Handles were returned by addModule and used as keys for removeModule,
findSymbolIn, and emitAndFinalize. Their job is now subsumed by VModuleKeys,
which simplify resource management by providing a consistent handle across all
layers.
llvm-svn: 324700
Add verification for copies involving generic registers if they are
compatible - ie if it is a generic copy, then the types are the
same, and if a COPY b/w generic and target virtual register, then
the sizes should be the same. Only checks if there are no sub registers
involved for now.
https://reviews.llvm.org/D37775
llvm-svn: 324696
Summary:
Kernel addresses have 0xFF in the most significant byte.
A tag can not be pushed there with OR (tag << 56);
use AND ((tag << 56) | 0x00FF..FF) instead.
Reviewers: kcc, andreyknvl
Subscribers: srhines, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D42941
llvm-svn: 324691
This addresses review feedback for D42940. The topological sort is
slightly more expensive but it can now also detect cycles in the
dependencies and actually works correctly.
rdar://problem/37217988
Differential Review: https://reviews.llvm.org/D43036
llvm-svn: 324677
Emitting the correct (root of compilation) file at index 0 will be
posted for review later; I wanted to get this minor change out of the
way first.
llvm-svn: 324669
Right now this loops over the entire function every time there
is a change, which is not very efficient. There's no practical
reason to track this so globally, since the code motion optimization
passes should be sinking instructions with single uses and
the pass currently will not fold with multiple uses.
llvm-svn: 324667
The patch essentially makes sure that X86CallLowering adds proper
G_COPY/G_TRUNC and G_ANYEXT/G_COPY when we are doing lowering of
arguments/returns for floating point values passed on registers.
Tests are updated accordingly
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D42287
llvm-svn: 324665
Most vxi1 constant build vectors have to be implemented in the scalar domain anyway so we'll probably end up with a cast there later. But by then its too late to do the combine to get rid of it.
llvm-svn: 324662
Including a blank file is confusing and makes it look like something
went wrong. Rather than requiring people know why this is blank, let's
just make it explicitly #undef the macro that it would define if it
weren't empty.
llvm-svn: 324659
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
DataFlowSanitizer pass to cease using the old get/setAlignment() API of MemoryIntrinsic
in favour of getting source & dest specific alignments through the new API.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324654
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
AddressSanitizer pass to cease using The old IRBuilder CreateMemCpy single-alignment API
in favour of the new API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324653
Fix the comments, use early exits, use unique_ptr, and use ranged for
loops.
This is in preparation for a global *variable* reducer, which, with any
luck will help us clean up test cases.
Differential Revision: https://reviews.llvm.org/D43084
llvm-svn: 324649
This allows the register name to be printed without the leading '%'.
This can be used for emitting calls to the retpoline thunks from inline
asm.
llvm-svn: 324645
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
MemorySanitizer pass to cease using the old IRBuilder CreateMemCpy single-alignment APIs
in favour of the new API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324642
Many in SimplifySetCC and FoldSetCC try to create true or false constants. Some of them query getBooleanContents to figure out whether to use all ones or just 1 for true. But many places do not check and just use 1 without ensuring the VT has an i1 scalar type. Note sure if those places only trigger before type legalization so they only see an i1
type?
To cleanup the inconsistency and reduce some duplicated code, this patch adds a getBoolConstant method to SelectionDAG that takes are of querying getBooleanContents and doing the right thing.
Differential Revision: https://reviews.llvm.org/D43037
llvm-svn: 324634
One of them shows a missed opportunity to use SimplifyDemandedBits on the condition when its used by multiple vselects.
The other is a case we shouldn't optimize because the condition has a non-vselect use.
llvm-svn: 324630
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
LoopIdiom pass to cease using the old IRBuilder CreateMemCpy single-alignment APIs in
favour of the new API that allows setting source and destination alignments independently.
This allows us to be slightly more aggressive in setting the alignment of memcpy calls that
loop idiom creates.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324626
'size' of a vector is unsigned, and I accidentially compared
it to an int through GTEST. I switched it to unsigned, which
is the template parameter type anyway.
llvm-svn: 324625
This is a support change for a CFE change (https://reviews.llvm.org/D42978)
that allows march and -target-cpu to list the valid targets in a note. The changes
are limited to the ARM/AArch64, since this is the only target that gets the CPU
list from LLVM.
llvm-svn: 324623
When processing a dSYM bundle, use llvm::sys::path to join the different
path components instead of using a string with hard coded forward
slashes as separators.
llvm-svn: 324622
Before this patch, llvm-dwarfdump would reject `bundel.dSYM/` as input,
while `bundel.dSYM` was accepted. The reason is that `path::extension()`
returns an empty string for the former, leading to the argument not
being recognized as a dSYM bundle.
llvm-svn: 324621
The last assume in the test says that %B12 is 0.
The first assume says that %and1 is less than %B12.
Therefore, %and1 is unsigned less than 0...does not compute.
That means this line:
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
...tries to set more bits than exist.
Differential Revision: https://reviews.llvm.org/D43052
llvm-svn: 324610
ARMDisassembler now depends on the banked register tables in ARMUtils, so the
LLVMBuild.txt needed updating to reflect this.
Original commit mesage:
[ARM] Fix disassembly of invalid banked register moves
When disassembling banked register move instructions, we don't have an
assembly syntax for the unallocated register numbers, so we have to
return Fail rather than SoftFail. Previously we were returning SoftFail,
then crashing in the InstPrinter as we have no way to represent these
encodings in an assembly string.
This also switches the decoder to use the table-generated list of banked
registers, removing the duplicated list of encodings.
Differential revision: https://reviews.llvm.org/D43066
llvm-svn: 324606
The broken bot (clang-ppc64le-linux-multistage) is doign a shared-object build,
so I guess using lookupBankedRegByEncoding in the disassembler is a layering
violation?
llvm-svn: 324604
Refactor getLogBase2Vector into getLogBase2 to accept all scalars/vectors. Generalize from ConstantDataVector to support all constant vectors.
llvm-svn: 324603
When disassembling banked register move instructions, we don't have an
assembly syntax for the unallocated register numbers, so we have to
return Fail rather than SoftFail. Previously we were returning SoftFail,
then crashing in the InstPrinter as we have no way to represent these
encodings in an assembly string.
This also switches the decoder to use the table-generated list of banked
registers, removing the duplicated list of encodings.
Differential revision: https://reviews.llvm.org/D43066
llvm-svn: 324600
The UNSUPPORTED directive was not honored by the bot, presumably because
of the FIXME above it. This moves the comment down and removes the
remaining update check from basic-linking-x86.test.
This should un-break: llvm-clang-x86_64-expensive-checks-win/builds/7798/
llvm-svn: 324598
Summary:
GVN hoist pass is using PostDominatorTree analysis, therefore the analysis
should be listed in the pass initialization as a dependency.
Reviewed By: sebpop
Differential Revision: https://reviews.llvm.org/D43007
Author: ashlykov <arkady.shlykov@intel.com>
llvm-svn: 324597
NFC.
Adding MC regressions tests to cover several small x86 extensions as follows:
CLWB, CLZERO, F16C, INVPCID, PKU, POPCNT, RTM, SGX, SHA, SVM, VMFUNC, VTX
This patch is part of a larger task to cover MC encoding of all X86 isa sets started in revision: https://reviews.llvm.org/D39952
Reviewers: RKSimon, craig.topper, zvi, AndreiGrischenko
Differential Revision: https://reviews.llvm.org/D41388
Change-Id: I254508cd17faca00b780be0fc2abf6c71b61faab
llvm-svn: 324595
This commit attempts to re-land the r324480 which was reverted in
r324493 because it broke the Windows bots. For now I disabled the two
update tests on Windows until I'm able to debug this.
Differential revision: https://reviews.llvm.org/D42880
llvm-svn: 324592
Add support of uge and sge latch condition to Loop Prediction for
reverse loops.
Reviewers: apilipenko, mkazantsev, sanjoy, anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42837
llvm-svn: 324589
Instructions affected:
mthc1, mfhc1, add.d, sub.d, mul.d, div.d,
mov.d, neg.d, cvt.w.d, cvt.d.s, cvt.d.w, cvt.s.d
These instructions are now defined for
microMIPS32r3 + microMIPS32r6 in MicroMipsInstrFPU.td
since they shared their encoding with those already defined
in microMIPS32r6InstrInfo.td and have been therefore
removed from the latter file.
Some instructions present in MicroMipsInstrFPU.td which
did not have both AFGR64 and FGR64 variants defined have
been altered to do so.
Differential revision: https://reviews.llvm.org/D42738
llvm-svn: 324584
Summary:
Right now using a ProcResource automatically counts as usage of all
super ProcResGroups. All this is done during codegen, so there is no
way for schedulers to get this information at runtime.
This adds the information of which individual ProcRes units are
contained in a ProcResGroup in MCProcResourceDesc.
Reviewers: gchatelet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43023
llvm-svn: 324582
We were generating "fmov h0, wzr" instructions when FullFP16 is not enabled.
I've not added any tests, because the problem was visible in:
test/CodeGen/AArch64/arm64-zero-cycle-zeroing.ll,
which I had to change: I don't think Cyclone has FullFP16 enabled
by default, so it shouldn't be using this v8.2a instruction.
I've also removed these rdar tags, please shout if there are any objections.
Differential Revision: https://reviews.llvm.org/D43020
llvm-svn: 324581
The KTEST instruction sets the C flag if the result of anding both operands together is all 1s. We can use this to lower (icmp eq/ne (bitcast (vXi1 X), -1)
Differential Revision: https://reviews.llvm.org/D42772
llvm-svn: 324577
Summary:
KTEST has weird flag behavior. The Z flag is set for all bits in the AND of the k-registers being 0, and the C flag is set for all bits being 1. All other flags are cleared.
We currently emit this instruction in EmitTEST and don't check the condition code. This can lead to strange things like using the S flag after a KTEST for a signed compare.
The domain reassignment pass can also transform TEST instructions into KTEST and is not protected against the flag usage either. For now I've disabled this part of the domain reassignment pass. I tried to comment out the checks in the mir test so that we could recover them later, but I couldn't figure out how to get that to work.
This patch moves the KTEST handling into LowerSETCC and now creates a ktest+x86setcc. I've chosen this approach because I'd like to add support for the C flag for all ones in a followup patch. To do that requires that I can rewrite the condition code going in the x86setcc to be different than the original SETCC condition code.
This fixes PR36182. I'll file a PR to fix domain reassignment once this goes in. Should this be merged to 6.0?
Reviewers: spatel, guyblank, RKSimon, zvi
Reviewed By: guyblank
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42770
llvm-svn: 324576
With fix: reimplemented.
Original commit message:
Recently introduced convertToDeclaration is very similar
to code used in filterModule function.
Patch reuses it to reduce duplication.
Differential revision: https://reviews.llvm.org/D42971
llvm-svn: 324574
The commit rL308422 introduces a restriction for folding unconditional
branches. Specifically if empty block with unconditional branch leads to
header of the loop then elimination of this basic block is prohibited.
However it seems this condition is redundantly strict.
If elimination of this basic block does not introduce more back edges
then we can eliminate this block.
The patch implements this relax of restriction.
The test profile/Linux/counter_promo_nest.c in compiler-rt project
is updated to meet this change.
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: pacxx
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324572
We're passing the binary op that uses the load instead of the load.
Noticed by inspection. Not sure how to test this because this just prevents the introduction of an extend that will later be truncated and will probably be combined out.
llvm-svn: 324568
The truncate is being used to replace other users of of the load, but we checked that the load only has one use so there are no other uses to replace.
llvm-svn: 324567
Instead of:
%bb.1: derived from LLVM BB %for.body
print:
bb.1.for.body:
Also use MIR syntax for MBB attributes like "align", "landing-pad", etc.
llvm-svn: 324563
The truncate is only needed if the load has additional users. It used to get passed to extendSetCCUses so was created early, but that's no longer the case.
llvm-svn: 324562
LowerSELECT_CC is not generating optimal Select_Ri pattern at the moment. It
is not guaranteed to place ConstantNode at RHS which would miss matching
Select_Ri.
A new testcase added into the existing select_ri.ll, also there is an
existing case in cmp.ll which would be improved to use Select_Ri after this
patch, it is adjusted accordingly.
Reported-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 324560
The LTO opt level should not affect the codegen opt level, and indeed
it does not affect it in lld. Ideally the codegen opt level should
be controlled by an IR-level attribute based on the compile-time opt
level, but that hasn't been implemented yet.
Differential Revision: https://reviews.llvm.org/D43040
llvm-svn: 324557
The issue is that clang was first creating a extern_weak hidden GV and
then changing the linkage to external.
Once we know it is not extern_weak we know it must be dso_local.
This patch refactors the code that sets the implicit dso_local to a
helper private function that is used every time we change the linkage
or visibility.
I will commit a patch to clang in a minute.
llvm-svn: 324551
The code reusing existing wait counts is incorrect since it keeps
adding new operands to an old instruction instead of replacing
the immediate. It was also effectively switched off by the condition
that wait count is not an AMDGPU::S_WAITCNT.
Also switched to BuildMI instead of creating instructions directly.
Differential Revision: https://reviews.llvm.org/D42997
llvm-svn: 324547
hit from IR but creates a minefield for MI passes.
The x86 backend has fairly powerful logic to try and fold loads that
feed register operands to instructions into a memory operand on the
instruction. This is almost always a good thing, but there are specific
relocated loads that are only allowed to appear in specific
instructions. Notably, R_X86_64_GOTTPOFF is only allowed in `movq` and
`addq`. This patch blocks folding of memory operands using this
relocation unless the target is in fact `addq`.
The particular relocation indicates why we simply don't hit this under
normal circumstances. This relocation is only used for TLS, and it gets
used in very specific ways in conjunction with %fs-relative addressing.
The result is that loads using this relocation are essentially never
eligible for folding into an instruction's memory operands. Unless, of
course, you have an MI pass that inserts usage of such a load. I have
exactly such an MI pass and was greeted by truly mysterious miscompiles
where the linker replaced my instruction with a completely garbage byte
sequence. Go team.
This is the only such relocation I'm aware of in x86, but there may be
others that need to be similarly restricted.
Fixes PR36165.
Differential Revision: https://reviews.llvm.org/D42732
llvm-svn: 324546
Summary:
Loops with inequality comparers, such as:
// unsigned bound
for (unsigned i = 1; i < bound; ++i) {...}
have getSmallConstantMaxTripCount report a large maximum static
trip count - in this case, 0xffff fffe. However, profiling info
may show that the trip count is much smaller, and thus
counter-recommend vectorization.
This change:
- flips loop-vectorize-with-block-frequency on by default.
- validates profiled loop frequency data supports vectorization,
when static info appears to not counter-recommend it. Absence
of profile data means we rely on static data, just as we've
done so far.
Reviewers: twoh, mkuper, davidxl, tejohnson, Ayal
Reviewed By: davidxl
Subscribers: bkramer, llvm-commits
Differential Revision: https://reviews.llvm.org/D42946
llvm-svn: 324543
We were doing a lot of whitelisting of what we handle in these routines, but setOperationAction constrains what we can get here. So just add some asserts and prune the unreachable paths.
llvm-svn: 324538
If we are saving/restoring k-registers, the default behavior of getMinimalRegisterClass will find the VK64 class with a spill size of 64 bits. This will cause the KMOVQ opcode to be used for save/restore. If we don't have have BWI instructions we need to constrain the class returned to give us VK16 with a 16-bit spill size. We can do this by passing the either v16i1 or v64i1 into getMinimalRegisterClass.
Also add asserts to make sure BWI is enabled anytime we use KMOVD/KMOVQ. These are what caught this bug.
Fixes PR36256
Differential Revision: https://reviews.llvm.org/D42989
llvm-svn: 324533
This patch enables PDB generation for Release build, which has
slightly different optimize option with RelWithDebInfo on windows.
This helps to know slow part of Release build when profiling.
Patch by Takuto Ikuta
Differential Revision: https://reviews.llvm.org/D42632
llvm-svn: 324504
Travel all chains paths to first non-tokenfactor node can be
exponential work. Add simple redundency check to avoid this.
Fixes PR36264.
llvm-svn: 324491
This patch is the LLVM part of fixing the issues, described in
https://bugs.llvm.org/show_bug.cgi?id=36168
* The representation of enumerator values in the debug info metadata now
contains a boolean flag isUnsigned, which determines how the bits of
the value are interpreted.
* The DW_TAG_enumeration type DIE now always (for DWARF version >= 3)
includes a DW_AT_type attribute, which refers to the underlying
integer type, as suggested in DWARFv4 (5.7 Enumeration Type Entries).
* The debug info metadata for enumeration type contains (in flags)
indication whether this is a C++11 "fixed enum".
* For C++11 enumeration with a fixed underlying type, the DIE also
includes the DW_AT_enum_class attribute (for DWARF version >= 4).
* Encoding of enumerator constants uses DW_FORM_sdata for signed values
and DW_FORM_udata for unsigned values, as suggested by DWARFv4 (7.5.4
Attribute Encodings).
The changes should be backwards compatible:
* the isUnsigned attribute is optional and defaults to false.
* if the underlying type for the enumeration is not available, the
enumerator values are considered signed.
* the FixedEnum flag defaults to clear.
* the bitcode format for DIEnumerator stores the unsigned flag bit #1 of
the first record element, so the format does not change and the zero
previously stored there is consistent with the false default for
IsUnsigned.
Differential Revision: https://reviews.llvm.org/D42734
llvm-svn: 324489
Note: This is a candidate for LLVM 6.0, because it was planned to be
in that release but was delayed due to a long review period.
Merge conflict in release_60 - resolution:
Add "-p6:32:32" into the second (non-amdgiz) string.
Only scalar loads support 32-bit pointers. An address in a VGPR will
fail to compile. That's OK because the results of loads will only be used
in places where VGPRs are forbidden.
Updated AMDGPUAliasAnalysis and used SReg_64_XEXEC.
The tests cover all uses cases we need for Mesa.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D41651
llvm-svn: 324487
Summary:
I checked the AMD closed source compiler and the workaround is only
needed when x3 is emulated as x4, which we don't do in LLVM.
SMEM x3 opcodes don't exist, and instead there is a possibility to use x4
with the last component being unused. If the last component is out of
buffer bounds and falls on the next 4K page, the hw hangs.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D42756
llvm-svn: 324486
This patch has llvm-dwarfdump check the whole dSYM, rather than the
hard-coded path to the Mach-O companion file. This might be what's
causing the Windows bot to fail.
llvm-svn: 324483
Now that dsymutil can generate accelerator tables, we can upstream the
update logic that, as the name implies, updates the accelerator tables
in an existing dSYM bundle. In combination with `-minimize` this can be
used to remove redundant .debug_(inlines|pubtypes|pubnames).
Differential revision: https://reviews.llvm.org/D42880
llvm-svn: 324480
Both operand codes now work the same way in case of register or memory
operands. It print high-order or low-order word in a double-word
register or memory location.
llvm-svn: 324476
The failures happened because of assert which was overconfident about
SCEV's proving capabilities and is generally not valid.
Differential Revision: https://reviews.llvm.org/D42835
llvm-svn: 324473
With fixes from rL324341.
Original commit message:
[MergeICmps] Enable the MergeICmps Pass by default.
Summary: Now that PR33325 is fixed, this should always improve the generated code.
Reviewers: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42793
llvm-svn: 324465
This is a follow up of r324321, adding a match pattern for mov with a FP16
immediate (also fixing operand vfp_f16imm that wasn't even compiling).
Differential Revision: https://reviews.llvm.org/D42973
llvm-svn: 324456
Recently introduced convertToDeclaration is very similar
to code used in filterModule function.
Patch reuses it to reduce duplication.
Differential revision: https://reviews.llvm.org/D42971
llvm-svn: 324455
Sometimes `isLoopEntryGuardedByCond` cannot prove predicate `a > b` directly.
But it is a common situation when `a >= b` is known from ranges and `a != b` is
known from a dominating condition. Thia patch teaches SCEV to sum these facts
together and prove strict comparison via non-strict one.
Differential Revision: https://reviews.llvm.org/D42835
llvm-svn: 324453
that happened to end up in GCC.
This is really unfortunate, as the names don't have much rhyme or reason
to them. Originally in the discussions it seemed fine to rely on aliases
to map different names to whatever external thunk code developers wished
to use but there are practical problems with that in the kernel it turns
out. And since we're discovering this practical problems late and since
GCC has already shipped a release with one set of names, we are forced,
yet again, to blindly match what is there.
Somewhat rushing this patch out for the Linux kernel folks to test and
so we can get it patched into our releases.
Differential Revision: https://reviews.llvm.org/D42998
llvm-svn: 324449
Before r324429 we essentially didn't have a verification of LCSSA, so
no wonder that it has been broken: currently loop-sink breaks it (the
attached test illustrates the failure).
It was detected during a stage2 RA build, so to unbreak it I'm disabling
the check for now.
llvm-svn: 324445
Summary:
A recent fix to drop dead symbols (r323633) did not work for ThinLTO
distributed backends because we lose the WithGlobalValueDeadStripping
set on the index during the thin link. This patch adds a new flags
record to the bitcode format for the index, and serializes this flag
for the combined index (it would always be 0 for the per-module index
generated by the compile step, so no need to serialize the new flags
record there until/unless we add another flag that applies to the
per-module indexes).
Generally this flag should always be set for the distributed backends,
which are necessarily performed after the thin link. However, if we were
to simply set this flag on the index applied to the distributed backends
(invoked via clang), we would lose the ability to disable dead stripping
via -compute-dead=false for debugging purposes.
Reviewers: grimar, pcc
Subscribers: mehdi_amini, inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D42799
llvm-svn: 324444
Summary:
Some of the commands tries to get the register without checking
if the specified operands is a register and causing crash. All commands
should check the type of the operand first and reject if the type is
not expected.
Reviewers: dsanders, qcolombet
Reviewed By: qcolombet
Subscribers: qcolombet, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42984
llvm-svn: 324442
1. Run the memory legalizer prior to the waitcnt pass; keep the policy that the waitcnt pass does not remove any waitcnts within the incoming IR.
2. The waitcnt pass doesn't (yet) track waitcnts that exist prior to the waitcnt pass (it just skips over them); because the waitcnt pass is ignorant of them, it may insert a redundant waitcnt. To avoid this, check the prev instr. If it and the to-be-inserted waitcnt are the same, suppress the insertion. We keep the existing waitcnt under the assumption that whomever, e.g., the memory legalizer, inserted it knows what they were doing.
3. Follow-on work: teach the waitcnt pass to record the pre-existing waitcnts for better waitcnt production.
Differential Revision: https://reviews.llvm.org/D42854
llvm-svn: 324440
For example 'ugt X, 0' can be simplified to 'ne X, 0'. Or 'uge X, 0' is always true.
We already simplify this for scalars in SimplifySetCC, but we don't currently for vectors in SimplifySetCC. D42948 proposes to change that.
llvm-svn: 324436
X86 currently has a late DAG combine after cttz/ctlz are turned into BSR+BSF+CMOV to detect this and remove the CMOV. But we should be able to do this much earlier and avoid creating the cmov all together.
For the changed AMDGPU test case it appears that previously the i8 cttz was type legalized to i16 which introduced an OR with 256 in order to limit the result to 8 on the widened type. At this point the result is known to never be zero, but nothing checked that. Then operation legalization is told to promote all i16 cttz to i32. This introduces an extend and a truncate and another OR with 65536 to limit the result to 16. With the DAG combiner change we are able to prevent the creation of the second OR since the opcode will have been changed to cttz_zero_undef after the first OR. I the lack of the OR caused the instruction to change to v_ffbl_b32_sdwa
Differential Revision: https://reviews.llvm.org/D42985
llvm-svn: 324427
n Rust, an enum that carries data in the variants is, essentially, a
discriminated union. Furthermore, the Rust compiler will perform
space optimizations on such enums in some situations. Previously,
DWARF for these constructs was emitted using a hack (a magic field
name); but this approach stopped working when more space optimizations
were added in https://github.com/rust-lang/rust/pull/45225.
This patch changes LLVM to allow discriminated unions to be
represented in DWARF. It adds createDiscriminatedUnionType and
createDiscriminatedMemberType to DIBuilder and then arranges for this
to be emitted using DWARF's DW_TAG_variant_part and DW_TAG_variant.
Note that DWARF requires that a discriminated union be represented as
a structure with a variant part. However, as Rust only needs to emit
pure discriminated unions, this is what I chose to expose on
DIBuilder.
Patch by Tom Tromey!
Differential Revision: https://reviews.llvm.org/D42082
llvm-svn: 324426
Following up on the discussion from
http://lists.llvm.org/pipermail/llvm-dev/2017-April/112305.html, undef
values are now placed in the .bss as well as null values. This prevents
undef global values taking up potentially huge amounts of space in the
.data section.
The following two lines now both generate equivalent .bss data:
@vals1 = internal unnamed_addr global [20000000 x i32] zeroinitializer, align 4
@vals2 = internal unnamed_addr global [20000000 x i32] undef, align 4 ; previously unaccounted for
This is primarily motivated by the corresponding issue in the Rust
compiler (https://github.com/rust-lang/rust/issues/41315).
Differential Revision: https://reviews.llvm.org/D41705
Patch by varkor!
llvm-svn: 324424
See D42509 for the original version of this.
Basically, there are two significant changes to behavior here:
- addLiveOuts always adds all pristine registers (even if a block has
no successors).
- addLiveOuts and addLiveOutsNoPristines always add all callee-saved
registers for return blocks (including conditional return blocks).
I cleaned up the functions a bit to make it clear these properties hold.
Differential Revision: https://reviews.llvm.org/D42655
llvm-svn: 324422
VLAs may refer to a previous DIE to express the DW_AT_count of their
type. Clang generates an artificial "vla_expr" variable for this. If
this DIE hasn't been created yet LLVM asserts. This patch fixes this
by sorting the local variables so that dependencies come before they
are needed. It also replaces the linear scan in DWARFFile with a
std::map, which can be faster.
Differential Revision: https://reviews.llvm.org/D42940
llvm-svn: 324412
combineCmov tries to remove compares against BSR/BSF if we can prove the input to the BSR/BSF are never zero.
As far as I can tell most of the time codegenprepare despeculates ctlz/cttz and gives us a cttz_zero_undef/ctlz_zero_undef which don't use a cmov.
So the only way I found to trigger this code is to show codegenprepare an illegal type which it won't despeculate.
I think we should be turning ctlz/cttz into ctlz_zero_undef/cttz_zero_undef for these cases before we ever get to operation legalization where the cmov is created. But wanted to add these tests so we don't regress.
llvm-svn: 324409
In particular this patch switches RTDyldObjectLinkingLayer to use
orc::SymbolResolver and threads the requried changse (ExecutionSession
references and VModuleKeys) through the existing layer APIs.
The purpose of the new resolver interface is to improve query performance and
better support parallelism, both in JIT'd code and within the compiler itself.
The most visibile change is switch of the <Layer>::addModule signatures from:
Expected<Handle> addModule(std::shared_ptr<ModuleType> Mod,
std::shared_ptr<JITSymbolResolver> Resolver)
to:
Expected<Handle> addModule(VModuleKey K, std::shared_ptr<ModuleType> Mod);
Typical usage of addModule will now look like:
auto K = ES.allocateVModuleKey();
Resolvers[K] = createSymbolResolver(...);
Layer.addModule(K, std::move(Mod));
See the BuildingAJIT tutorial code for example usage.
llvm-svn: 324405
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
DeadStoreElimination pass to cease using the old getAlignment() API of MemoryIntrinsic
in favour of getting dest specific alignments through the new API.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324402
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
InferAddressSpaces pass to cease using:
1) The old getAlignment() API of MemoryIntrinsic in favour of getting source & dest specific
alignments through the new API.
2) The old IRBuilder CreateMemCpy/CreateMemMove single-alignment APIs in favour of the new
API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324395
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
InlineFunction pass to ceause using the old IRBuilder CreateMemCpy single-alignment API
in favour of the new API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324384
It was always using cmpxchg path and in rmw and cmpxchg instructions
are not distinguishable in the BE.
Differential Revision: https://reviews.llvm.org/D42976
llvm-svn: 324383
Generalize existing constant matching to work with non-uniform constant vectors as well.
Differential Revision: https://reviews.llvm.org/D42818
llvm-svn: 324369
This is a follow up of r324321, adding f16 <-> f32 and f16 <-> f64 conversion
match patterns.
Differential Revision: https://reviews.llvm.org/D42954
llvm-svn: 324360
Instruction Selection
Cleanup cycle/validity checks in ISel (IsLegalToFold,
HandleMergeInputChains) and X86 (isFusableLoadOpStore). Now do a full
search for cycles / dependencies pruning the search when topological
property of NodeId allows.
As part of this propogate the NodeId-based cutoffs to narrow
hasPreprocessorHelper searches.
Reviewers: craig.topper, bogner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41293
llvm-svn: 324359
Vector pairs are legal types, but not every operation can work on pairs.
For those operations that are legal for single vectors, generate a concat
of their results on pair halves.
llvm-svn: 324350
It was expanded directly into instructions earlier. That was to avoid
loads from a constant pool for a vector negation: "xor x, splat(i1 -1)".
Implement ISD opcodes QTRUE and QFALSE to denote logical vectors of
all true and all false values, and handle setcc with negations through
selection patterns.
llvm-svn: 324348
Followup to D42544 that matches PACKUSWB cases for non-AVX512, SSE and PACKUSDW cases will have to wait until we can add support for general SMIN/SMAX matching.
llvm-svn: 324347
Summary:
Now we generate PAL metadata for the amdpal os type, there is no need to
generate the .AMDGPU.config section.
Reviewers: arsenm, nhaehnle, dstuttard
Subscribers: kzhuravl, wdng, yaxunl, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D37760
Change-Id: I303c5fad66656ce97293da60621afac6595b4c18
llvm-svn: 324346
Summary: Adds support for the SVE AND instruction with vector and logical-immediate operands, and their corresponding aliases.
Reviewers: fhahn, rengolin, samparker, echristo, aadg, kristof.beyls
Reviewed By: fhahn
Subscribers: aemerson, javed.absar, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D42295
llvm-svn: 324343
- Fix condition for detecting that a complex basic block was the first in
the chain.
- Add tests.
This was caught by buildbots when submitting rL324319.
llvm-svn: 324341
Followup to D42544 that matches PACKSSWB cases for non-AVX512, SSE and PACKSSDW cases will have to wait until we can add support for general SMIN/SMAX matching.
llvm-svn: 324339
It is better to update pointer of the DISuprogram before we call RAUW for
still live arguments of the function, because with the change reviewed in
D42541 in RAUW we compare DISubprograms rather than functions itself.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D42794
llvm-svn: 324335
This adds most of the FP16 codegen support, but these areas need further work:
- FP16 literals and immediates are not properly supported yet (e.g. literal
pool needs work),
- Instructions that are generated from intrinsics (e.g. vabs) haven't been
added.
This will be addressed in follow-up patches.
Differential Revision: https://reviews.llvm.org/D42849
llvm-svn: 324321
Summary: Now that PR33325 is fixed, this should always improve the generated code.
Reviewers: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42793
llvm-svn: 324317
This patch moves ThinLTOBitcodeWriter/module-asm.ll test case into x86 directory to avoid a test failure when x86 backend is not enabled.
llvm-svn: 324316
These used things like unsigned less than zero, which is always false because there is no unsigned number less than zero.
I plan to teach DAG combine to optimize these so need to stop using them.
llvm-svn: 324315
If the inline asm provides the definition of a symbol, this can result
in duplicate symbol errors.
Differential Revision: https://reviews.llvm.org/D42944
llvm-svn: 324313
Summary:
This method is trying to use the truncate node to find which SETCC operand should be replaced directly with the extended load.
This used to work correctly because all uses of the original load were replaced by the truncate before this function was called. So this was used to effectively bypass the truncate and find the load under it.
All but one of the callers now call this before the truncate has replaced the laod so the setcc doesn't yet use the truncate. To account for this we should pass the original load instead.
I changed the order of that one caller to make this work there too.
I don't have a test case because this is probably hidden by later DAG combines causing the extend and truncate to cancel out. I assume this way is a little more efficient and matches what was originally intended.
Reviewers: RKSimon, spatel, niravd
Reviewed By: niravd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42878
llvm-svn: 324311
Summary:
Removing the dropped symbols will prevent indirect call promotion in the
ThinLTO Backend from adding a new reference to a symbol, which can
result in linker unsats. This can happen when we compile with a sample
profile collected from one binary by used for another, which may have
profiled targets that aren't used in the new binary.
Note that until dropDeadSymbols handles variables and aliases (in
progress), we may not be able to remove the declaration and can still
have an issue.
Reviewers: grimar, davidxl
Subscribers: mehdi_amini, inglorion, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D42816
llvm-svn: 324299
We now allow all signed comparisons and not equal. The complement that needs to be added for this is no worse than the extend. And the vector output forms of pcmpeq/pcmpgt have better latency than the k-register version on SKX.
llvm-svn: 324294
In the motivating case from PR35681 and represented by the macro-fuse-cmp test:
https://bugs.llvm.org/show_bug.cgi?id=35681
...there's a 37 -> 31 byte size win for the loop because we eliminate the big base
address offsets.
SPEC2017 on Ryzen shows no significant perf difference.
Differential Revision: https://reviews.llvm.org/D42607
llvm-svn: 324289
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
LowerMemIntrinsics pass to cease using the old getAlignment() API of MemoryIntrinsic in
favour of getting source & dest specific alignments through the new API.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324278
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
SimplifyLibCalls pass to cease using the old IRBuilder createMemCpy/createMemMove
single-alignment APIs in favour of the new API that allows setting source and destination
alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, r3L24148 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324273
The major visible difference here is that in line-table dumps,
directory and file names are wrapped in double-quotes; previously,
directory names got single quotes and file names were not quoted at
all.
The improvement in this patch is that when a DWARF v5 line table
header has indirect strings, in a verbose dump these will all have
their section[offset] printed as well as the name itself. This
matches the format used for dumping strings in the .debug_info
section.
Differential Revision: https://reviews.llvm.org/D42802
llvm-svn: 324270
As PR36225 shows, we definitely don't want to enable the
canEvaluate* logic with phis.
There's still a question of whether we should just revert
r324014 completely because it exposes a compile-time sinkhole
(although that problem might exist independently).
llvm-svn: 324266
Summary:
The signatures for the builtins @llvm.memcpy, @llvm.memmove, and @llvm.memset
where changed in rL322965. The number of arguments has decreased from five to
four with the removal of the alignment argument. Alignment is now conveyed
by supplying the align parameter attribute on the destination and/or source of
the cpy/move/set.
llvm-svn: 324265
This allows the immediate to folded into the and instead of being forced to move into a register. This can sometimes result in shorter encodings since the and can sign extend an immediate.
This also allows us to match an and to a movzx after a not.
This can cause an extra move if the input to the separate NOT has an additional user which requires a copy before the NOT.
llvm-svn: 324260
This is the instcombine part of unsigned saturation canonicalization.
Backend patches already commited:
https://reviews.llvm.org/D37510https://reviews.llvm.org/D37534
It converts unsigned saturated subtraction patterns to forms recognized
by the backend:
(a > b) ? a - b : 0 -> ((a > b) ? a : b) - b)
(b < a) ? a - b : 0 -> ((a > b) ? a : b) - b)
(b > a) ? 0 : a - b -> ((a > b) ? a : b) - b)
(a < b) ? 0 : a - b -> ((a > b) ? a : b) - b)
((a > b) ? b - a : 0) -> - ((a > b) ? a : b) - b)
((b < a) ? b - a : 0) -> - ((a > b) ? a : b) - b)
((b > a) ? 0 : b - a) -> - ((a > b) ? a : b) - b)
((a < b) ? 0 : b - a) -> - ((a > b) ? a : b) - b)
Patch by Yulia Koval!
Differential Revision: https://reviews.llvm.org/D41480
llvm-svn: 324255
There was a logic hole in D42739 / rL324014 because we're not accounting for select and phi
instructions that might have repeated operands. This is likely a source of an infinite loop.
I haven't manufactured a test case to prove that, but it should be safe to speculatively limit
this transform to binops while we try to create that test.
llvm-svn: 324252
If the upper 32 bits of a 64 bit mask are all zeros, we have special isel patterns to use a 32-bit and instead of a 64-bit and by relying on the impliciting zeroing of 32 bit ops.
This patch teachs shrinkAndImmediate not to break that optimization.
Differential Revision: https://reviews.llvm.org/D42899
llvm-svn: 324249
This broke the Chromium build; see PR36238.
> This patch is an enhancement to propagate dbg.value information when
> Phis are created on behalf of LCSSA. I noticed a case where a value
> carried across a loop was reported as <optimized out>.
>
> Specifically this case:
>
> int bar(int x, int y) {
> return x + y;
> }
>
> int foo(int size) {
> int val = 0;
> for (int i = 0; i < size; ++i) {
> val = bar(val, i); // Both val and i are correct
> }
> return val; // <optimized out>
> }
>
> In the above case, after all of the interesting computation completes
> our value is reported as "optimized out." This change will add a
> dbg.value to correct this.
>
> This patch also moves the dbg.value insertion routine from
> LoopRotation.cpp into Local.cpp, so that we can share it in both places
> (LoopRotation and LCSSA).
>
> Patch by Matt Davis!
>
> Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 324247
The function shuffp2 was breaking up a wide shuffle into a pair of
narrower ones, except that the narrower shuffle masks were actually
uninitialized.
llvm-svn: 324243
Summary:
This complements the fixes in r323633 and r324075 which drop the
definitions of dead functions and variables, respectively.
Fixes PR36208.
Reviewers: grimar, rafael
Subscribers: mehdi_amini, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D42856
llvm-svn: 324242
PPCCTRLoops transform loops using mtctr/bdnz instructions if loop trip count is known and big enough to compensate for the cost of mtctr.
But if there is a loop exit edge which is known to be frequently taken (by builtin_expect or by PGO), we should not transform the loop to avoid the cost of mtctr instruction. Here is an example of a loop with hot exit edge:
for (unsigned i = 0; i < TripCount; i++) {
// do something
if (__builtin_expect(check(), 1))
break;
// do something
}
Differential Revision: https://reviews.llvm.org/D42637
llvm-svn: 324229
Summary:
Right now only the ProcResourceUnits that are directly referenced by
instructions are emitted. This change emits all of them, so that
analysis passes can use the information.
This has no functional impact. It typically adds a few entries (e.g. 4
for X86/haswell) to the generated ProcRes table.
Reviewers: gchatelet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42903
llvm-svn: 324228
The patch causes the failure of the test
compiler-rt/test/profile/Linux/counter_promo_nest.c
To unblock buildbot, revert the patch while investigation is in progress.
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324214
The commit rL308422 introduces a restriction for folding unconditional
branches. Specifically if empty block with unconditional branch leads to
header of the loop then elimination of this basic block is prohibited.
However it seems this condition is redundantly strict.
If elimination of this basic block does not introduce more back edges
then we can eliminate this block.
The patch implements this relax of restriction.
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: pacxx
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324208
We always created X86ISD::SHUF128 with a 64-bit element type so we can use isel patterns to detect a bitconvert to 32-bit to handle masking.
The test changes are because we also match the bitconvert even if there is no masking. This leads to unnecessary isel pattern, but it requires more multiclass hackery in tablegen to get rid of it.
llvm-svn: 324205
ScalarEvolution::isKnownPredicate invokes isLoopEntryGuardedByCond without check
that SCEV is available at entry point of the loop. It is incorrect and fixed by patch.
To bugs additionally fixed:
assert is moved after the check whether loop is not a nullptr.
Usage of isLoopEntryGuardedByCond in ScalarEvolution::isImpliedCondOperandsViaNoOverflow
is guarded by isAvailableAtLoopEntry.
Reviewers: sanjoy, mkazantsev, anna, dorit, reames
Reviewed By: mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42417
llvm-svn: 324204
When using the partial inliner, we might have attributes for forwarded
varargs, but the CodeExtractor does not create an empty argument
attribute set for regular arguments in that case, because it does not know
of the additional arguments. So in case we have attributes for VarArgs, we
also have to make sure we create (empty) attributes for all regular arguments.
This fixes PR36210.
llvm-svn: 324197
Summary:
This is a bit of a reimplementation the work done in
https://reviews.llvm.org/D41446, since that patch only really works for
tied operands of instructions, not aliases.
Instead of checking the constraints based on the matched instruction's opcode,
this patch uses the match-info's convert function to check the operand
constraints for that specific instruction/alias.
This is based on the matched operands for the instruction, not the
resulting opcode of the MCInst.
This patch adds the following enum/table to the *GenAsmMatcher.inc file:
enum {
Tie0_1_1,
Tie0_1_2,
Tie0_1_5,
...
};
const char TiedAsmOperandTable[][3] = {
/* Tie0_1_1 */ { 0, 1, 1 },
/* Tie0_1_2 */ { 0, 1, 2 },
/* Tie0_1_5 */ { 0, 1, 5 },
...
};
And it is referenced directly in the ConversionTable, like this:
static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][13] = {
...
{ CVT_95_addRegOperands, 1,
CVT_95_addRegOperands, 2,
CVT_Tied, Tie0_1_5,
CVT_95_addRegOperands, 6, CVT_Done },
...
The Tie0_1_5 (and corresponding table) encodes that:
* Result operand 0 is the operand to copy (which is e.g. done when
building up the operands to the MCInst in convertToMCInst())
* Asm operands 1 and 5 should be the same operands (which is checked
in checkAsmTiedOperandConstraints()).
Reviewers: olista01, rengolin, fhahn, craig.topper, echristo, apazos, dsanders
Reviewed By: olista01
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42293
llvm-svn: 324196
The type-shrinking logic in reduction detection, although narrow in scope, is
also rather ad-hoc, which has led to bugs (e.g., PR35734). This patch modifies
the approach to rely on the demanded bits and value tracking analyses, if
available. We currently perform type-shrinking separately for reductions and
other instructions in the loop. Long-term, we should probably think about
computing minimal bit widths in a more complete way for the loops we want to
vectorize.
PR35734
Differential Revision: https://reviews.llvm.org/D42309
llvm-svn: 324195