relocation entries it applies.
Prior to this patch, RuntimeDyldImpl::resolveExternalSymbols discarded
relocations for external symbols once they had been applied. This causes issues
if the client calls MCJIT::finalizeLoadedModules more than once, and updates the
location of any symbols in between (e.g. by calling MCJIT::mapSectionAddress).
No test case yet: None of our in-tree memory managers support moving sections
around. I'll have to hack up a dummy memory manager before I can write a unit
test.
Fixes <rdar://problem/16764378>
llvm-svn: 208257
The loop stream detector (LSD) on modern Intel cores, which optimizes the
execution of small loops, has limits on the number of taken branches in
addition to uop-count limits (modern AMD cores have similar limits).
Unfortunately, at the IR level, estimating the number of branches that will be
taken is difficult. For one thing, it strongly depends on later passes (block
placement, etc.). The original implementation took a conservative approach and
limited the maximal BB DFS depth of the loop. However, fairly-extensive
benchmarking by several of us has revealed that this is the wrong approach. In
fact, there are zero known cases where the branch limit prevents a detrimental
unrolling (but plenty of cases where it does prevent beneficial unrolling).
While we could improve the current branch counting logic by incorporating
branch probabilities, this further complication seems unjustified without a
motivating regression. Instead, unless and until a regression appears, the
branch counting will be removed.
llvm-svn: 208255
C++. This seems like a pointless (and indeed harmful) restriction to me, so
I've suggested removing it to -core and disabled this diagnostic by default.
llvm-svn: 208254
Given a FMA family (e.g., 213, 231), not all the variants (i.e., register or
memory) are commutable.
E.g., for the 213 family (with the syntax src1, src2, src3):
fmaXXX213 A, B, reg3/mem3 == fmaXXX213 B, A, reg3/mem3
Now consider the 231 family:
fmaXXX231 A, B, reg3 == fmaXXX231 A, reg3, B
But
fmaXXX231 A, B, mem3 != fmaXXX231 A, mem3, B
Indeed, mem3 cannot be the second argument of the memory variant of fmaXXX231.
Working on a reduced test case!
<rdar://problem/16800495>
llvm-svn: 208252
OnDiskHashTable::insert() calls the Item constructor via placement new, but
nothing called the destructor. This matters in cases when the Info template
parameter has key_type or data_type typedefs that have a destructor, for
example like IdentifierIndexWriterTrait in clang's GlobalModuleIndex.cpp.
This fixes a 5-year old bug that's been around since the OnDiskHashTable code
was added in r64192. Bug found by LSan!
llvm-svn: 208243
$qC from debugserver now returns the current thread's thread-id (and, like $?, will set a current thread if one is not already selected). Previously it was returning the current process id.
lldb will now query $qProcessInfo to retrieve the process id. The process id is now cached lazily and reset like other cached values. Retrieval of the process id will fall back to the old $qC method for vendor==Apple and os==iOS if the qProcessInfo retrieval fails.
Added a gdb remote protocol-level test to verify that $qProcessInfo reports a valid process id after launching a process, while the process is in the initial stopped state. Verifies the given process id is a currently valid process on host OSes for which we know how to check (MacOSX, Linux, {Free/Net}BSD). Ignores the live process check for OSes where we don't know how to do this. (I saw no portable way to do this in stock Python without pulling in other libs).
llvm-svn: 208241
When reducing the bitwidth of a comparison against a constant, the
original setcc's result type was used, which was incorrect.
No test since I don't think any other in tree targets change the
bitwidth of the setcc type depending on the bitwidth of the compared
type.
llvm-svn: 208236
To compute the dimensions of the array in a unique way, we split the
delinearization analysis in three steps:
- find parametric terms in all memory access functions
- compute the array dimensions from the set of terms
- compute the delinearized access functions for each dimension
The first step is executed on all the memory access functions such that we
gather all the patterns in which an array is accessed. The second step reduces
all this information in a unique description of the sizes of the array. The
third step is delinearizing each memory access function following the common
description of the shape of the array computed in step 2.
This rewrite of the delinearization pass also solves a problem we had with the
previous implementation: because the previous algorithm was by induction on the
structure of the SCEV, it would not correctly recognize the shape of the array
when the memory access was not following the nesting of the loops: for example,
see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll
; void foo(long n, long m, long o, double A[n][m][o]) {
;
; for (long i = 0; i < n; i++)
; for (long j = 0; j < m; j++)
; for (long k = 0; k < o; k++)
; A[i][k][j] = 1.0;
Starting with this patch we no longer delinearize access functions that do not
contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll
;; for (long int i = 0; i < 100; i++)
;; for (long int j = 0; j < 100; j++) {
;; A[2*i - 4*j] = i;
;; *B++ = A[6*i + 8*j];
these accesses will not be delinearized as the upper bound of the loops are
constants, and their access functions do not contain SCEVUnknown parameters.
llvm-svn: 208232
Previously we calculated the shift amount based upon DataLayout::getTypeAllocSizeInBits.
This will only work for legal types - types such as i24 that are created as part of
structs for bitfields will return "32" from that function. Change to using
getTypeSizeInBits.
It turns out that AArch64 didn't run across this problem because it always returned
[1 x i64] as the type for a bitfield, whereas ARM64 returns i64 so goes down this
(better, but wrong) codepath.
llvm-svn: 208231
default architecture for reasonable modern x86 processors, actually be
modern. This processor model should essentially be "tuned" for modern
x86 chips as much as possible without undue penalties on any specific
architecture. Previously we weren't even using the nice scheduling
models. There are a few other tweaks needed here, but this change at
least I have benchmarked across a decent swatch of chips (intel's
clovertown, westmere, and sandybridge; amd's istanbul) and seen no
significant regressions.
If anyone has suggested ways to test this, just let me know. Somewhat
alarmingly, no existing tests failed.
llvm-svn: 208230
While constructing ObjC Interface types we might create the declaration
of some normal C++ types, thus adding things to the ReplaceMap. Make
sure we process the ReplaceMap after the ObjC interfaces.
In theory we know at this point, since we're at the end of the TU, that
we won't be upgrading any declarations to definitions, so we could just
construct non-temporary nodes, but that would require extra state in
CGDebugInfo to conditionalize the creation of declaration nodes which
seems annoying/more work than is appropriate.
llvm-svn: 208226
this patch disables the dead register elimination pass and the load/store pair
optimization pass at -O0. The ILP optimizations don't require the optimization
level to be checked because the call to addILPOpts is predicated with the
necessary check. The AdvSIMDScalar pass is disabled by default at all
optimization levels. This patch leaves that pass disabled by default.
Also, move command-line options into ARM64TargetMachine.cpp and add a few
additional flags to aid in debugging. This fixes an issue with the
-debug-pass=Structure flag where passes were printed, but not actually run
(i.e., AdvSIMDScalar pass).
llvm-svn: 208223
r154191 switched to atexit() instead of global destructors, so the intent
was probably to check for _GLOBAL__D_a _not_ being in the output. There already
is a line for _ZN3barD1Ev further up, so just remove the CH_ECK line referring
to that.
The only circumstance in which clang emits _GLOBAL__D_a destructor symbols is
for -fapple-kext, and that is tested by test/CodeGenCXX/cxx-apple-kext.cpp.
llvm-svn: 208222
Summary:
These processors will only be available for the integrated assembler at
first (CodeGen will emit a fatal error saying they are not implemented).
The intention is to work through the existing instructions and correctly
annotate the ISA they were added in so that we have a sufficiently good
base to start MIPS64r6 development. MIPS64r6 removes/re-encodes certain
instructions and I believe it is best to define ISA's using set-union's
as far as possible rather than using set-subtraction.
Reviewers: vmedic
Subscribers: emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D3569
llvm-svn: 208221
Summary: The initial support for NaN2008 was added to the back-end in r206396.
Reviewers: atanasyan
Reviewed By: atanasyan
Differential Revision: http://reviews.llvm.org/D3448
llvm-svn: 208220
This is a followup to r208171, where a call to make_unique was
disambiguated for MSVC. Disambiguate two more calls, and remove the
comment about it since this is what we do everywhere.
llvm-svn: 208219
When performing a scalar comparison that feeds into a vector select,
it's actually better to do the comparison on the vector side: the
scalar route would be "CMP -> CSEL -> DUP", the vector is "CM -> DUP"
since the vector comparisons are all mask based.
llvm-svn: 208210
Summary:
One small functional change. The recently added PAUSE instruction now has
the HasStdEnc predicate which was accidentally removed by a Requires<>.
Depends on D3640
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3641
llvm-svn: 208209