temporary or an array subobject of a class temporary, and the resulting value
is used to initialize a pointer which outlives the temporary. Such a pointer
is always left dangling after the initialization completes and the array's
lifetime ends.
In order to detect this situation, this change also adds an
LValueClassification of LV_ArrayTemporary for temporaries of array type which
aren't subobjects of class temporaries. These occur in C++11 T{...} and GNU C++
(T){...} expressions, when T is an array type. Previously we treated the former
as a generic prvalue and the latter as a class temporary.
llvm-svn: 157955
the diagnostic for assigning to a copied block capture. This has
the pleasant side-effect of letting us special-case the diagnostic
for assigning to a copied lambda capture as well, without introducing
a new non-modifiable enumerator for it.
llvm-svn: 152593
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
analysis to make the AST representation testable. They are represented by a
new UserDefinedLiteral AST node, which is a sugared CallExpr. All semantic
properties, including full CodeGen support, are achieved for free by this
representation.
UserDefinedLiterals can never be dependent, so no custom instantiation
behavior is required. They are mangled as if they were direct calls to the
underlying literal operator. This matches g++'s apparent behavior (but not its
actual mangling, which is broken for literal-operator-ids).
User-defined *string* literals are now fully-operational, but the semantic
analysis is quite hacky and needs more work. No other forms of user-defined
literal are created yet, but the AST support for them is present.
This patch committed after midnight because we had already hit the quota for
new kinds of literal yesterday.
llvm-svn: 152211
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137
that provides the behavior of the C++11 library trait
std::is_trivially_constructible<T, Args...>, which can't be
implemented purely as a library.
Since __is_trivially_constructible can have zero or more arguments, I
needed to add Yet Another Type Trait Expression Class, this one
handling arbitrary arguments. The next step will be to migrate
UnaryTypeTrait and BinaryTypeTrait over to this new, more general
TypeTrait class.
Fixes the Clang side of <rdar://problem/10895483> / PR12038.
llvm-svn: 151352
- Capturing variables by-reference and by-copy within a lambda
- The representation of lambda captures
- The creation of the non-static data members in the lambda class
that store the captured variables
- The initialization of the non-static data members from the
captured variables
- Pretty-printing lambda expressions
There are a number of FIXMEs, both explicit and implied, including:
- Creating a field for a capture of 'this'
- Improved diagnostics for initialization failures when capturing
variables by copy
- Dealing with temporaries created during said initialization
- Template instantiation
- AST (de-)serialization
- Binding and returning the lambda expression; turning it into a
proper temporary
- Lots and lots of semantic constraints
- Parameter pack captures
llvm-svn: 149977
This supports single-element initializer lists for references according to DR1288, as well as creating temporaries and binding to them for other initializer lists.
llvm-svn: 145186
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
This makes the code duplication of implicit special member handling even worse,
but the cleanup will have to come later. For now, this works.
Follow-up with tests for explicit defaulting and enabling the __has_feature
flag to come.
llvm-svn: 138821
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
__builtin_astype(): Used to reinterpreted as another data type of the same size using for both scalar and vector data types.
Added test case.
llvm-svn: 132612
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
CL_AddressableVoid is the expression classification used for void
expressions whose address can be taken, i.e. the result of [], *
or void variable references in C, as opposed to things like the
result of a void function call.
llvm-svn: 129783
for __unknown_anytype resolution to destructively modify the AST. So that's
what it does now, which significantly simplifies some of the implementation.
Normal member calls work pretty cleanly now, and I added support for
propagating unknown-ness through &.
llvm-svn: 129331
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
there were only three virtual methods of any significance.
The primary way to grab child iterators now is with
Stmt::child_range children();
Stmt::const_child_range children() const;
where a child_range is just a std::pair of iterators suitable for
being llvm::tie'd to some locals. I've left the old child_begin()
and child_end() accessors in place, but it's probably a substantial
penalty to grab the iterators individually now, since the
switch-based dispatch is kindof inherently slower than vtable
dispatch. Grabbing them together is probably a slight win over the
status quo, although of course we could've achieved that with vtables, too.
I also reclassified SwitchCase (correctly) as an abstract Stmt
class, which (as the first such class that wasn't an Expr subclass)
required some fiddling in a few places.
There are somewhat gross metaprogramming hooks in place to ensure
that new statements/expressions continue to implement
getSourceRange() and children(). I had to work around a recent clang
bug; dgregor actually fixed it already, but I didn't want to
introduce a selfhosting dependency on ToT.
llvm-svn: 125183
that captures the substitution of a non-type template argument pack
for a non-type template parameter pack within a pack expansion that
cannot be fully expanded. This follows the approach taken by
SubstTemplateTypeParmPackType.
llvm-svn: 123506
template argument (described by an expression, of course). For
example:
template<int...> struct int_tuple { };
template<int ...Values>
struct square {
typedef int_tuple<(Values*Values)...> type;
};
It also lays the foundation for pack expansions in an initializer-list.
llvm-svn: 122751
build one when either of the operands calls itself type-dependent;
previously we were building when one of the operand types was dependent,
which is not always the same thing and which can lead to unfortunate
inconsistencies later. Fixes PR8739.
llvm-svn: 120990
not actually frequently used, because ImpCastExprToType only creates a node
if the types differ. So explicitly create an ICE in the lvalue-to-rvalue
conversion code in DefaultFunctionArrayLvalueConversion() as well as several
other new places, and consistently deal with the consequences throughout the
compiler.
In addition, introduce a new cast kind for loading an ObjCProperty l-value,
and make sure we emit those nodes whenever an ObjCProperty l-value appears
that's not on the LHS of an assignment operator.
This breaks a couple of rewriter tests, which I've x-failed until future
development occurs on the rewriter.
Ted Kremenek kindly contributed the analyzer workarounds in this patch.
llvm-svn: 120890
- Default argument expressions pick up the value kind of the incoming
expression, not the value kind of the parameter it initializes.
- When building a template argument for substitution, A::x is an rvalue
if x is an instance method.
- Anonymous struct/union paths pick up value kind the same way that
normal member accesses do; extract out a common code path for this.
Enable the value-kind assertion, now that it passes self-host.
llvm-svn: 120055
A new AST node is introduced:
def IndirectField : DDecl<Value>;
IndirectFields are injected into the anonymous's parent scope and chain back to
the original field. Name lookup for anonymous entities now result in an
IndirectFieldDecl instead of a FieldDecl.
There is no functionality change, the code generated should be the same.
llvm-svn: 119919
store it on the expression node. Also store an "object kind",
which distinguishes ordinary "addressed" l-values (like
variable references and pointer dereferences) and bitfield,
@property, and vector-component l-values.
Currently we're not using these for much, but I aim to switch
pretty much everything calculating l-valueness over to them.
For now they shouldn't necessarily be trusted.
llvm-svn: 119685
assignment to volatiles in C. This in effect reverts some of mjs's
work in and around r72572. Basically, the C++ standard is quite
clear, except that it lies about volatile behavior approximating
C's, whereas the C standard is almost actively misleading.
llvm-svn: 119344