differential Revision: https://reviews.llvm.org/D26718
llvm-svn: 289619
Many places pass around a DWARFDebugInfoEntryMinimal and a DWARFUnit. It is easy to get things wrong by using the wrong DWARFUnit with a DWARFDebugInfoEntryMinimal. This patch creates a DWARFDie class that contains the DWARFUnit and DWARFDebugInfoEntryMinimal objects so that they can't get out of sync. All attribute extraction has been moved out of DWARFDebugInfoEntryMinimal and into DWARFDie. DWARFDebugInfoEntryMinimal was also renamed to DWARFDebugInfoEntry.
DWARFDie objects are temporary objects that are used by clients and contain 2 pointers that you always need to have anyway. Keeping them grouped will avoid errors and simplify many of the attribute extracting APIs by not having to pass in a DWARFUnit.
Differential Revision: https://reviews.llvm.org/D27634
llvm-svn: 289565
StringLiteral is a wrapper around a string literal useful for
replacing global tables of char arrays with global tables of
StringRefs that can initialized in a constexpr context, avoiding
the invocation of a global constructor.
Differential Revision: https://reviews.llvm.org/D27686
llvm-svn: 289551
Summary:
I looked at libgcc's implementation (which is based on the paper,
Software for Doubled-Precision Floating-Point Computations", by Seppo Linnainmaa,
ACM TOMS vol 7 no 3, September 1981, pages 272-283.) and made it generic to
arbitrary IEEE floats.
Differential Revision: https://reviews.llvm.org/D26817
llvm-svn: 289472
Reverts r289412. It caused an OOB PHI operand access in instcombine when
ASan is enabled. Reduction in progress.
Also reverts "[SCEVExpander] Add a test case related to r289412"
llvm-svn: 289453
SCEVExpand computes the insertion point for the components of a SCEV to be code
generated. When it comes to generating code for a division, SCEVexpand would
not be able to check (at compilation time) all the conditions necessary to avoid
a division by zero. The patch disables hoisting of expressions containing
divisions by anything other than non-zero constants in order to avoid hoisting
these expressions past conditions that should hold before doing the division.
The patch passes check-all on x86_64-linux.
Differential Revision: https://reviews.llvm.org/D27216
llvm-svn: 289412
Summary:
Fix a corner case in `MDNode::getMostGenericTBAA` where we can sometimes
generate invalid TBAA metadata.
Reviewers: chandlerc, hfinkel, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26635
llvm-svn: 289403
Summary:
This never really got implemented, and was very hard to test before
a lot of the refactoring changes to make things more robust. But now we
can test it thoroughly and cleanly, especially at the CGSCC level.
The core idea is that when an inner analysis manager proxy receives the
invalidation event for the outer IR unit, it needs to walk the inner IR
units and propagate it to the inner analysis manager for each of those
units. For example, each function in the SCC needs to get an
invalidation event when the SCC gets one.
The function / module interaction is somewhat boring here. This really
becomes interesting in the face of analysis-backed IR units. This patch
effectively handles all of the CGSCC layer's needs -- both invalidating
SCC analysis and invalidating function analysis when an SCC gets
invalidated.
However, this second aspect doesn't really handle the
LoopAnalysisManager well at this point. That one will need some change
of design in order to fully integrate, because unlike the call graph,
the entire function behind a LoopAnalysis's results can vanish out from
under us, and we won't even have a cached API to access. I'd like to try
to separate solving the loop problems into a subsequent patch though in
order to keep this more focused so I've adapted them to the API and
updated the tests that immediately fail, but I've not added the level of
testing and validation at that layer that I have at the CGSCC layer.
An important aspect of this change is that the proxy for the
FunctionAnalysisManager at the SCC pass layer doesn't work like the
other proxies for an inner IR unit as it doesn't directly manage the
FunctionAnalysisManager and invalidation or clearing of it. This would
create an ever worsening problem of dual ownership of this
responsibility, split between the module-level FAM proxy and this
SCC-level FAM proxy. Instead, this patch changes the SCC-level FAM proxy
to work in terms of the module-level proxy and defer to it to handle
much of the updates. It only does SCC-specific invalidation. This will
become more important in subsequent patches that support more complex
invalidaiton scenarios.
Reviewers: jlebar
Subscribers: mehdi_amini, mcrosier, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D27197
llvm-svn: 289317
So far it creates a test helper and so it should be moved there. It also
create a layering cycle between CodeGen and CodeGen/AsmPrinter, which
should be avoided.
Review: https://reviews.llvm.org/D27570
llvm-svn: 289044
Summary:
The existing detection of a format member function has a couple of deficiencies:
- the member function does not get detected if one calls formatv with an lvalue,
because the template parameter gets deduced as T&, which fails the is_class
check.
- it also did not work if the function was called with a const variable because
the template parameter would get deduced as const T&, again failing the
is_class check.
This fixes the problem by stripping the references in the uses_format_member
template, to make sure the type is correctly detected as class. It also provides
specializations of the has_FormatMember template for const and non-const members
of the types in order to enable declaring the format member as a "const"
function. I have added tests that verify that formatv can be now called in these
scenarios. As some scenarios could not be verified at runtime (e.g. making sure
that calling a non-const format member on a const object does *not* compile), I
have also added some static_asserts which test the behaviour of the template
classes used internally by formatv().
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27525
llvm-svn: 289040
The only tests we have for the DWARF parser are the tests that use llvm-dwarfdump and expect output from textual dumps.
More DWARF parser modification are coming in the next few weeks and I wanted to add tests that can verify that we can encode and decode all form types, as well as test some other basic DWARF APIs where we ask DIE objects for their children and siblings.
DwarfGenerator.cpp was added in the lib/CodeGen directory. This file contains the code necessary to easily create DWARF for tests:
dwarfgen::Generator DG;
Triple Triple("x86_64--");
bool success = DG.init(Triple, Version);
if (!success)
return;
dwarfgen::CompileUnit &CU = DG.addCompileUnit();
dwarfgen::DIE CUDie = CU.getUnitDIE();
CUDie.addAttribute(DW_AT_name, DW_FORM_strp, "/tmp/main.c");
CUDie.addAttribute(DW_AT_language, DW_FORM_data2, DW_LANG_C);
dwarfgen::DIE SubprogramDie = CUDie.addChild(DW_TAG_subprogram);
SubprogramDie.addAttribute(DW_AT_name, DW_FORM_strp, "main");
SubprogramDie.addAttribute(DW_AT_low_pc, DW_FORM_addr, 0x1000U);
SubprogramDie.addAttribute(DW_AT_high_pc, DW_FORM_addr, 0x2000U);
dwarfgen::DIE IntDie = CUDie.addChild(DW_TAG_base_type);
IntDie.addAttribute(DW_AT_name, DW_FORM_strp, "int");
IntDie.addAttribute(DW_AT_encoding, DW_FORM_data1, DW_ATE_signed);
IntDie.addAttribute(DW_AT_byte_size, DW_FORM_data1, 4);
dwarfgen::DIE ArgcDie = SubprogramDie.addChild(DW_TAG_formal_parameter);
ArgcDie.addAttribute(DW_AT_name, DW_FORM_strp, "argc");
// ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref4, IntDie);
ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref_addr, IntDie);
StringRef FileBytes = DG.generate();
MemoryBufferRef FileBuffer(FileBytes, "dwarf");
auto Obj = object::ObjectFile::createObjectFile(FileBuffer);
EXPECT_TRUE((bool)Obj);
DWARFContextInMemory DwarfContext(*Obj.get());
This code is backed by the AsmPrinter code that emits DWARF for the actual compiler.
While adding unit tests it was discovered that DIEValue that used DIEEntry as their values had bugs where DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref8, and DW_FORM_ref_udata forms were not supported. These are all now supported. Added support for DW_FORM_string so we can emit inlined C strings.
Centralized the code to unique abbreviations into a new DIEAbbrevSet class and made both the dwarfgen::Generator and the llvm::DwarfFile classes use the new class.
Fixed comments in the llvm::DIE class so that the Offset is known to be the compile/type unit offset.
DIEInteger now supports more DW_FORM values.
There are also unit tests that cover:
Encoding and decoding all form types and values
Encoding and decoding all reference types (DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8, DW_FORM_ref_udata, DW_FORM_ref_addr) including cross compile unit references with that go forward one compile unit and backward on compile unit.
Differential Revision: https://reviews.llvm.org/D27326
llvm-svn: 289010
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
Summary:
This is a follow up to r288303, where I have introduced TrigramIndex
to speed up SpecialCaseList for the cases when all rules are
simple wildcards, like *hello*wor.d*.
Here, I add support for escaping, so that it's possible to
specify rules like *c\+\+abi*.
Reviewers: pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27318
llvm-svn: 288553
Summary:
it's often the case when the rules in the SpecialCaseList
are of the form hel.o*bar. That gives us a chance to build
trigram index to quickly discard 99% of inputs without
running a full regex. A similar idea was used in Google Code Search
as described in the blog post:
https://swtch.com/~rsc/regexp/regexp4.html
The check is defeated, if there's at least one regex
more complicated than that. In this case, all inputs
will go through the regex. That said, the real-world
rules are often simple or can be simplied. That considerably
speeds up compiling Chromium with CFI and UBSan.
As measured on Chromium's content_message_generator.cc:
before, CFI: 44 s
after, CFI: 23 s
after, CFI, no blacklist: 23 s (~1% slower, but 3 runs were unable to show the difference)
after, regular compilation to bitcode: 23 s
Reviewers: pcc
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D27188
llvm-svn: 288303
This is consistent with the header (after r288087) and fixes the
test for the configuration:
-DLLVM_ENABLE_ASSERTIONS=ON -DLLVM_ABI_BREAKING_CHECKS=FORCE_OFF
llvm-svn: 288196
accept an Invalidator that allows them to invalidate themselves if their
dependencies are in turn invalidated.
Rather than recording the dependency graph ahead of time when analysis
get results from other analyses, this simply lets each result trigger
the immediate invalidation of any analyses they actually depend on. They
do this in a way that has three nice properties:
1) They don't have to handle transitive dependencies because the
infrastructure will recurse for them.
2) The invalidate methods are still called only once. We just
dynamically discover the necessary topological ordering, everything
is memoized nicely.
3) The infrastructure still provides a default implementation and can
access it so that only analyses which have dependencies need to do
anything custom.
To make this work at all, the invalidation logic also has to defer the
deletion of the result objects themselves so that they can remain alive
until we have collected the complete set of results to invalidate.
A unittest is added here that has exactly the dependency pattern we are
concerned with. It hit the use-after-free described by Sean in much
detail in the long thread about analysis invalidation before this
change, and even in an intermediate form of this change where we failed
to defer the deletion of the result objects.
There is an important problem with doing dependency invalidation that
*isn't* solved here: we don't *enforce* that results correctly
invalidate all the analyses whose results they depend on.
I actually looked at what it would take to do that, and it isn't as hard
as I had thought but the complexity it introduces seems very likely to
outweigh the benefit. The technique would be to provide a base class for
an analysis result that would be populated with other results, and
automatically provide the invalidate method which immediately does the
correct thing. This approach has some nice pros IMO:
- Handles the case we care about and nothing else: only *results*
that depend on other analyses trigger extra invalidation.
- Localized to the result rather than centralized in the analysis
manager.
- Ties the storage of the reference to another result to the triggering
of the invalidation of that analysis.
- Still supports extending invalidation in customized ways.
But the down sides here are:
- Very heavy-weight meta-programming is needed to provide this base
class.
- Requires a pretty awful API for accessing the dependencies.
Ultimately, I fear it will not pull its weight. But we can re-evaluate
this at any point if we start discovering consistent problems where the
invalidation and dependencies get out of sync. It will fit as a clean
layer on top of the facilities in this patch that we can add if and when
we need it.
Note that I'm not really thrilled with the names for these APIs... The
name "Invalidator" seems ok but not great. The method name "invalidate"
also. In review some improvements were suggested, but they really need
*other* uses of these terms to be updated as well so I'm going to do
that in a follow-up commit.
I'm working on the actual fixes to various analyses that need to use
these, but I want to try to get tests for each of them so we don't
regress. And those changes are seperable and obvious so once this goes
in I should be able to roll them out throughout LLVM.
Many thanks to Sean, Justin, and others for help reviewing here.
Differential Revision: https://reviews.llvm.org/D23738
llvm-svn: 288077
Some scanner errors were not checked and reported by the parser.
Fix PR30934. Recommit r288014 after fixing unittest.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D26419
llvm-svn: 288071
Some scanner errors were not checked and reported by the parser.
Fix PR30934
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D26419
llvm-svn: 288014
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.
This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.
However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.
And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.
This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.
We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.
Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!
While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.
Differential Revision: https://reviews.llvm.org/D27031
llvm-svn: 287783
In many sitautions, you just want to compute a hash for one chunk
of data. This patch adds convenient functions for that purpose.
Differential Revision: https://reviews.llvm.org/D26988
llvm-svn: 287726
This mostly gives us nice unittesting of the predicates themselves. I'll
start using them further in subsequent commits to help test the actual
operations performed on the graph.
llvm-svn: 287698
The previously used "names" are rather descriptions (they use multiple
words and contain spaces), use short programming language identifier
like strings for the "names" which should be used when exporting to
machine parseable formats.
Also removed a unused TimerGroup from Hexxagon.
Differential Revision: https://reviews.llvm.org/D25583
llvm-svn: 287369
Summary:
CompareSCEVComplexity goes too deep (50+ on a quite a big unrolled loop) and runs almost infinite time.
Added cache of "equal" SCEV pairs to earlier cutoff of further estimation. Recursion depth limit was also introduced as a parameter.
Reviewers: sanjoy
Subscribers: mzolotukhin, tstellarAMD, llvm-commits
Differential Revision: https://reviews.llvm.org/D26389
llvm-svn: 287232
This unit test infinite-looped on s390x due to a thread_yield being optimized
out. I've updated the QueueChannel class (where thread_yield was called) to use
a condition variable instead. This should cause the unit test to behave
correctly.
llvm-svn: 287121
Summary:
All uses have been replaced by appropriate std::chrono types, and the class is
now unused.
Reviewers: zturner, mehdi_amini
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26447
llvm-svn: 287094
Sometimes, llvm-symbolizer gives wrong results due to incorrect sizes of some symbols. The reason for that was an incorrectly sorted array in computeSymbolSizes. The comparison function used subtraction of unsigned types, which is incorrect. Let's change this to return explicit -1 or 1.
Differential Revision: https://reviews.llvm.org/D26537
llvm-svn: 287028
This broke s390x due to a bug in the QueueChannel implementation that led to it
infinite-looping. Disabling it while I look into a fix.
llvm-svn: 286917
return types.
This class allows user provided handlers to return either error-wrapped types
or plain types. In the latter case, the plain type is wrapped with a success
value of Error or Expected<T> type to fit it into the rest of the serialization
machinery.
This patch allows us to remove the RPC unit-test workaround added in r286646.
llvm-svn: 286701
This introduces a new type-safe general purpose formatting
library. It provides compile-time type safety, does not require
a format specifier (since the type is deduced), and provides
mechanisms for extending the format capability to user defined
types, and overriding the formatting behavior for existing types.
This patch additionally adds documentation for the API to the
LLVM programmer's manual.
Mailing List Thread:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/105836.html
Differential Revision: https://reviews.llvm.org/D25587
llvm-svn: 286682
return type.
This should be fixed permanently by having the RPCUtils header recognize the
ErrorSuccess type. I'll commit that in a follow up patch.
llvm-svn: 286646
This is pure refactoring. NFC.
This change moves the FunctionComparator (together with the GlobalNumberState
utility) in to a separate file so that it can be used by other passes.
For example, the SwiftMergeFunctions pass in the Swift compiler:
https://github.com/apple/swift/blob/master/lib/LLVMPasses/LLVMMergeFunctions.cpp
Details of the change:
*) The big part is just moving code out of MergeFunctions.cpp into FunctionComparator.h/cpp
*) Make FunctionComparator member functions protected (instead of private)
so that a derived comparator class can use them.
Following refactoring helps to share code between the base FunctionComparator
class and a derived class:
*) Add a beginCompare() function
*) Move some basic function property comparisons into a separate function compareSignature()
*) Do the GEP comparison inside cmpOperations() which now has a new
needToCmpOperands reference parameter
https://reviews.llvm.org/D25385
llvm-svn: 286632
(1) Add support for function key negotiation.
The previous version of the RPC required both sides to maintain the same
enumeration for functions in the API. This means that any version skew between
the client and server would result in communication failure.
With this version of the patch functions (and serializable types) are defined
with string names, and the derived function signature strings are used to
negotiate the actual function keys (which are used for efficient call
serialization). This allows clients to connect to any server that supports a
superset of the API (based on the function signatures it supports).
(2) Add a callAsync primitive.
The callAsync primitive can be used to install a return value handler that will
run as soon as the RPC function's return value is sent back from the remote.
(3) Launch policies for RPC function handlers.
The new addHandler method, which installs handlers for RPC functions, takes two
arguments: (1) the handler itself, and (2) an optional "launch policy". When the
RPC function is called, the launch policy (if present) is invoked to actually
launch the handler. This allows the handler to be spawned on a background
thread, or added to a work list. If no launch policy is used, the handler is run
on the server thread itself. This should only be used for short-running
handlers, or entirely synchronous RPC APIs.
(4) Zero cost cross type serialization.
You can now define serialization from any type to a different "wire" type. For
example, this allows you to call an RPC function that's defined to take a
std::string while passing a StringRef argument. If a serializer from StringRef
to std::string has been defined for the channel type this will be used to
serialize the argument without having to construct a std::string instance.
This allows buffer reference types to be used as arguments to RPC calls without
requiring a copy of the buffer to be made.
llvm-svn: 286620
In preparation for a follow on patch that improves DWARF parsing speed, clean up DWARFFormValue so that we have can get the fixed byte size of a form value given a DWARFUnit or given the version, address byte size and dwarf32/64.
This patch cleans up code so that everyone is using one of the new DWARFFormValue functions:
static Optional<uint8_t> DWARFFormValue::getFixedByteSize(dwarf::Form Form, const DWARFUnit *U = nullptr);
static Optional<uint8_t> DWARFFormValue::getFixedByteSize(dwarf::Form Form, uint16_t Version, uint8_t AddrSize, bool Dwarf32);
This patch changes DWARFFormValue::skipValue() to rely on the output of DWARFFormValue::getFixedByteSize(...) instead of duplicating the code in each function. This will reduce the number of changes we need to make to DWARF to fewer places in DWARFFormValue when we add support for new form.
This patch also starts to support DWARF64 so that we can get correct byte sizes for forms that vary according the DWARF 32/64.
To reduce the code duplication a new FormSizeHelper pure virtual class was created that can be created as a FormSizeHelperDWARFUnit when you have a DWARFUnit, or FormSizeHelperManual where you manually specify the DWARF version, address byte size and DWARF32/DWARF64. There is now a single implementation of a function that gets the fixed byte size (instead of two where one took a DWARFUnit and one took the DWARF version, address byte size and DWARFFormat enum) and one function to skip the form values.
https://reviews.llvm.org/D26526
llvm-svn: 286597
Summary:
Split ReaderWriter.h which contains the APIs into both the BitReader and
BitWriter libraries into BitcodeReader.h and BitcodeWriter.h.
This is to address Chandler's concern about sharing the same API header
between multiple libraries (BitReader and BitWriter). That concern is
why we create a single bitcode library in our downstream build of clang,
which led to r286297 being reverted as it added a dependency that
created a cycle only when there is a single bitcode library (not two as
in upstream).
Reviewers: mehdi_amini
Subscribers: dlj, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26502
llvm-svn: 286566
This is forcing to use Error::success(), which is in a wide majority
of cases a lot more readable.
Differential Revision: https://reviews.llvm.org/D26481
llvm-svn: 286561
This makes it possible to indent a binary blob by a certain
number of bytes, and also makes some things more idiomatic.
Finally, it integrates this binary blob formatter into ScopedPrinter
which used to have its own implementation of this algorithm.
Differential Revision: https://reviews.llvm.org/D26477
llvm-svn: 286495
Summary:
We've had support for auto upgrading old style scalar TBAA access
metadata tags into the "new" struct path aware TBAA metadata for 3 years
now. The only way to actually generate old style TBAA was explicitly
through the IRBuilder API. I think this is a good time for dropping
support for old style scalar TBAA.
I'm not removing support for textual or bitcode upgrade -- if you have
IR with the old style scalar TBAA tags that go through the AsmParser orf
the bitcode parser before LLVM sees them, they will keep working as
usual.
Note:
%val = load i32, i32* %ptr, !tbaa !N
!N = < scalar tbaa node >
is equivalent to
%val = load i32, i32* %ptr, !tbaa !M
!N = < scalar tbaa node >
!M = !{!N, !N, 0}
Reviewers: manmanren, chandlerc, sunfish
Subscribers: mcrosier, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26229
llvm-svn: 286291
Unique ownership is just one possible ownership pattern for the memory buffer
underlying the bitcode reader. In practice, as this patch shows, ownership can
often reside at a higher level. With the upcoming change to allow multiple
modules in a single bitcode file, it will no longer be appropriate for
modules to generally have unique ownership of their memory buffer.
The C API exposes the ownership relation via the LLVMGetBitcodeModuleInContext
and LLVMGetBitcodeModuleInContext2 functions, so we still need some way for
the module to own the memory buffer. This patch does so by adding an owned
memory buffer field to Module, and using it in a few other places where it
is convenient.
Differential Revision: https://reviews.llvm.org/D26384
llvm-svn: 286214
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106630.html
Move block info block state to a new class, BitstreamBlockInfo.
Clients may set the block info for a particular cursor with the
BitstreamCursor::setBlockInfo() method.
At this point BitstreamReader is not much more than a container for an
ArrayRef<uint8_t>, so remove it and replace all uses with direct uses
of memory buffers.
Differential Revision: https://reviews.llvm.org/D26259
llvm-svn: 286207
Summary:
Fixes PR30869.
In D25977 I meant to change all functions that care about lifetime. I
changed constructors, factory functions, but I missed member/free
functions that return new instances. This patch changes them.
Reviewers: hfinkel, kbarton, echristo, joerg
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D26269
llvm-svn: 286060
Summary:
These functions currently require that the new closed interval has a length of
at least 2. They also currently permit empty half-open intervals. This patch
defines nonEmpty in each traits structure and uses it to correct the
implementations of setStart and setStop.
Reviewers: stoklund, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26064
llvm-svn: 285957
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106595.html
This change also fixes an API oddity where BitstreamCursor::Read() would
return zero for the first read past the end of the bitstream, but would
report_fatal_error for subsequent reads. Now we always report_fatal_error
for all reads past the end. Updated clients to check for the end of the
bitstream before reading from it.
I also needed to add padding to the invalid bitcode tests in
test/Bitcode/. This is because the streaming interface was not checking that
the file size is a multiple of 4.
Differential Revision: https://reviews.llvm.org/D26219
llvm-svn: 285773
If a response file included by construct @file itself includes a response file
and that file is specified by relative file name, current behavior is to resolve
the name relative to the current working directory. The change adds additional
flag to ExpandResponseFiles that may be used to resolve nested response file
names relative to including file. With the new mode a set of related response
files may be kept together and reference each other with short position
independent names.
Differential Revision: https://reviews.llvm.org/D24917
llvm-svn: 285675
This resubmits r284436 and r284437, which were reverted in
r284462 as they were breaking the AArch64 buildbot.
The breakage on AArch64 turned out to be a miscompile which is
still not fixed, but is actively tracked at llvm.org/pr30748.
This resubmission re-writes the code in a way so as to make the
miscompile not happen.
llvm-svn: 285483
Change type of some missed DebugInfo-related alignment variables,
that are still uint64_t, to uint32_t.
Original change introduced in r284482.
llvm-svn: 285242
On i386 alignof(double) = 8 is not the same as alignof(struct { double
}) = 4. This used to be not an issue because the old implementation
always measured alignment inside of structs. Wrap a dummy struct around
the test to avoid this issue.
llvm-svn: 284812
Summary:
This allows us to mark when uses have been optimized.
This lets us avoid rewalking (IE when people call getClobberingAccess on everything), and also
enables us to later relax the requirement of use optimization during updates with less cost.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25172
llvm-svn: 284771
Also clean up the legacy hacks for AlignedCharArray. I'm keeping
LLVM_ALIGNAS alive for a bit longer because GCC 4.8.0 (which we still
support apparently) shipped a buggy alignas(). All other supported
compilers have a working alignas.
llvm-svn: 284736
This is a resubmission of r284590. The mingw build should be fixed now. The
problem was we were matching time_t with _localtime_64s, which was incorrect on
_USE_32BIT_TIME_T systems. Instead I use localtime_s, which should always
evaluate to the correct function.
llvm-svn: 284720
- Add alignment attribute to DIVariable family
- Modify bitcode format to match new DIVariable representation
- Update tests to match these changes (also add bitcode upgrade test)
- Expect that frontend passes non-zero align value only when it is not default
(was forcibly aligned by alignas()/_Alignas()/__atribute__(aligned())
Differential Revision: https://reviews.llvm.org/D25073
llvm-svn: 284678
This augments the STLExtras toolset with a zip iterator and range
adapter. Zip comes in two varieties: `zip`, which will zip to the
shortest of the input ranges, and `zip_first`, which limits its
`begin() == end()` checks to just the first range.
Recommit r284035 after MSVC2013 support has been dropped.
Patch by: Bryant Wong <github.com/bryant>
Differential Revision: https://reviews.llvm.org/D23252
llvm-svn: 284623