Summary:
Looking at the callee argument list, as is done now, might not work if
the function has been typecasted into one that is expected to return
a struct. This change also simplifies the code.
The isFP128ABICall() function can be removed as it is no longer needed.
The test in fp128.ll has been updated to verify this.
Reviewers: jyknight, venkatra
Reviewed By: jyknight
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D48117
llvm-svn: 340008
The SparcV8 fneg and fabs instructions interestingly come only in a
single-float variant. Since the sign bit is always the topmost bit no
matter what size float it is, you simply operate on the high
subregister, as if it were a single float.
However, the layout of double-floats in the float registers is reversed
on little-endian CPUs, so that the high bits are in the second
subregister, rather than the first.
Thus, this expansion must check the endianness to use the correct
subregister.
llvm-svn: 267489
Note: I do not implement a base pointer, so it's still impossible to
have dynamic realignment AND dynamic alloca in the same function.
This also moves the code for determining the frame index reference
into getFrameIndexReference, where it belongs, instead of inline in
eliminateFrameIndex.
[Begin long-winded screed]
Now, stack realignment for Sparc is actually a silly thing to support,
because the Sparc ABI has no need for it -- unlike the situation on
x86, the stack is ALWAYS aligned to the required alignment for the CPU
instructions: 8 bytes on sparcv8, and 16 bytes on sparcv9.
However, LLVM unfortunately implements user-specified overalignment
using stack realignment support, so for now, I'm going to go along
with that tradition. GCC instead treats objects which have alignment
specification greater than the maximum CPU-required alignment for the
target as a separate block of stack memory, with their own virtual
base pointer (which gets aligned). Doing it that way avoids needing to
implement per-target support for stack realignment, except for the
targets which *actually* have an ABI-specified stack alignment which
is too small for the CPU's requirements.
Further unfortunately in LLVM, the default canRealignStack for all
targets effectively returns true, despite that implementing that is
something a target needs to do specifically. So, the previous behavior
on Sparc was to silently ignore the user's specified stack
alignment. Ugh.
Yet MORE unfortunate, if a target actually does return false from
canRealignStack, that also causes the user-specified alignment to be
*silently ignored*, rather than emitting an error.
(I started looking into fixing that last, but it broke a bunch of
tests, because LLVM actually *depends* on having it silently ignored:
some architectures (e.g. non-linux i386) have smaller stack alignment
than spilled-register alignment. But, the fact that a register needs
spilling is not known until within the register allocator. And by that
point, the decision to not reserve the frame pointer has been frozen
in place. And without a frame pointer, stack realignment is not
possible. So, canRealignStack() returns false, and
needsStackRealignment() then returns false, assuming everyone can just
go on their merry way assuming the alignment requirements were
probably just suggestions after-all. Sigh...)
Differential Revision: http://reviews.llvm.org/D12208
llvm-svn: 245668
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794