Summary: The logic was conservative but inverted: cases that should remain unmasked became 1-D masked.
Differential Revision: https://reviews.llvm.org/D84051
Summary: Vector contract patterns were only parameterized by a `vectorTransformsOptions`. As a result, even if an mlir file was containing several occurrences of `vector.contract`, all of them would be lowered in the same way. More granularity might be required . This Diff adds a `constraint` argument to each of these patterns which allows the user to specify with more precision on which `vector.contract` should each of the lowering apply.
Differential Revision: https://reviews.llvm.org/D83960
When the IfOp returns values, it can easily be obtained from one of the Values.
However, when no values are returned, the information is lost.
This revision lets the caller specify a capture IfOp* to return the produced
IfOp.
Differential Revision: https://reviews.llvm.org/D84025
- This will enable tweaking IR printing options when enabling printing (for ex,
tweak elideLargeElementsAttrs to create smaller IR logs)
Differential Revision: https://reviews.llvm.org/D83930
Lower `shape.shape_eq` to the `scf` (and `std`) dialect. For now, this lowering
is limited to extent tensor operands.
Differential Revision: https://reviews.llvm.org/D82530
To make it clear when shape error values cannot occur the shape operations can
operate on extent tensors. This change updates the lowering for `shape.reduce`
accordingly.
Differential Revision: https://reviews.llvm.org/D83944
This also fixes the outdated use of `n_views` in the documentation.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D83795
Some dialects have semantics which is not well represented by common
SSA structures with dominance constraints. This patch allows
operations to declare the 'kind' of their contained regions.
Currently, two kinds are allowed: "SSACFG" and "Graph". The only
difference between them at the moment is that SSACFG regions are
required to have dominance, while Graph regions are not required to
have dominance. The intention is that this Interface would be
generated by ODS for existing operations, although this has not yet
been implemented. Presumably, if someone were interested in code
generation, we might also have a "CFG" dialect, which defines control
flow, but does not require SSA.
The new behavior is mostly identical to the previous behavior, since
registered operations without a RegionKindInterface are assumed to
contain SSACFG regions. However, the behavior has changed for
unregistered operations. Previously, these were checked for
dominance, however the new behavior allows dominance violations, in
order to allow the processing of unregistered dialects with Graph
regions. One implication of this is that regions in unregistered
operations with more than one op are no longer CSE'd (since it
requires dominance info).
I've also reorganized the LangRef documentation to remove assertions
about "sequential execution", "SSA Values", and "Dominance". Instead,
the core IR is simply "ordered" (i.e. totally ordered) and consists of
"Values". I've also clarified some things about how control flow
passes between blocks in an SSACFG region. Control Flow must enter a
region at the entry block and follow terminator operation successors
or be returned to the containing op. Graph regions do not define a
notion of control flow.
see discussion here:
https://llvm.discourse.group/t/rfc-allowing-dialects-to-relax-the-ssa-dominance-condition/833/53
Differential Revision: https://reviews.llvm.org/D80358
- Add function `verifyTypes` that Op's can call to do type checking verification
along the control flow edges described the Op's RegionBranchOpInterface.
- We cannot rely on the verify methods on the OpInterface because the interface
functions assume valid Ops, so they may crash if invoked on unverified Ops.
(For example, scf.for getSuccessorRegions() calls getRegionIterArgs(), which
dereferences getBody() block. If the scf.for is invalid with no body, this
can lead to a segfault). `verifyTypes` can be called post op-verification to
avoid this.
Differential Revision: https://reviews.llvm.org/D82829
This folds shape.broadcast where at least one operand is a scalar to the
other operand.
Also add an assemblyFormat for shape.broadcast and shape.concat.
Differential Revision: https://reviews.llvm.org/D83854
The use of the `scf.for` callback builder does not allow for a rollback of the
emitted conversions. Instead, we populate the loop body through the conversion
rewriter directly.
Differential Revision: https://reviews.llvm.org/D83873
Summary:
linalg.copy + linalg.fill can be used to create a padded local buffer.
The `masked` attribute is only valid on this padded buffer.
When forwarding to vector.transfer ops, the attribute must be reset
conservatively.
Differential Revision: https://reviews.llvm.org/D83782
This adds a `parseOptionalAttribute` method to the OpAsmParser that allows for parsing optional attributes, in a similar fashion to how optional types are parsed. This also enables the use of attribute values as the first element of an assembly format optional group.
Differential Revision: https://reviews.llvm.org/D83712
Up until now, there has been an implicit agreement that when an operation is marked as
"erased" all uses of that operation's results are guaranteed to be removed during conversion. How this works in practice is that there is either an assert/crash/asan failure/etc. This revision adds support for properly detecting when an erased operation has dangling users, emits and error and fails the conversion.
Differential Revision: https://reviews.llvm.org/D82830
- Arguments of the first block of a region are considered region arguments.
- Add API on Region class to deal with these arguments directly instead of
using the front() block.
- Changed several instances of existing code that can use this API
- Fixes https://bugs.llvm.org/show_bug.cgi?id=46535
Differential Revision: https://reviews.llvm.org/D83599
This patch introduces lowering of the OpenMP parallel operation to LLVM
IR using the OpenMPIRBuilder.
Functions topologicalSort and connectPhiNodes are generalised so that
they work with operations also. connectPhiNodes is also made static.
Lowering works for a parallel region with multiple blocks. Clauses and
arguments of the OpenMP operation are not handled.
Reviewed By: rriddle, anchu-rajendran
Differential Revision: https://reviews.llvm.org/D81660
Summary: The native alignment may generally not be used when lowering a vector.transfer to the underlying load/store operation. This revision fixes the unmasked load/store alignment to match that of the masked path.
Differential Revision: https://reviews.llvm.org/D83684
- Provide default value for `ArrayRef<NamedAttribute> attributes` parameter of
the collective params build method.
- Change the `genSeparateArgParamBuilder` function to not generate build methods
that may be ambiguous with the new collective params build method.
- This change should help eliminate passing empty NamedAttribue ArrayRef when the
collective params build method is used
- Extend op-decl.td unit test to make sure the ambiguous build methods are not
generated.
Differential Revision: https://reviews.llvm.org/D83517
Per the Vulkan's SPIR-V environment spec, "for the OpSRem and OpSMod
instructions, if either operand is negative the result is undefined."
So we cannot directly use spv.SRem/spv.SMod if either operand can be
negative. Emulate it via spv.UMod.
Because the emulation uses spv.SNegate, this commit also defines
spv.SNegate.
Differential Revision: https://reviews.llvm.org/D83679
Summary:
These are semantically equivalent, but fmuladd allows decaying the op
into fmul+fadd if there is no fma instruction available. llvm.fma lowers
to scalar calls to libm fmaf, which is a lot slower.
Reviewers: nicolasvasilache, aartbik, ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D83666
The namespace can be specified using the `cppNamespace` field. This matches the functionality already present on dialects, enums, etc. This fixes problems with using interfaces on operations in a different namespace than the interface was defined in.
Differential Revision: https://reviews.llvm.org/D83604
Introduce pass to convert parallel affine.for op into 1-D affine.parallel op.
Run using --affine-parallelize. Removes test-detect-parallel: pass for checking
parallel affine.for ops.
Signed-off-by: Yash Jain <yash.jain@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D83193
Improve the logic deciding if it is safe to hoist vector transfer read/write
out of the loop. Change the logic to prevent hoisting operations if there are
any unknown access to the memref in the loop no matter where the operation is.
For other transfer read/write in the loop check if we can prove that they
access disjoint memory and ignore them in this case.
Differential Revision: https://reviews.llvm.org/D83538
This revision folds vector.transfer operations by updating the `masked` bool array attribute when more unmasked dimensions can be discovered.
Differential revision: https://reviews.llvm.org/D83586
We temporarily had separate OUTER lowering (for matmat flavors) and
AXPY lowering (for matvec flavors). With the new generalized
"vector.outerproduct" semantics, these cases can be merged into
a single lowering method. This refactoring will simplify future
decisions on cost models and lowering heuristics.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D83585
This specialization allows sharing more code where an AXPY follows naturally
in cases where an OUTERPRODUCT on a scalar would be generated.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D83453
TransposeOp are often followed by ExtractOp.
In certain cases however, it is unnecessary (and even detrimental) to lower a TransposeOp to either a flat transpose (llvm.matrix intrinsics) or to unrolled scalar insert / extract chains.
Providing foldings of ExtractOp mitigates some of the unnecessary complexity.
Differential revision: https://reviews.llvm.org/D83487
This revision adds support for vectorizing named and generic contraction ops to vector.contract. Cases in which the memref is 0-D are special cased to emit std.load/std.store instead of vector.transfer. Relevant tests are added.
Differential revision: https://reviews.llvm.org/D83307
This patch introduces type conversion for SPIR-V structs. Since
handling offset case requires thorough testing, it was left out
for now. Hence, only structs with no offset are currently
supported. Also, structs containing member decorations cannot
be translated.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D83403
This commit augments spv.CopyMemory's implementation to support 2 memory
access operands. Hence, more closely following the spec. The following
changes are introduces:
- Customize logic for spv.CopyMemory serialization and deserialization.
- Add 2 additional attributes for source memory access operand.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D83241
Summary:
* Native '_mlir' extension module.
* Python mlir/__init__.py trampoline module.
* Lit test that checks a message.
* Uses some cmake configurations that have worked for me in the past but likely needs further elaboration.
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D83279
This patch adds type conversion for 4 SPIR-V types: array, runtime array, pointer
and struct. This conversion is integrated using a separate function
`populateSPIRVToLLVMTypeConversion()` that adds new type conversions. At the moment,
this is a basic skeleton that allows to perfom conversion from SPIR-V array,
runtime array and pointer types to LLVM typesystem. There is no support of array
strides or storage classes. These will be supported on the case by case basis.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D83399
Added `getSizeInBytes()` function as a class member to several SPIR-V types:
`ScalarType`, `ArrayType` and `VectorType`. This function aims at exposing
the functionality of `getTypeNumBytes()` from `SPIRVLowering.cpp`. Support
of more types will be added on demand.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D83285
Summary:
Added canonicalization and folding was:
- Folding when either input is an attribute indicating a scalar input
which can always be broadcasted.
- Canonicalization where it can be determined that either input shape is
a scalar.
- Canonicalization where the partially specified input shapes can be
proven to be broadcastable always.
Differential Revision: https://reviews.llvm.org/D83194
Depending on where the 0 dimension is within the shape, the parser will currently reject .mlir generated by the printer.
Differential Revision: https://reviews.llvm.org/D83445