Combine the two API calls into one by introducing a structure to hold
the relevant data. This has the added benefit of moving the boiler
plate code for arguments and flags, into the constructors. This is
intended to be a non-functional change, but the complicated web of
logic involved here makes it very hard to guarantee.
Differential Revision: https://reviews.llvm.org/D79941
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
This patch was originally committed as b8a3c34eee, but broke the
modules build, as LoopAccessAnalysis was using the Expander.
The code-gen part of LAA was moved to lib/Transforms recently, so this
patch can be landed again.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
Replace with forward declarations and move includes down to source files where required.
I also needed to move the TargetLoweringObjectFile::SectionForGlobal wrapper implementation down into TargetLoweringObjectFile.cpp
verifyFunction/verifyModule don't assert or error internally. They
also don't print anything if you don't pass a raw_ostream to them.
So the caller needs to check the result and ideally pass a stream
to get the messages. Otherwise they're just really expensive no-ops.
I've filed PR45965 for another instance in SLPVectorizer
that causes a lit test failure.
Differential Revision: https://reviews.llvm.org/D80106
Summary:
The BFloat IR type is introduced to provide support for, initially, the BFloat16
datatype introduced with the Armv8.6 architecture (optional from Armv8.2
onwards). It has an 8-bit exponent and a 7-bit mantissa and behaves like an IEEE
754 floating point IR type.
This is part of a patch series upstreaming Armv8.6 features. Subsequent patches
will upstream intrinsics support and C-lang support for BFloat.
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, sdesmalen, deadalnix, ctetreau
Subscribers: hiraditya, llvm-commits, danielkiss, arphaman, kristof.beyls, dexonsmith
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78190
SUnit represent a MachineInstr in post-regalloc scheduling but SDNode
in pre-regalloc scheduling. when pass -enable-hexagon-sdnode-sched to
Hexagon backend with -O1 and above, this may cause an assertion failed.
Fixes PR45194.
Differential Revision: https://reviews.llvm.org/D76134
This patch stores the alignment for ConstantPoolSDNode as an
Align and updates the getConstantPool interface to take a MaybeAlign.
Removing getAlignment() will be done as a follow up.
Differential Revision: https://reviews.llvm.org/D79436
getScalarizationOverhead is only ever called with vectors (and we already had a load of cast<VectorType> calls immediately inside the functions).
Followup to D78357
Reviewed By: @samparker
Differential Revision: https://reviews.llvm.org/D79341
Make the kind of cost explicit throughout the cost model which,
apart from making the cost clear, will allow the generic parts to
calculate better costs. It will also allow some backends to
approximate and correlate the different costs if they wish. Another
benefit is that it will also help simplify the cost model around
immediate and intrinsic costs, where we currently have multiple APIs.
RFC thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-April/141263.html
Differential Revision: https://reviews.llvm.org/D79002
While restoring latency, check if any of the registers of
source instruction is a subregister of the successor instructions
apart from being same register.
The improvements to the x86 vector insert/extract element costs in D74976 resulted in the estimated costs for vector initialization and scalarization increasing higher than should be expected. This is particularly noticeable on pre-SSE4 targets where the available of legal INSERT_VECTOR_ELT ops is more limited.
This patch does 2 things:
1 - it implements X86TTIImpl::getScalarizationOverhead to more accurately represent the typical costs of a ISD::BUILD_VECTOR pattern.
2 - it adds a DemandedElts mask to getScalarizationOverhead to permit the SLP's BoUpSLP::getGatherCost to be rewritten to use it directly instead of accumulating raw vector insertion costs.
This fixes PR45418 where a v4i8 (zext'd to v4i32) was no longer vectorizing.
A future patch should extend X86TTIImpl::getScalarizationOverhead to tweak the EXTRACT_VECTOR_ELT scalarization costs as well.
Reviewed By: @craig.topper
Differential Revision: https://reviews.llvm.org/D78216
There are several different types of cost that TTI tries to provide
explicit information for: throughput, latency, code size along with
a vague 'intersection of code-size cost and execution cost'.
The vectorizer is a keen user of RecipThroughput and there's at least
'getInstructionThroughput' and 'getArithmeticInstrCost' designed to
help with this cost. The latency cost has a single use and a single
implementation. The intersection cost appears to cover most of the
rest of the API.
getUserCost is explicitly called from within TTI when the user has
been explicit in wanting the code size (also only one use) as well
as a few passes which are concerned with a mixture of size and/or
a relative cost. In many cases these costs are closely related, such
as when multiple instructions are required, but one evident diverging
cost in this function is for div/rem.
This patch adds an argument so that the cost required is explicit,
so that we can make the important distinction when necessary.
Differential Revision: https://reviews.llvm.org/D78635
llvm/lib/Target/Hexagon/HexagonTargetObjectFile.cpp:296:11: warning: enumeration value 'ScalableVectorTyID' not handled in switch [-Wswitch]
switch (Ty->getTypeID()) {
^
Summary:
Before this patch, `relaxInstruction` takes three arguments, the first
argument refers to the instruction before relaxation and the third
argument is the output instruction after relaxation. There are two quite
strange things:
1) The first argument's type is `const MCInst &`, the third
argument's type is `MCInst &`, but they may be aliased to the same
variable
2) The backends of ARM, AMDGPU, RISC-V, Hexagon assume that the third
argument is a fresh uninitialized `MCInst` even if `relaxInstruction`
may be called like `relaxInstruction(Relaxed, STI, Relaxed)` in a
loop.
In this patch, we drop the thrid argument, and let `relaxInstruction`
directly modify the given instruction. Also, this patch fixes the bug https://bugs.llvm.org/show_bug.cgi?id=45580, which is introduced by D77851, and
breaks the assumption of ARM, AMDGPU, RISC-V, Hexagon.
Reviewers: Razer6, MaskRay, jyknight, asb, luismarques, enderby, rtaylor, colinl, bcain
Reviewed By: Razer6, MaskRay, bcain
Subscribers: bcain, nickdesaulniers, nathanchance, wuzish, annita.zhang, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, tpr, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78364
This allows targets to know exactly which operands are contributing to
the dependency, which is required for targets with per-operand
scheduling models.
Differential Revision: https://reviews.llvm.org/D77135
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: kparzysz, sdesmalen, efriedma
Reviewed By: kparzysz
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77267
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, jrtc27, atanasyan, jfb, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76925
-fuse-init-array is now the CC1 default but TargetLoweringObjectFileELF::UseInitArray still defaults to false.
The following two unknown OS target triples continue using .ctors/.dtors because InitializeELF is not called.
clang -target i386 -c a.c
clang -target x86_64 -c a.c
This cleanup fixes this as a bonus.
X86SpeculativeLoadHardeningPass::tracePredStateThroughCall can call
MCContext::createTempSymbol before TargetLoweringObjectFileELF::Initialize().
We need to call TargetLoweringObjectFileELF::Initialize() ealier.
test/CodeGen/X86/speculative-load-hardening-indirect.ll
Differential Revision: https://reviews.llvm.org/D71360
UseInitArray is now the CC1 default but TargetLoweringObjectFileELF::UseInitArray still defaults to false.
The following two unknown OS target triples continue using .ctors/.dtors because InitializeELF is not called.
clang -target i386 -c a.c
clang -target x86_64 -c a.c
This cleanup fixes this as a bonus.
Differential Revision: https://reviews.llvm.org/D71360
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jholewinski, arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76348
RDF is designed to be target agnostic. Therefore it would be useful to have it available for other targets, such as X86.
Based on a previous patch by Krzysztof Parzyszek
Differential Revision: https://reviews.llvm.org/D75932