This allows multi-module / incremental compilation environments to have unique
initializer symbols.
Patch by Axel Naumann with minor modifications by me!
llvm-svn: 311844
The initializer for a static local variable cannot be hot, because it runs at
most once per program. That's not quite the same thing as having a low branch
probability, but under the assumption that the function is invoked many times,
modeling this as a branch probability seems reasonable.
For TLS variables, the situation is less clear, since the initialization side
of the branch can run multiple times in a program execution, but we still
expect initialization to be rare relative to non-initialization uses. It would
seem worthwhile to add a PGO counter along this path to make this estimation
more accurate in future.
For globals with guarded initialization, we don't yet apply any branch weights.
Due to our use of COMDATs, the guard will be reached exactly once per DSO, but
we have no idea how many DSOs will define the variable.
llvm-svn: 309195
Summary:
If the first parameter of the function is the ImplicitParamDecl, codegen
automatically marks it as an implicit argument with `this` or `self`
pointer. Added internal kind of the ImplicitParamDecl to separate
'this', 'self', 'vtt' and other implicit parameters from other kind of
parameters.
Reviewers: rjmccall, aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33735
llvm-svn: 305075
* Do not initialize these variables when initializing the rest of the
thread_locals in the TU; they have unordered initialization so they can be
initialized by themselves.
This fixes a rejects-valid bug: we would make the per-variable initializer
function internal, but put it in a comdat keyed off the variable, resulting
in link errors when the comdat is selected from a different TU (as the per
TU TLS init function tries to call an init function that does not exist).
* On Darwin, when we decide that we're not going to emit a thread wrapper
function at all, demote its linkage to External. Fixes a verifier failure
on explicit instantiation of a thread_local variable on Darwin.
llvm-svn: 291865
Properly attribute DLL storage to runtime functions. When generating the
runtime function, scan for an existing declaration which may provide an explicit
declaration (local storage) or a DLL import or export storage from the user.
Honour that if available. Otherwise, if building with a local visibility of the
public or standard namespaces (-flto-visibility-public-std), give the symbols
local storage (it indicates a /MT[d] link, so static runtime). Otherwise,
assume that the link is dynamic, and give the runtime function dllimport
storage.
This allows for implementations to get the correct storage as long as they are
properly declared, the user to override the import storage, and in case no
explicit storage is given, use of the import storage.
llvm-svn: 289776
This change depends on the corresponding LLVM change at:
https://reviews.llvm.org/D22519
The llvm.invariant.start and llvm.invariant.end intrinsics currently
support specifying invariant memory objects only in the default address
space.
With this LLVM change, these intrinsics are overloaded for any adddress space
for memory objects and we can use these llvm invariant intrinsics in
non-default address spaces.
Example: llvm.invariant.start.p1i8(i64 4, i8 addrspace(1)* %ptr)
This overloaded intrinsic is needed for representing final or invariant
memory in managed languages.
llvm-svn: 276448
The export side is responsible for running any initializers, they are
run when the module is first loaded. Attempting to run an initializer
for the import side is not possible.
This fixes PR28216.
llvm-svn: 273237
Summary:
For a static object with a nontrivial destructor, clang generates an
initializer function (__cxx_global_var_init) which registers that
object's destructor using __cxa_atexit. However some ABIs (ARM,
WebAssembly) use destructors that return 'this' instead of having void
return (which does not match the signature of function pointers passed
to __cxa_atexit). This results in undefined behavior when the destructors are
called. All the calling conventions I know of on ARM can tolerate this,
but WebAssembly requires the signatures of indirect calls to match the
called function.
This patch disables that direct registration of destructors for ABIs
that have this-returning destructors.
Subscribers: aemerson, jfb, cfe-commits, dschuff
Differential Revision: http://reviews.llvm.org/D19275
llvm-svn: 269085
Revert the two changes to thread CodeGenOptions into the TargetInfo allocation
and to fix the layering violation by moving CodeGenOptions into Basic.
Code Generation is arguably not particularly "basic". This addresses Richard's
post-commit review comments. This change purely does the mechanical revert and
will be followed up with an alternate approach to thread the desired information
into TargetInfo.
llvm-svn: 265806
This is a mechanical move of CodeGenOptions from libFrontend to libBasic. This
fixes the layering violation introduced earlier by threading CodeGenOptions into
TargetInfo. It should also fix the modules based self-hosting builds. NFC.
llvm-svn: 265702
In general CUDA does not allow dynamic initialization of
global device-side variables. One exception is that CUDA allows
records with empty constructors as described in section E2.2.1 of
CUDA 7.5 Programming guide.
This patch applies initializer checks for all device-side variables.
Empty constructors are accepted, but no code is generated for them.
Differential Revision: http://reviews.llvm.org/D15305
llvm-svn: 259592
We used to emit the store prior to branch in the entry block. To make it more
efficient, this commit moves it to the init block. We still mark as initialized
before initializing anything else.
llvm-svn: 252777
attributes to internal functions.
This patch fixes CodeGenModule::CreateGlobalInitOrDestructFunction to
use SetInternalFunctionAttributes instead of SetLLVMFunctionAttributes
to attach function attributes to internal functions.
Also, make sure the correct CGFunctionInfo is passed instead of always
passing what arrangeNullaryFunction returns.
rdar://problem/20828324
Differential Revision: http://reviews.llvm.org/D13610
llvm-svn: 251734
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
This patch adds initial support for the -fsanitize=kernel-address flag to Clang.
Right now it's quite restricted: only out-of-line instrumentation is supported, globals are not instrumented, some GCC kasan flags are not supported.
Using this patch I am able to build and boot the KASan tree with LLVMLinux patches from github.com/ramosian-glider/kasan/tree/kasan_llvmlinux.
To disable KASan instrumentation for a certain function attribute((no_sanitize("kernel-address"))) can be used.
llvm-svn: 240131
This patch adds the -fsanitize=safe-stack command line argument for clang,
which enables the Safe Stack protection (see http://reviews.llvm.org/D6094
for the detailed description of the Safe Stack).
This patch is our implementation of the safe stack on top of Clang. The
patches make the following changes:
- Add -fsanitize=safe-stack and -fno-sanitize=safe-stack options to clang
to control safe stack usage (the safe stack is disabled by default).
- Add __attribute__((no_sanitize("safe-stack"))) attribute to clang that can be
used to disable the safe stack for individual functions even when enabled
globally.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6095
llvm-svn: 239762
Otherwise -fno-omit-frame-pointer and other flags like it aren't
applied.
Basic idea taken from Gao's patch, thanks!
Differential Revision: http://reviews.llvm.org/D9203
llvm-svn: 235537
Reverts the code changes from r234675 but keeps the test case.
We were already maintaining a DenseMap of globals with dynamic
initializers anyway.
Fixes the test case from PR23234.
llvm-svn: 234961
Summary:
Due to CUDA's implicit address space casting, the type of a static local
variable may be more specific (i.e. with address space qualifiers) than
the type expected by the constructor. Emit an addrspacecast in that
case.
Test Plan: Clang used to crash on the added test.
Reviewers: nlewycky, pcc, eliben, rsmith
Reviewed By: eliben, rsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8575
llvm-svn: 233208
distinction between the different use-cases. With the previous default
behavior we would occasionally emit empty debug locations in situations
where they actually were strictly required (= on invoke insns).
We now have a choice between defaulting to an empty location or an
artificial location.
Specifically, this fixes a bug caused by a missing debug location when
emitting C++ EH cleanup blocks from within an artificial function, such as
an ObjC destroy helper function.
rdar://problem/19670595
llvm-svn: 228003
Several pieces of code were relying on implicit debug location setting
which usually lead to incorrect line information anyway. So I've fixed
those (in r225955 and r225845) separately which should pave the way for
this commit to be cleanly reapplied.
The reason these implicit dependencies resulted in crashes with this
patch is that the debug location would no longer implicitly leak from
one place to another, but be set back to invalid. Once a call with
no/invalid location was emitted, if that call was ever inlined it could
produce invalid debugloc chains and assert during LLVM's codegen.
There may be further cases of such bugs in this patch - they're hard to
flush out with regression testing, so I'll keep an eye out for reports
and investigate/fix them ASAP if they come up.
Original commit message:
Reapply "DebugInfo: Generalize debug info location handling"
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225956
Without setting the CurEHLocation these cleanups would be attributed to
whatever the last active debug line location was (the 'fn' call in the
included test cases). By setting CurEHLocation correctly the line
information is improved/corrected.
This quality bug turned into a crasher with r225000 when, instead of
allowing the last location to persist, it would be zero'd out. This
could lead to a function call (such as the dtor) being made without a
debug location - if that call was subsequently inlined (and the caller
and callee had debug info, just not the call instruction) the inliner
would violate important constraints about the debug location chains by
not updating the inlined instructions to chain up to the callee
locations.
So, by fixing this bug, I am addressing the assertion failures
introduced by r225000 and should be able to recommit that patch with
impunity...
llvm-svn: 225955
The llvm IR until recently had no support for comdats. This was a problem when
targeting C++ on ELF/COFF as just using weak linkage would cause quite a bit of
dead bits to remain on the executable (unless -ffunction-sections,
-fdata-sections and --gc-sections were used).
To fix the problem, llvm's codegen will just assume that any weak or linkonce
that is not in an explicit comdat should be output in one with the same name as
the global.
This unfortunately breaks cases like pr19848 where a weak symbol is not
xpected to be part of any comdat.
Now that we have explicit comdats in the IR, we can finally get both cases
right.
This first patch just makes clang give explicit comdats to GlobalValues where
t is allowed to.
A followup patch to llvm will then stop implicitly producing comdats.
llvm-svn: 225705
This reverts commit r225000, r225021, r225083, r225086, r225090.
The root change (r225000) still has several issues where it's caused
calls to be emitted without debug locations. This causes assertion
failures if/when those calls are inlined.
I'll work up some test cases and fixes before recommitting this.
llvm-svn: 225555
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225000
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224941
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224385
For all threadprivate variables which have constructor/destructor emit call to void __kmpc_threadprivate_register(ident_t * <Current Location>, void *<Original Global Addr>, kmpc_ctor <Constructor>, kmpc_cctor NULL, kmpc_dtor <Destructor>);
In expressions all references to such variables are replaced by calls to void *__kmpc_threadprivate_cached(ident_t *<Current Location>, kmp_int32 <Current Thread Id>, void *<Original Global Addr>, size_t <Size of Data>, void ***<Pointer to autogenerated cache – array of private copies of threadprivate variable>);
Test test/OpenMP/threadprivate_codegen.cpp checks that codegen is correct. Also it checks that codegen is correct after serialization/deserialization and one of passes verifies debug info.
Differential Revision: http://reviews.llvm.org/D4002
llvm-svn: 221663
Use the bitmask to store the set of enabled sanitizers instead of a
bitfield. On the negative side, it makes syntax for querying the
set of enabled sanitizers a bit more clunky. On the positive side, we
will be able to use SanitizerKind to eventually implement the
new semantics for -fsanitize-recover= flag, that would allow us
to make some sanitizers recoverable, and some non-recoverable.
No functionality change.
llvm-svn: 221558
This commit changes the way we blacklist functions in ASan, TSan,
MSan and UBSan. We used to treat function as "blacklisted"
and turned off instrumentation in it in two cases:
1) Function is explicitly blacklisted by its mangled name.
This part is not changed.
2) Function is located in llvm::Module, whose identifier is
contained in the list of blacklisted sources. This is completely
wrong, as llvm::Module may not correspond to the actual source
file function is defined in. Also, function can be defined in
a header, in which case user had to blacklist the .cpp file
this header was #include'd into, not the header itself.
Such functions could cause other problems - for instance, if the
header was included in multiple source files, compiled
separately and linked into a single executable, we could end up
with both instrumented and non-instrumented version of the same
function participating in the same link.
After this change we will make blacklisting decision based on
the SourceLocation of a function definition. If a function is
not explicitly defined in the source file, (for example, the
function is compiler-generated and responsible for
initialization/destruction of a global variable), then it will
be blacklisted if the corresponding global variable is defined
in blacklisted source file, and will be instrumented otherwise.
After this commit, the active users of blacklist files may have
to revisit them. This is a backwards-incompatible change, but
I don't think it's possible or makes sense to support the
old incorrect behavior.
I plan to make similar change for blacklisting GlobalVariables
(which is ASan-specific).
llvm-svn: 219997
In particular, if you have two identical templates in different TUs in
anonymous namespaces, we would use the same global_ctors comdat key for
both. As a result, only one would be run.
llvm-svn: 219806
Summary:
This add support for the C++11 feature, thread_local global variables.
The ABI Clang implements is an improvement of the MSVC ABI. Sadly,
further improvements could be made but not without sacrificing ABI
compatibility.
The feature is implemented as follows:
- All thread_local initialization routines are pointed to from the
.CRT$XDU section.
- All non-weak thread_local variables have their initialization routines
call from a single function instead of getting their own .CRT$XDU
section entry. This is done to open up optimization opportunities to
the compiler.
- All weak thread_local variables have their own .CRT$XDU section entry.
This entry is in a COMDAT with the global variable it is initializing;
this ensures that we will initialize the global exactly once.
- Destructors are registered in the initialization function using
__tlregdtor.
Differential Revision: http://reviews.llvm.org/D5597
llvm-svn: 219074
On further investigation, COMDATs should work with .ctors, and the issue
I was hitting probably reproduces with .init_array.
This reverts commit r218287.
llvm-svn: 218313
In particular, pre-.init_array ELF uses the .ctors section mechanism.
MinGW COFF also uses .ctors, now that I think about it. Therefore,
restrict this optimization to the two platforms that are currently known
to work: ELF with .init_array and COFF with .CRT$XCU.
llvm-svn: 218287
The field is defined as:
If the third field is present, non-null, and points to a global variable or function, the initializer function will only run if the associated data from the current module is not discarded.
And without COMDATs we can't implement that.
llvm-svn: 218097
Clang can already handle
-------------------------------------------
struct S {
static const int x;
};
template<typename T> struct U {
static const int k;
};
template<typename T> const int U<T>::k = T::x;
const int S::x = 42;
extern const int *f();
const int *g() { return &U<S>::k; }
int main() {
return *f() + U<S>::k;
}
const int *f() { return &U<S>::k; }
-------------------------------------------
since r217264 which puts the .inint_array section in the same COMDAT
as the variable.
This patch allows the linker to more easily delete some dead code and data by
putting the guard variable and init function in the same COMDAT.
llvm-svn: 218089
This prevents initializers for comdat-folded globals from running multiple times.
Differential Revision: http://reviews.llvm.org/D5281
llvm-svn: 217534
Summary: When the main file is created from a membuffer, there is no file entry that can be retrieved. This uses "__GLOBAL_I_a" in that case which is what was always used before r208128.
Reviewers: majnemer, thakis
Reviewed By: thakis
Subscribers: yaron.keren, rsmith, cfe-commits
Differential Revision: http://reviews.llvm.org/D5043
llvm-svn: 216495
Summary:
This pragma is very rare. We could *hypothetically* lower some uses of
it down to @llvm.global_ctors, but given that GlobalOpt isn't able to
optimize prioritized global ctors today, there's really no point.
If we wanted to do this in the future, I would check if the section used
in the pragma started with ".CRT$XC" and had up to two characters after
it. Those two characters could form the 16-bit initialization priority
that we support in @llvm.global_ctors. We would have to teach LLVM to
lower prioritized global ctors on COFF as well.
This should let us compile some silly uses of this pragma in WebKit /
Blink.
Reviewers: rsmith, majnemer
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4549
llvm-svn: 213593
Get rid of cached CodeGenModule::SanOpts, which was used to turn off
sanitizer codegen options if current LLVM Module is blacklisted, and use
plain LangOpts.Sanitize instead.
1) Some codegen decisions (turning TBAA or writable strings on/off)
shouldn't depend on the contents of blacklist.
2) llvm.asan.globals should *always* be created, even if the module
is blacklisted - soon Clang's CodeGen where we read sanitizer
blacklist files, so we should properly report which globals are
blacklisted to the backend.
llvm-svn: 212499
Initializers of global data that can appear multiple TUs (static data
members of class templates or __declspec(selectany) data) are now in a
comdat group keyed on the global variable being initialized. On
non-Windows platforms, this is a code size and startup time
optimization. On Windows, this is necessary for ABI compatibility with
MSVC.
Fixes PR16959.
Reviewers: rsmith
Differential Revision: http://reviews.llvm.org/D3811
llvm-svn: 209555
ensure that querying the first declaration for its most recent declaration
checks for redeclarations from the imported module.
This works as follows:
* The 'most recent' pointer on a canonical declaration grows a pointer to the
external AST source and a generation number (space- and time-optimized for
the case where there is no external source).
* Each time the 'most recent' pointer is queried, if it has an external source,
we check whether it's up to date, and update it if not.
* The ancillary data stored on the canonical declaration is allocated lazily
to avoid filling it in for declarations that end up being non-canonical.
We'll still perform a redundant (ASTContext) allocation if someone asks for
the most recent declaration from a decl before setPreviousDecl is called,
but such cases are probably all bugs, and are now easy to find.
Some finessing is still in order here -- in particular, we use a very general
mechanism for handling the DefinitionData pointer on CXXRecordData, and a more
targeted approach would be more compact.
Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was
addressing only a corner of the full problem space here. That's not covered
by this patch.
Early performance benchmarks show that this makes no measurable difference to
Clang performance without modules enabled (and fixes a major correctness issue
with modules enabled). I'll revert if a full performance comparison shows any
problems.
llvm-svn: 209046
This makes it easier to see where a global ctor comes from, and it also makes
ASan's init order analyzer output easier to understand. gcc does this too,
but only in -fPIC mode for some reason. Don't do this for constructors with
explicit init priority.
Also prepend "sub_" before the 'I', that way regular constructors stay
lexicographically after symbols with init priority (because
ord('s') > ord('I')). gold seems to ignore the name of constructor symbols,
and ld only looks at the symbol if it includes an init priority, which this
patch doesn't change.
Before: __GLOBAL_I_a
Now: __GLOBAL_sub_I_myfile.cc
llvm-svn: 208128
Summary:
A reference temporary should inherit the linkage of the variable it
initializes. Otherwise, we may hit cases where a reference temporary
wouldn't have the same value in all translation units.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D3515
llvm-svn: 207451
for CXXGlobalInit/Dtor helper functions.
This makes _GLOBAL__I_a regain its DW_AT_high/low_pc in the debug info.
Thanks to echristo for catching this!
llvm-svn: 206088
are not associated with any source lines.
Previously, if the Location of a Decl was empty, EmitFunctionStart would
just keep using CurLoc, which would sometimes be correct (e.g., thunks)
but in other cases would just point to a hilariously random location.
This patch fixes this by completely eliminating all uses of CurLoc from
EmitFunctionStart and rather have clients explicitly pass in a
SourceLocation for the function header and the function body.
rdar://problem/14985269
llvm-svn: 205999
This fixes PR15768, where the sret parameter and the 'this' parameter
are in the wrong order.
Instance methods compiled by MSVC never return records in registers,
they always return indirectly through an sret pointer. That sret
pointer always comes after the 'this' parameter, for both __cdecl and
__thiscall methods.
Unfortunately, the same is true for other calling conventions, so we'll
have to change the overall approach here relatively soon.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D2664
llvm-svn: 200587
Static locals requiring initialization are not thread safe on Windows.
Unfortunately, it's possible to create static locals that are actually
externally visible with inline functions and templates. As a result, we
have to implement an initialization guard scheme that is compatible with
TUs built by MSVC, which makes thread safety prohibitively difficult.
MSVC's scheme is that every function that requires a guard gets an i32
bitfield. Each static local is assigned a bit that indicates if it has
been initialized, up to 32 bits, at which point a new bitfield is
created. MSVC rejects inline functions with more than 32 static locals,
and the externally visible mangling (?_B) only allows for one guard
variable per function.
On Eli's recommendation, I used MangleNumberingContext to track which
bit each static corresponds to.
Implements PR16888.
Reviewers: rjmccall, eli.friedman
Differential Revision: http://llvm-reviews.chandlerc.com/D1416
llvm-svn: 190427
I tried to implement this properly in r189051, but I didn't have enough
test coverage. Richard kindly provided more test cases than I could
possibly imagine and now we should have the correct condition.
llvm-svn: 189898
This reverts commit r189320.
Alexey Samsonov and Dmitry Vyukov presented some arguments for keeping
these around - though it still seems like those tasks could be solved by
a tool just using the symbol table. In a very small number of cases,
thunks may be inlined & debug info might be able to save profilers &
similar tools from misclassifying those cases as part of the caller.
The extra changes here plumb through the VarDecl for various cases to
CodeGenFunction - this provides better fidelity through a few APIs but
generally just causes the CGF::StartFunction to fallback to using the
name of the IR function as the name in the debug info.
The changes to debug-info-global-ctor-dtor.cpp seem like goodness. The
two names that go missing (in favor of only emitting those names as
linkage names) are names that can be demangled - emitting them only as
the linkage name should encourage tools to do just that.
Again, thanks to Dinesh Dwivedi for investigation/work on this issue.
llvm-svn: 189421
CodeGenFunction is run on only one function - a new object is made for
each new function. I would add an assertion/flag to this effect, but
there's an exception: ObjC properties involve emitting helper functions
that are all emitted by the same CodeGenFunction object, so such a check
is not possible/correct.
llvm-svn: 189277
Summary:
These typically come from static data members of class template
specializations. This accomplishes two things:
1. May expose GlobalOpt optimizations for Itanium C++ ABI code.
2. Works toward fixing double initialization in the Microsoft C++ ABI.
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1475
llvm-svn: 189051
Original commit message:
Emit the TLS intialization functions into a list.
Add the TLS initialization functions to a list of initialization functions. The
back-end takes this list and places the function pointers into the correct
section. This way they're called before `main().'
<rdar://problem/13733006>
llvm-svn: 180809
Add the TLS initialization functions to a list of initialization functions. The
back-end takes this list and places the function pointers into the correct
section. This way they're called before `main().'
<rdar://problem/13733006>
llvm-svn: 180739
non-constant constructors or non-trivial destructors. Plus bugfixes for
thread_local references bound to temporaries (the temporaries themselves are
lifetime-extended to become thread_local), and the corresponding case for
std::initializer_list.
llvm-svn: 179496
aggregate types in a profoundly wrong way that has to be
worked around in every call site, to getEvaluationKind,
which classifies and distinguishes between all of these
cases.
Also, normalize the API for loading and storing complexes.
I'm working on a larger patch and wanted to pull these
changes out, but it would have be annoying to detangle
them from each other.
llvm-svn: 176656
calls and declarations.
LLVM has a default CC determined by the target triple. This is
not always the actual default CC for the ABI we've been asked to
target, and so we sometimes find ourselves annotating all user
functions with an explicit calling convention. Since these
calling conventions usually agree for the simple set of argument
types passed to most runtime functions, using the LLVM-default CC
in principle has no effect. However, the LLVM optimizer goes
into histrionics if it sees this kind of formal CC mismatch,
since it has no concept of CC compatibility. Therefore, if this
module happens to define the "runtime" function, or got LTO'ed
with such a definition, we can miscompile; so it's quite
important to get this right.
Defining runtime functions locally is quite common in embedded
applications.
llvm-svn: 176286
These are two related changes (one in llvm, one in clang).
LLVM:
- rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode)
- rename thread_safety => sanitize_thread
- rename no_uninitialized_checks -> sanitize_memory
CLANG:
- add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis))
- add __attribute__((no_sanitize_thread))
- add __attribute__((no_sanitize_memory))
for S in address thread memory
If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not
set llvm attribute sanitize_S
llvm-svn: 176076
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
if (CGM.getModuleDebugInfo())
DebugInfo = CGM.getModuleDebugInfo()
into a call:
maybeInitializeDebugInfo();
This is a simplification for a possible future fix of PR13942.
llvm-svn: 166019