Summary:
Add a sequence number that identifies a ptx_kernel's parent Scop within a function to it's name to differentiate it from other kernels produced from the same function, yet different Scops.
Kernels produced from different Scops can end up having the same name. Consider a function with 2 Scops and each Scop being able to produce just one kernel. Both of these kernels have the name "kernel_0". This can lead to the wrong kernel being launched when the runtime picks a kernel from its cache based on the name alone. This patch supplements D33985, by differentiating kernels across Scops as well.
Previously (even before D33985) while profiling kernels generated through JIT e.g. Julia, [[ https://groups.google.com/d/msg/polly-dev/J1j587H3-Qw/mR-jfL16BgAJ | kernels associated with different functions, and even different SCoPs within a function, would be grouped together due to the common name ]]. This patch prevents this grouping and the kernels are reported separately.
Reviewers: grosser, bollu
Reviewed By: grosser
Subscribers: mehdi_amini, nemanjai, pollydev, kbarton
Tags: #polly
Differential Revision: https://reviews.llvm.org/D35176
llvm-svn: 307814
- `lit.util.capture` was removed in `r306625`.
- Replace `lit.util.capture` to `subprocess.check_output` as LLVM did.
- LLVM revision of this change: `https://reviews.llvm.org/D35088`.
Differential Revision: https://reviews.llvm.org/D35255
llvm-svn: 307765
Summary:
There is a bug in the current lit configurations for the unittests. If gtest is not available, the site-config for the unit tests won't be generated. Because lit recurses through the test directory, the lit configuration for the unit tests will be discovered nevertheless, leading to a fatal error in lit.
This patch semi-gracefully skips the unittests if gtest is not available. As a result, running lit now prints this: `warning: test suite 'Polly-Unit' contained no test`.
If people think that this is too annoying, the alternative would be to pick apart the test directory, so that the lit testsuite discovery will always only find one configuration. In fact, both of these things could be combined. While it's certainly nice that running a single lit command runs all the tests, I suppose people use the `check-polly` make target over lit most of the time, so the difference might not be noticed.
Reviewers: Meinersbur, grosser
Reviewed By: grosser
Subscribers: mgorny, bollu, pollydev, llvm-commits
Tags: #polly
Differential Revision: https://reviews.llvm.org/D34053
llvm-svn: 307651
Summary:
As of now, Polly uses llvm-config to set up LLVM dependencies in an out-of-tree build.
This is problematic for two reasons:
1) Right now, in-tree and out-of-tree builds in fact do different things. E.g., in an in-tree build, libPolly depends on a handful of LLVM libraries, while in an out-of-tree build it depends on all of them. This means that we often need to treat both paths seperately.
2) I'm specifically unhappy with the way libPolly is linked right now, because it just blindly links against all the LLVM libs. That doesn't make a lot of sense. For instance, one of these libs is LLVMTableGen, which contains a command line definition of a -o option. This means that I can not link an out-of-tree libPolly into a tool which might want to offer a -o option as well.
This patch (mostly) drop the use of llvm-config in favor of LLVMs exported cmake package. However, building Polly with unittests requires access to the gtest sources (in the LLVM source tree). If we're building against an LLVM installation, this source tree is unavailable and must specified. I'm using llvm-config to provide a default in this case.
Reviewers: Meinersbur, grosser
Reviewed By: grosser
Subscribers: tstellar, bollu, chapuni, mgorny, pollydev, llvm-commits
Differential Revision: https://reviews.llvm.org/D33299
llvm-svn: 307650
For the previous commit I accidentally added this change to lit.site.cfg, which
is autogenerated and was consequently not part of the previous commit.
llvm-svn: 307648
When providing the option "-polly-ast-print-accesses" Polly also prints the
memory accesses that are generated:
#pragma known-parallel
for (int c0 = 0; c0 <= 1023; c0 += 4)
#pragma simd
for (int c1 = c0; c1 <= c0 + 3; c1 += 1)
Stmt_for_body(
/* read */ &MemRef_B[0]
/* write */ MemRef_A[c1]
);
This makes writing and debugging memory layout transformations easier.
Based on a patch contributed by Thomas Lang (ETH Zurich)
llvm-svn: 307579
- Check that we have invariant accesses.
- Use `-polly-use-llvm-names` for better names in the test.
- Rename test function to `f` for brevity.
llvm-svn: 307401
- This already works, but add this to ensure that there is no
regressions when I expand the invariant load hoisting ability of
`PPCGCodeGeneration`.
llvm-svn: 307398
- Instead of running with -O0, we enable the highest optimization level, but
then disable optimizations. This ensures that possibly important metadata
is still emitted.
- Update the code for attribute removal to work with latest LLVM
- Do not cut an arbitrary number of lines from the LL file. It is undocumented
why this was needed at the first place, and such a feature is likely to
break with trivial IR changes that may come in the future.
llvm-svn: 307355
- By definition, we can pass something as a `kill` to PPCG if we know
that no data can flow across a kill.
- This is useful for more complex examples where we have scalars that
are local to a scop.
- If the local is only used within a scop, we are free to kill it.
Differential Revision: https://reviews.llvm.org/D35045
llvm-svn: 307260
Summary:
Provide more context to the name of a GPU kernel by prefixing its name with the host function that calls it. E.g. The first kernel called by `gemm` would be `FUNC_gemm_KERNEL_0`.
Kernels currently follow the "kernel_#" (# = 0,1,2,3,...) nomenclature. This patch makes it easier to map host caller and device callee, especially when there are many kernels produced by Polly-ACC.
Reviewers: grosser, Meinersbur, bollu, philip.pfaffe, kbarton!
Reviewed By: grosser
Subscribers: nemanjai, pollydev
Tags: #polly
Differential Revision: https://reviews.llvm.org/D33985
llvm-svn: 307173
Polly did not use PPCG's live range reordering feature. Teach
PPCGCodeGeneration to use this.
Documentation on this is sparse, so much of the code is conservative.
We currently kill all phi nodes in a Scop by appending them to the
must_kill map we pass to PPCG. I do not have a proof of correctness,
but it seems to be intuitively correct.
We also do not handle `array_order`, which, quoting PPCG, is:
PPCG/gpu.h: "Order dependences on non-scalars."
It seems to consist of RAW dependences between arrays. We need to
pass this information for more complex privatization cases.
Differential Revision: https://reviews.llvm.org/D34941
llvm-svn: 307163
Summary: This is a general maintenance update
Reviewers: grosser
Subscribers: srhines, fedor.sergeev, pollydev, llvm-commits
Contributed-by: Maximilian Falkenstein <falkensm@student.ethz.ch>
Differential Revision: https://reviews.llvm.org/D34903
llvm-svn: 307090
This patch aims to implement the option of allocating new arrays created
by polly on heap instead of stack. To enable this option, a key named
'allocation' must be written in the imported json file with the value
'heap'.
We need such a feature because in a next iteration, we will implement a
mechanism of maximal static expansion which will need a way to allocate
arrays on heap. Indeed, the expansion is very costly in terms of memory
and doing the allocation on stack is not worth considering.
The malloc and the free are added respectively at polly.start and
polly.exiting such that there is no use-after-free (for instance in case
of Scop in a loop) and such that all memory cells allocated with a
malloc are free'd when we don't need them anymore.
We also add :
- In the class ScopArrayInfo, we add a boolean as member called IsOnHeap
which represents the fact that the array in allocated on heap or not.
- A new branch in the method allocateNewArrays in the ISLNodeBuilder for
the case of heap allocation. allocateNewArrays now takes a BBPair
containing polly.start and polly.exiting. allocateNewArrays takes this
two blocks and add the malloc and free calls respectively to
polly.start and polly.exiting.
- As IntPtrTy for the malloc call, we use the DataLayout one.
To do that, we have modified :
- createScopArrayInfo and getOrCreateScopArrayInfo such that it returns
a non-const SAI, in order to be able to call setIsOnHeap in the
JSONImporter.
- executeScopConditionnaly such that it return both start block and end
block of the scop, because we need this two blocs to be able to add
the malloc and the free calls at the right position.
Differential Revision: https://reviews.llvm.org/D33688
llvm-svn: 306540
This test fails, if polly is not linked into LLVM's tools. Our
lit site-config already deals with this by not adding the -load
option, if polly is linked into LLVM's tools.
llvm-svn: 306395
- In D33414, if any function call was found within a kernel, we would bail out.
- This is an over-approximation. This patch changes this by allowing the
`llvm.sqrt.*` family of intrinsics.
- This introduces an additional step when creating a separate llvm::Module
for a kernel (GPUModule). We now copy function declarations from the
original module to new module.
- We also populate IslNodeBuilder::ValueMap so it replaces the function
references to the old module to the ones in the new module
(GPUModule).
Differential Revision: https://reviews.llvm.org/D34145
llvm-svn: 306284
The condition that disallowed code generation in PPCGCodeGeneration with
invariant loads is not required. I haven't been able to construct a
counterexample where this generates invalid code.
Differential Revision: https://reviews.llvm.org/D34604
llvm-svn: 306245
This reduces the compilation time of one reduced test case from Android from
16 seconds to 100 mseconds (we bail out), without negatively impacting any
other test case we currently have.
We still saw occasionally compilation timeouts on the AOSP buildbot. Hopefully,
those will go away with this change.
llvm-svn: 306235
r303971 added an assertion that SCEV addition involving an AddRec
and a SCEVUnknown must involve a dominance relation: either the
SCEVUnknown value dominates the AddRec's loop, or the AddRec's
loop header dominates the SCEVUnknown. This is generally fine
for most usage of SCEV because it isn't possible to write an
expression in IR which would violate it, but it's a bit inconvenient
here for polly.
To solve the issue, just avoid creating a SCEV expression which
triggers the asssertion.
I'm not really happy with this solution, but I don't have any better
ideas.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33464.
Differential Revision: https://reviews.llvm.org/D34259
llvm-svn: 305864
Ensure that all array base pointers are assigned before generating
aliasing metadata by allocating new arrays beforehand.
Before this patch, getBasePtr() returned nullptr for new arrays because
the arrays were created at a later point. Nullptr did not match to any
array after the created array base pointers have been assigned and when
the loads/stores are generated.
llvm-svn: 305675
In r304074 we introduce a patch to accept results from side effect free
functions into SCEV modeling. This causes rejection of cases where the
call is happening outside the SCoP. This patch checks if the call is
outside the Region and treats the results as a parameter (SCEVType::PARAM)
to the SCoP instead of returning SCEVType::INVALID.
Patch by Sameer Abu Asal.
llvm-svn: 305423
In `PPCGCodeGeneration`, we try to take the references of every `Value`
that is used within a Scop to offload to the kernel. This occurs in
`GPUNodeBuilder::createLaunchParameters`.
This breaks if one of the values is a function pointer, since one of
these cases will trigger:
1. We try to to take the references of an intrinsic function, and this
breaks at `verifyModule`, since it is illegal to take the reference of
an intrinsic.
2. We manage to take the reference to a function, but this fails at
`verifyModule` since the function will not be present in the module that
is created in the kernel.
3. Even if `verifyModule` succeeds (which should not occur), we would
then try to call a *host function* from the *device*, which is
illegal runtime behaviour.
So, we disable this entire range of possibilities by simply not allowing
function references within a `Scop` which corresponds to a kernel.
However, note that this is too conservative. We *can* allow intrinsics
within kernels if the backend can lower the intrinsic correctly. For
example, an intrinsic like `llvm.powi.*` can actually be lowered by the `NVPTX`
backend.
We will now gradually whitelist intrinsics which are known to be safe.
Differential Revision: https://reviews.llvm.org/D33414
llvm-svn: 305185
Iterate through memory accesses in execution order (first all implicit reads,
then explicit accesses, then implicit writes).
In the test case this caused an implicit load to be handled as if it was loaded
after the write. That is, the value being written before it is available.
This fixes llvm.org/PR33323
llvm-svn: 304810
Summary:
The RegionGenerator traditionally kept a BlockMap that mapped from original
basic blocks to newly generated basic blocks. With the introduction of partial
writes such a 1:1 mapping is not possible any more, as a single basic block
can be code generated into multiple basic blocks. Hence, depending on the use
case we need to either use the first basic block or the last basic block.
This is intended to address the last four cases of incorrect code generation
in our AOSP buildbot and hopefully should turn it green.
Reviewers: Meinersbur, bollu, gareevroman, efriedma, huihuiz, sebpop, simbuerg
Reviewed By: Meinersbur
Subscribers: pollydev, llvm-commits
Tags: #polly
Differential Revision: https://reviews.llvm.org/D33767
llvm-svn: 304808
This adds test coverage for regions with non-affine loops, which we
unfortunately missed when committing this features years ago. We will add
more test coverage over time.
llvm-svn: 304672
- Add a counter that is incremented once on exit from a scop.
- Test cases got split into two: one to test the cycles, and another one
to test trip counts.
- Sample output:
```name=sample-output.txt
scop function, entry block name, exit block name, total time, trip count
warmup, %entry.split, %polly.merge_new_and_old, 5180, 1
f, %entry.split, %polly.merge_new_and_old, 409944, 500
g, %entry.split, %polly.merge_new_and_old, 1226, 1
```
Differential Revision: https://reviews.llvm.org/D33822
llvm-svn: 304543
Previously, we would generate one performance counter for all scops.
Now, we generate both the old information, as well as a per-scop
performance counter to generate finer grained information.
This patch needed a way to generate a unique name for a `Scop`.
The start region, end region, and function name combined provides a
unique `Scop` name. So, `Scop` has a new public API to provide its start
and end region names.
Differential Revision: https://reviews.llvm.org/D33723
llvm-svn: 304528
Ignored intrinsics are ignored at code generation, therefore do not
need to be part of the instruction list.
Specifically, llvm.lifetime.* intrinisics are removed before code
generation, referencing them would cause a use-after-free error.
Contributed-by: Nandini Singhal <cs15mtech01004@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D33768
llvm-svn: 304483
A partial write is a write where the domain of the values written is a subset of
the execution domain of the parent statement containing the write. Originally,
we directly checked this subset relation whereas it is indeed only important
that the subset relation holds for the parameter values that are known to be
valid in the execution context of the scop. We update our check to avoid the
unnecessary introduction of partial writes in situations where the write appears
to be partial without context information, but where context information allows
us to understand that a full write can be generated.
This change fixes (hides) a recent regression introduced in r303517, which broke
our AOSP builds. The part that is correctly fixed in this change is that we do
not any more unnecessarily generate a partial write. This is good performance
wise and, as we currently do not yet explicitly introduce partial writes in the
default configuration, this also hides possible bugs in the partial writes
implementation. The crashes that we have originally seen were caused by such
a bug, where partial writes were incorrectly generated in region statements. An
additional patch in a subsequent commit is needed to address this problem.
Reported-by: Reported-by: Eli Friedman <efriedma@codeaurora.org>
Differential Revision: https://reviews.llvm.org/D33759
llvm-svn: 304398
Such instructions are generates on-demand by the CodeGenerator and thus
do not need representation in a statement.
Differential Revision: https://reviews.llvm.org/D33642
llvm-svn: 304151
Certain affine memory accesses which we model today might contain products of
parameters which we might combined into a new parameter to be able to create an
affine expression that represents these memory accesses. Especially in the
context of OpenCL, this approach looses information as memory accesses such as
A[get_global_id(0) * N + get_global_id(1)] are assumed to be linear. We
correctly recover their multi-dimensional structure by assuming that parameters
that are the result of a function call at IR level likely are not parameters,
but indeed induction variables. The resulting access is now
A[get_global_id(0)][get_global_id(1)] for an array A[][N].
llvm-svn: 304075
Side-effect free function calls with only constant parameters can be easily
re-generated and consequently do not prevent us from modeling a SCEV. This
change allows array subscripts to reference function calls such as
'get_global_id()' as used in OpenCL.
We use the function name plus the constant operands to name the parameter. This
is possible as the function name is required and is not dropped in release
builds the same way names of llvm::Values are dropped. We also provide more
readable names for common OpenCL functions, to make it easy to understand the
polyhedral model we generate.
llvm-svn: 304074
Summary: This patch outputs all the list of instructions in BlockStmts.
Reviewers: Meinersbur, grosser, bollu
Subscribers: bollu, llvm-commits, pollydev
Differential Revision: https://reviews.llvm.org/D33163
llvm-svn: 304062
Summary:
My goal is to make the newly added `AllowWholeFunctions` options more usable/powerful.
The changes to ScopBuilder.cpp are exclusively checks to prevent `Region.getExit()` from being dereferenced, since Top Level Regions (TLRs) don't have an exit block.
In ScopDetection's `isValidCFG`, I removed a check that disallowed ReturnInstructions to have return values. This might of course have been intentional, so I would welcome your feedback on this and maybe a small explanation why return values are forbidden. Maybe it can be done but needs more changes elsewhere?
The remaining changes in ScopDetection are simply to consider the AllowWholeFunctions option in more places, i.e. allow TLRs when it is set and once again avoid derefererncing `getExit()` if it doesn't exist.
Finally, in ScopHelper.cpp I extended `polly::isErrorBlock` to handle regions without exit blocks as well: The original check was if a given BasicBlock dominates all predecessors of the exit block. Therefore I do the same for TLRs by regarding all BasicBlocks terminating with a ReturnInst as predecessors of a "virtual" function exit block.
Patch by: Lukas Boehm
Reviewers: philip.pfaffe, grosser, Meinersbur
Reviewed By: grosser
Subscribers: pollydev, llvm-commits, bollu
Tags: #polly
Differential Revision: https://reviews.llvm.org/D33411
llvm-svn: 303790
Enable the use for partial writes for PHI write accesses with a switch.
This simply skips the test for whether a PHI write would be partial.
The analog test for partial value writes also protects for partial reads
which we do not support (yet). It is possible to test for partial reads
separately such that we could skip the partial write check as well. In
case this shows up to be useful, I can implement it as well.
Differential Revision: https://reviews.llvm.org/D33487
llvm-svn: 303762
Without this patch, the JSONImporter did not verify if the data it loads
were correct or not (Bug llvm.org/PR32543). I add some checks in the
JSONImporter class and some test cases.
Here are the checks (and test cases) I added :
JSONImporter::importContext
- The "context" key does not exist.
- The context was not parsed successfully by ISL.
- The isl_set has the wrong number of parameters.
- The isl_set is not a parameter set.
JSONImporter::importSchedule
- The "statements" key does not exist.
- There is not the right number of statement in the file.
- The "schedule" key does not exist.
- The schedule was not parsed successfully by ISL.
JSONImporter::importAccesses
- The "statements" key does not exist.
- There is not the right number of statement in the file.
- The "accesses" key does not exist.
- There is not the right number of memory accesses in the file.
- The "relation" key does not exist.
- The memory access was not parsed successfully by ISL.
JSONImporter::areArraysEqual
- The "type" key does not exist.
- The "sizes" key does not exist.
- The "name" key does not exist.
JSONImporter::importArrays
/!\ Do not check if there is an key name "arrays" because it is not
considered as an error.
All checks are already in place or implemented in
JSONImporter::areArraysEqual.
Contributed-by: Nicolas Bonfante <nicolas.bonfante@insa-lyon.fr>
Differential Revision: https://reviews.llvm.org/D32739
llvm-svn: 303759
This speeds up scop modeling for scops with many redundent existentially
quantified constraints. For the attached test case, this change reduces
scop modeling time from minutes (hours?) to 0.15 seconds.
This change resolves a compilation timeout on the AOSP build.
Thanks Eli for reporting _and_ reducing the test case!
Reported-by: Eli Friedman <efriedma@codeaurora.org>
llvm-svn: 303600
The SCEVs of loops surrounding the escape users of a merge blocks are
forgotten, so that loop trip counts based on old values can be revoked.
This fixes llvm.org//PR32536
Contributed-by: Baranidharan Mohan <mbdharan@gmail.com>
Differential Revision: https://reviews.llvm.org/D33195
llvm-svn: 303561