class types, dependent types, and namespaces. I had previously
weakened this invariant while working on parsing pseudo-destructor
expressions, but recent work in that area has made these changes
unnecessary.
llvm-svn: 97112
typedef int Int;
int *p;
p->Int::~Int();
This weakens the invariant that the only types in nested-name-specifiers are tag types (restricted to class types in C++98/03). However, we weaken this invariant as little as possible, accepting arbitrary types in nested-name-specifiers only when we're in a member access expression that looks like a pseudo-destructor expression.
llvm-svn: 96743
now cope with the destruction of types named as dependent templates,
e.g.,
y->template Y<T>::~Y()
Nominally, we implement C++0x [basic.lookup.qual]p6. However, we don't
follow the letter of the standard here because that would fail to
parse
template<typename T, typename U>
X0<T, U>::~X0() { }
properly. The problem is captured in core issue 339, which gives some
(but not enough!) guidance. I expect to revisit this code when the
resolution of 339 is clear, and/or we start capturing better source
information for DeclarationNames.
Fixes PR6152.
llvm-svn: 96367
that is in an anonymous namespace, give that function or variable
internal linkage.
This change models an oddity of the C++ standard, where names declared
in an anonymous namespace have external linkage but, because anonymous
namespace are really "uniquely-named" namespaces, the names cannot be
referenced from other translation units. That means that they have
external linkage for semantic analysis, but the only sensible
implementation for code generation is to give them internal
linkage. We now model this notion via the UniqueExternalLinkage
linkage type. There are several changes here:
- Extended NamedDecl::getLinkage() to produce UniqueExternalLinkage
when the declaration is in an anonymous namespace.
- Added Type::getLinkage() to determine the linkage of a type, which
is defined as the minimum linkage of the types (when we're dealing
with a compound type that is not a struct/class/union).
- Extended NamedDecl::getLinkage() to consider the linkage of the
template arguments and template parameters of function template
specializations and class template specializations.
- Taught code generation to rely on NamedDecl::getLinkage() when
determining the linkage of variables and functions, also
considering the linkage of the types of those variables and
functions (C++ only). Map UniqueExternalLinkage to internal
linkage, taking out the explicit checks for
isInAnonymousNamespace().
This fixes much of PR5792, which, as discovered by Anders Carlsson, is
actually the reason behind the pass-manager assertion that causes the
majority of clang-on-clang regression test failures. With this fix,
Clang-built-Clang+LLVM passes 88% of its regression tests (up from
67%). The specific numbers are:
LLVM:
Expected Passes : 4006
Expected Failures : 32
Unsupported Tests : 40
Unexpected Failures: 736
Clang:
Expected Passes : 1903
Expected Failures : 14
Unexpected Failures: 75
Overall:
Expected Passes : 5909
Expected Failures : 46
Unsupported Tests : 40
Unexpected Failures: 811
Still to do:
- Improve testing
- Check whether we should allow the presence of types with
InternalLinkage (in addition to UniqueExternalLinkage) given
variables/functions internal linkage in C++, as mentioned in
PR5792.
- Determine how expensive the getLinkage() calls are in practice;
consider caching the result in NamedDecl.
- Assess the feasibility of Chris's idea in comment #1 of PR5792.
llvm-svn: 95216
arguments. This both prevents meaningless checks on these arguments and ensures
that they are represented as an expression by the instantiation.
Cleaned up and added standard text to the relevant test case. Also started
adding tests for *rejected* cases. At least one FIXME here where (I think) we
allow something we shouldn't. More to come in the area of rejecting crazy
arguments with decent diagnostics. Suggestions welcome for still better
diagnostics on these errors!
llvm-svn: 94953
translation unit. This is temporary for function and block parameters;
template parameters can just stay this way, since Templates aren't
DeclContexts. This gives us the nice property that everything created
in a record DC should have access in C++.
llvm-svn: 94122
in a member access expression referring into the current instantiation
need not be resolved at template definition *if* the current
instantiation has any dependent base classes. Fixes PR6081.
llvm-svn: 93877
do not look into base classes if there are any dependent base
classes. Instead, note in the lookup result that we couldn't look into
any dependent bases. Use that new result kind to detect when this case
occurs, so that we can fall back to treating the type/value/etc. as a
member of an unknown specialization.
Fixes an issue where we were resolving lookup at template definition
time and then missing an ambiguity at template instantiation time.
llvm-svn: 93497
finds nothing), and the current instantiation has dependent base
classes, treat the qualified lookup as if it referred to an unknown
specialization. Fixes PR6031.
llvm-svn: 93433
name a template, when they occur in a base-specifier. This is one of
the (few) places where we know for sure that an identifier followed by
a '<' must be a template name, so we can diagnose and recover well:
test/SemaTemplate/dependent-base-classes.cpp:9:16: error: missing
'template'
keyword prior to dependent template name 'T::apply'
struct X1 : T::apply<U> { }; // expected-error{{missing 'template' ...
^
template
test/SemaTemplate/dependent-base-classes.cpp:12:13: error: unknown
template name
'vector'
struct X2 : vector<T> { }; // expected-error{{unknown template name
'vector'}}
^
2 diagnostics generated.
llvm-svn: 93257
context, do not attempt typo correction. This harms performance (as
Abramo noted) and can cause some amusing errors, as in this new
testcase.
llvm-svn: 93240
were performing name lookup for template names in C/ObjC and always
finding nothing. Turn off such lookup unless we're in C++ mode, along
with the check that determines whether the given identifier is a
"current class name", and assert that we don't make this mistake
again.
llvm-svn: 93207
(C++ [temp.mem]p5-6), which involves template argument deduction based
on the type named, e.g., given
struct X { template<typename T> operator T*(); } x;
when we call
x.operator int*();
we perform template argument deduction to determine that T=int. This
template argument deduction is needed for template specialization and
explicit instantiation, e.g.,
template<> X::operator float*() { /* ... */ }
and when calling or otherwise naming a conversion function (as in the
first example).
This fixes PR5742 and PR5762, although there's some remaining ugliness
that's causing out-of-line definitions of conversion function
templates to fail. I'll look into that separately.
llvm-svn: 93162
typo.cpp:27:8: error: no template named 'basic_sting' in namespace 'std';
did you mean 'basic_string'?
std::basic_sting<char> b2;
~~~~~^~~~~~~~~~~
basic_string
llvm-svn: 92348
explicitly-specified template arguments are enough to determine the
instantiation, and either template argument deduction fails or is not
performed in that context, we can resolve the template-id down to a
function template specialization (so sayeth C++0x
[temp.arg.explicit]p3). Fixes PR5811.
llvm-svn: 91852
there's nothing interesting we can say now that we're correctly not requiring
the qualifier to name a known base class in dependent contexts.
Require scope specifiers on member access expressions to name complete types
if they're not dependent; delay lookup when they are dependent.
Use more appropriate diagnostics when qualified implicit member access
expressions find declarations from unrelated classes.
llvm-svn: 90289
implicit member access to a specific declaration, go ahead and create
it as a DeclRefExpr or a MemberExpr (with implicit CXXThisExpr base) as
appropriate. Otherwise, create an UnresolvedMemberExpr or
DependentScopeMemberExpr with a null base expression.
By representing implicit accesses directly in the AST, we get the ability
to correctly delay the decision about whether it's actually an instance
member access or not until resolution is complete. This permits us
to correctly avoid diagnosing the 'problem' of 'MyType::foo()'
where the relationship to the type isn't really known until instantiation.
llvm-svn: 90266
the linkage of a declaration. Switch the lame (and completely wrong)
NamedDecl::hasLinkage() over to using the new NamedDecl::getLinkage(),
along with the "can this declaration be a template argument?" check
that started all of this.
Fixes -fsyntax-only for PR5597.
llvm-svn: 89891
function templates (in C++98), friend function templates, and
out-of-line definitions of members of class templates.
Also handles merging of default template arguments from previous
declarations of function templates, for C++0x. However, we don't yet
make use of those default template arguments.
llvm-svn: 89872
DependentScopeDeclRefExpr support storing templateids. Unite the common
code paths between ActOnDeclarationNameExpr and ActOnTemplateIdExpr.
This gets us to a point where we don't need to store function templates in
the AST using TemplateNames, which is critical to ripping out OverloadedFunction.
Also resolves a few FIXMEs.
llvm-svn: 89785
complaint to a warning and providing a helpful node in the case where
the "template<>" header is redundant because the corresponding
template-id refers to an explicit specialization. C++0x might still
change this behavior, and existing practice is all over the place on
the number of "template<>" headers actually needed.
llvm-svn: 89651