Before we gave up if a call through bitcast had parameter attributes.
Interestingly, we allowed attributes for the return value already. We
now handle both the same way, namely, we drop the ones that are
incompatible with the new type and keep the rest. This cannot cause
"more UB" than initially present.
Differential Revision: https://reviews.llvm.org/D119967
This will let us start moving away from hard-coded attributes in
MemoryBuiltins.cpp and put the knowledge about various attribute
functions in the compilers that emit those calls where it probably
belongs.
Differential Revision: https://reviews.llvm.org/D117921
We have the `clang -cc1` command-line option `-funwind-tables=1|2` and
the codegen option `VALUE_CODEGENOPT(UnwindTables, 2, 0) ///< Unwind
tables (1) or asynchronous unwind tables (2)`. However, this is
encoded in LLVM IR by the presence or the absence of the `uwtable`
attribute, i.e. we lose the information whether to generate want just
some unwind tables or asynchronous unwind tables.
Asynchronous unwind tables take more space in the runtime image, I'd
estimate something like 80-90% more, as the difference is adding
roughly the same number of CFI directives as for prologues, only a bit
simpler (e.g. `.cfi_offset reg, off` vs. `.cfi_restore reg`). Or even
more, if you consider tail duplication of epilogue blocks.
Asynchronous unwind tables could also restrict code generation to
having only a finite number of frame pointer adjustments (an example
of *not* having a finite number of `SP` adjustments is on AArch64 when
untagging the stack (MTE) in some cases the compiler can modify `SP`
in a loop).
Having the CFI precise up to an instruction generally also means one
cannot bundle together CFI instructions once the prologue is done,
they need to be interspersed with ordinary instructions, which means
extra `DW_CFA_advance_loc` commands, further increasing the unwind
tables size.
That is to say, async unwind tables impose a non-negligible overhead,
yet for the most common use cases (like C++ exceptions), they are not
even needed.
This patch extends the `uwtable` attribute with an optional
value:
- `uwtable` (default to `async`)
- `uwtable(sync)`, synchronous unwind tables
- `uwtable(async)`, asynchronous (instruction precise) unwind tables
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D114543
Based on the output of include-what-you-use.
This is a big chunk of changes. It is very likely to break downstream code
unless they took a lot of care in avoiding hidden ehader dependencies, something
the LLVM codebase doesn't do that well :-/
I've tried to summarize the biggest change below:
- llvm/include/llvm-c/Core.h: no longer includes llvm-c/ErrorHandling.h
- llvm/IR/DIBuilder.h no longer includes llvm/IR/DebugInfo.h
- llvm/IR/IRBuilder.h no longer includes llvm/IR/IntrinsicInst.h
- llvm/IR/LLVMRemarkStreamer.h no longer includes llvm/Support/ToolOutputFile.h
- llvm/IR/LegacyPassManager.h no longer include llvm/Pass.h
- llvm/IR/Type.h no longer includes llvm/ADT/SmallPtrSet.h
- llvm/IR/PassManager.h no longer includes llvm/Pass.h nor llvm/Support/Debug.h
And the usual count of preprocessed lines:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/IR/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 6400831
after: 6189948
200k lines less to process is no that bad ;-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D118652
This follows up on the work in D116599, which changed AttrBuilder
to store string attributes as SmallVector<Attribute>. This patch
changes the implementation to store *all* attributes as a sorted
vector.
This both makes the implementation simpler and improves compile-time.
We get a -0.5% geomean compile-time improvement on CTMark at O0.
Differential Revision: https://reviews.llvm.org/D117558
Currently, the behavior when adding an attribute with the same key
as an existing attribute is inconsistent, depending on the type of
the attribute and the method used to add it. When going through
AttrBuilder::addAttribute(), the new attribute always overwrites
the old one. When going through AttrBuilder::merge() the new
attribute overwrites the existing one if it is a string attribute,
but keeps the existing one for int and type attributes. One
particular API also asserts that you can't overwrite an align
attribute, but does not handle any of the other int, type or string
attributes.
This patch makes the behavior consistent by always overwriting with
the new attribute, which is the behavior I would intuitively expect.
Two tests are affected, which now make a different (but equally
valid) choice. Those tests could be improved by taking the maximum
deref bytes, but I haven't bothered with that, since this is testing
a degenerate case -- the important bit is that it doesn't crash.
Differential Revision: https://reviews.llvm.org/D117552
This is unused, and doesn't make a lot of sense as an API. The
usual pattern would be to combine the AttrBuilder(AttributeSet)
constructor with the overlaps() method.
Use the AttributeSet constructor instead. There's no good reason
why AttrBuilder itself should exact the AttributeSet from the
AttributeList. Moving this out of the AttrBuilder generally results
in cleaner code.
Since 26c6a3e736, LLVM's inliner will "upgrade" the caller's stack protector
attribute based on the callee. This lead to surprising results with Clang's
no_stack_protector attribute added in 4fbf84c173 (D46300). Consider the
following code compiled with clang -fstack-protector-strong -Os
(https://godbolt.org/z/7s3rW7a1q).
extern void h(int* p);
inline __attribute__((always_inline)) int g() {
return 0;
}
int __attribute__((__no_stack_protector__)) f() {
int a[1];
h(a);
return g();
}
LLVM will inline g() into f(), and f() would get a stack protector, against the
users explicit wishes, potentially breaking the program e.g. if h() changes the
value of the stack cookie. That's a miscompile.
More recently, bc044a88ee (D91816) addressed this problem by preventing
inlining when the stack protector is disabled in the caller and enabled in the
callee or vice versa. However, the problem remained if the callee is marked
always_inline as in the example above. This affected users, see e.g.
http://crbug.com/1274129 and http://llvm.org/pr52886.
One way to fix this would be to prevent inlining also in the always_inline
case. Despite the name, always_inline does not guarantee inlining, so this
would be legal but potentially surprising to users.
However, I think the better fix is to not enable the stack protector in a
caller based on the callee. The motivation for the old behaviour is unclear, it
seems counter-intuitive, and causes real problems as we've seen.
This commit implements that fix, which means in the example above, g() gets
inlined into f() (also without always_inline), and f() is emitted without stack
protector. I think that matches most developers' expectations, and that's also
what GCC does.
Another effect of this change is that a no_stack_protector function can now be
inlined into a stack protected function, e.g. (https://godbolt.org/z/hafP6W856):
extern void h(int* p);
inline int __attribute__((__no_stack_protector__)) __attribute__((always_inline)) g() {
return 0;
}
int f() {
int a[1];
h(a);
return g();
}
I think that's fine. Such code would be unusual since no_stack_protector is
normally applied to a program entry point which sets up the stack canary. And
even if such code exists, inlining doesn't change the semantics: there is still
no stack cookie setup/check around entry/exit of the g() code region, but there
may be in the surrounding context, as there was before inlining. This also
matches GCC.
See also the discussion at https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94722
Differential revision: https://reviews.llvm.org/D116589
This class is solely used as a lightweight and clean way to build a set of
attributes to be removed from an AttrBuilder. Previously AttrBuilder was used
both for building and removing, which introduced odd situation like creation of
Attribute with dummy value because the only relevant part was the attribute
kind.
Differential Revision: https://reviews.llvm.org/D116110
This patch extends the available uses of the 'align' parameter attribute
to include vectors of pointers. The attribute specifies pointer
alignment element-wise.
This change was previously requested and discussed in D87304.
The vector predication (VP) intrinsics intend to use this for scatter
and gather operations, as they lack the explicit alignment parameter
that the masked versions use.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D115161
It was already possible to create an AttributeList from an Index
and an AttributeSet. However, this would actually end up using
the implicit constructor on AttrBuilder, thus doing an unnecessary
conversion from AttributeSet to AttrBuilder to AttributeSet.
Instead we can accept the AttributeSet directly, as that is what
we need anyway.
The default for min is changed to 1. The behaviour of -mvscale-{min,max}
in Clang is also changed such that 16 is the max vscale when targeting
SVE and no max is specified.
Reviewed By: sdesmalen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D113294
This is basically the same change as 42cc7f3c52
but for integer attributes. Rather than treating each attribute
individually, handle them all the same way. The only thing that
needs to be done per attribute is specify how get/add convert
from/to the raw representation.
We expose the fact that we rely on unsigned wrapping to iterate through
all indexes. This can be confusing. Rather, keeping it as an
implementation detail through an iterator is less confusing and is less
code.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D110885
This is part one of a couple of patches to fully rename these methods.
I've made the mistake of assuming that these indexes are for parameters
multiple times, but actually they're based off of a weird indexing
scheme AttributeList::AttrIndex where 0 is the return value and ~0 is
the function. Hopefully renaming these methods will make this clearer.
Ideally users should use more specific methods like
AttributeList::getFnAttr().
This patch simply adds the name that we want in the end. This is so the
removal of the methods with the original names happens in a separate
change to make it easier for downstream users.
This touches all relevant methods in AttributeList, CallBase, and Function.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D108788
Rather than adding methods for dropping these attributes in
various places, add a function that returns an AttrBuilder with
these attributes, which can then be used with existing methods
for dropping attributes. This is with an eye on D104641, which
also needs to drop them from returns, not just parameters.
Also be more explicit about the semantics of the method in the
documentation. Refer to UB rather than Undef, which is what this
is actually about.
From LangRef:
> if the parameter or return pointer is null, poison value is
> returned or passed instead. The nonnull attribute should be
> combined with the noundef attribute to ensure a pointer is not
> null or otherwise the behavior is undefined.
Dropping noundef is sufficient to prevent UB. Including nonnull
in this method just muddies the semantics.
Use the elementtype attribute introduced in D105407 for the
llvm.preserve.array/struct.index intrinsics. It carries the
element type of the GEP these intrinsics effectively encode.
This patch:
* Adds a verifier check that the attribute is required.
* Adds it in the IRBuilder methods for these intrinsics.
* Autoupgrades old bitcode without the attribute.
* Updates the lowering code to use the attribute rather than
the pointer element type.
* Updates lots of tests to specify the attribute.
* Adds -force-opaque-pointers to the intrinsic-array.ll test
to demonstrate they work now.
https://reviews.llvm.org/D106184
This implements the elementtype attribute specified in D105407. It
just adds the attribute and the specified verifier rules, but
doesn't yet make use of it anywhere.
Differential Revision: https://reviews.llvm.org/D106008
While it is nice to have separate methods in the public AttributeSet
API, we can fetch the type from the internal AttributeSetNode
using a generic API for all type attribute kinds.
A couple of attributes had explicit checks for incompatibility
with pointer types. However, this is already handled generically
by the typeIncompatible() check. We can drop these after adding
SwiftError to typeIncompatible().
However, the previous implementation of the check prints out all
attributes that are incompatible with a given type, even though
those attributes aren't actually used. This has the annoying
result that the error message changes every time a new attribute
is added to the list. Improve this by explicitly finding which
attribute isn't compatible and printing just that.
Continuing from D105763, this allows placing certain properties
about attributes in the TableGen definition. In particular, we
store whether an attribute applies to fn/param/ret (or a combination
thereof). This information is used by the Verifier, as well as the
ForceFunctionAttrs pass. I also plan to use this in LLParser,
which also duplicates info on which attributes are valid where.
This keeps metadata about attributes in one place, and makes it
more likely that it stays in sync, rather than in various
functions spread across the codebase.
Differential Revision: https://reviews.llvm.org/D105780
This is now the same as isIntAttrKind(), so use that instead, as
it does not require manual maintenance. The naming is also more
accurate in that both int and type attributes have an argument,
but this method was only targeting int attributes.
I initially wanted to tighten the AttrBuilder assertion, but we
have some in-tree uses that would violate it.
Assert that enum/int/type attributes go through the constructor
they are supposed to use.
To make sure this can't happen via invalid bitcode, explicitly
verify that the attribute kind if correct there.
Followup to D105658 to make AttrBuilder automatically work with
new type attributes. TableGen is tweaked to emit First/LastTypeAttr
markers, based on which we can handle type attributes
programmatically.
Differential Revision: https://reviews.llvm.org/D105763
While working on the elementtype attribute, I felt that the type
attribute handling in AttrBuilder is overly repetitive. This patch
converts the separate Type* members into an std::array<Type*>, so
that all type attribute kinds can be handled generically.
There's more room for improvement here (especially when it comes to
converting the AttrBuilder to an Attribute), but this seems like a
good starting point.
Differential Revision: https://reviews.llvm.org/D105658
Avoid enumerating all attributes here and instead use
getNameFromAttrKind(), which is based on the tablegen data.
This only leaves us with custom handling for int attributes,
which don't have uniform printing.
I added an assertion in D91816 (documenting behavior added in D93422)
that callers and callees with mismatched fn attr's related to stack
protectors should not occur unless the callee was attributed
always_inline.
This falls apart when a call, invoke, or callbr (any instruction
inheriting from CallBase) itself has an always_inline attribute. Clang
will emit such attributes on Instructions when __attribute__((flatten))
is used to recursively force inlining from a caller.
Since these assertions only had the caller and callee Functions, and not
the call site (CallBase derived classes), we would have to search the
caller for such instructions to reconstruct the call site information.
But at that point, inlining has already occurred; the call site has
already been removed from the caller.
Remove the assertions, add a unit test for always_inline call sites, and
update the LangRef.
Another curiosity is that the always_inline Attribute on Instructions is
only expanded by the inline pass, not the always_inline pass.
Thanks to @pcc on this report when building Android's RunTime (ART)
interpreter.
Reviewed By: pcc, MaskRay
Differential Revision: https://reviews.llvm.org/D104944
We really ought to support no_sanitize("coverage") in line with other
sanitizers. This came up again in discussions on the Linux-kernel
mailing lists, because we currently do workarounds using objtool to
remove coverage instrumentation. Since that support is only on x86, to
continue support coverage instrumentation on other architectures, we
must support selectively disabling coverage instrumentation via function
attributes.
Unfortunately, for SanitizeCoverage, it has not been implemented as a
sanitizer via fsanitize= and associated options in Sanitizers.def, but
rolls its own option fsanitize-coverage. This meant that we never got
"automatic" no_sanitize attribute support.
Implement no_sanitize attribute support by special-casing the string
"coverage" in the NoSanitizeAttr implementation. To keep the feature as
unintrusive to existing IR generation as possible, define a new negative
function attribute NoSanitizeCoverage to propagate the information
through to the instrumentation pass.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49035
Reviewed By: vitalybuka, morehouse
Differential Revision: https://reviews.llvm.org/D102772
When removing an AttrBuilder from an AttributeSet, first check
whether there is any overlap. If nothing is being removed, we can
directly return the original set.