A new setting enable-synthetic-value is provided on the target to disable this behavior.
There also is a new GetNonSyntheticValue() API call on SBValue to go back from synthetic to non-synthetic. There is no call to go from non-synthetic to synthetic.
The test suite has been changed accordingly.
Fallout from changes to type searching: an hack has to be played to make it possible to use maps that contain std::string due to the special name replacement operated by clang
Fixing a test case that was using libstdcpp instead of libc++ - caught as a consequence of said changes to type searching
llvm-svn: 153495
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
Adding a test case that checks that we do not complete types before due time. This should help us track cases similar to the cascading data formatters.
llvm-svn: 153363
This is the feature that allowed the user to have things like:
class Base { ... };
class Derived : public Base { ... };
and have formatters defined for Base work automatically for Derived.
This feature turned out to be too expensive since it requires completing types.
This patch takes care of removing cascading (other than typedefs chain cascading), updating the test suite accordingly, and adding required Cocoa class names to keep the AppKit formatters working
llvm-svn: 153272
to pass to the toolchain in order to build the inferior programs to be run/debugged
duirng the test suite. The architecture might dictate some special CFLAGS which are
more easily specified in a central place (like the command line) instead of inside
make rules.
For Example,
./dotest.py -v -r /shared/phone -A armv7 -E "-isysroot your_sdk_root" functionalities/watchpoint/hello_watchpoint
will relocate the particular test directory ('functionalities/watchpoint/hello_watchpoint' in this case) to a
new directory named '/shared/phone'. The particular incarnation of the architecture-compiler combination of the
test support files are therefore to be found under:
/shared/phone.arch=armv7-compiler=clang/functionalities/watchpoint/hello_watchpoint
The building of the inferior programs under testing is now working.
The actual launching/debugging of the inferior programs are not yet working,
neither is the setting of a watchpoint on the phone.
llvm-svn: 153070
Changes to synthetic children:
- the update(self): function can now (optionally) return a value - if it returns boolean value True, ValueObjectSyntheticFilter will not clear its caches across stop-points
this should allow better performance for Python-based synthetic children when one can be sure that the child ValueObjects have not changed
- making a difference between a synthetic VO and a VO with a synthetic value: now a ValueObjectSyntheticFilter will not return itself as its own synthetic value, but will (correctly)
claim to itself be synthetic
- cleared up the internal synthetic children architecture to make a more consistent use of pointers and references instead of shared pointers when possible
- major cleanup of unnecessary #include, data and functions in ValueObjectSyntheticFilter itself
- removed the SyntheticValueType enum and replaced it with a plain boolean (to which it was equivalent in the first place)
Some clean ups to the summary generation code
Centralized the code that clears out user-visible strings and data in ValueObject
More efficient summaries for libc++ containers
llvm-svn: 153061
rdar://problem/11034702
For the time being, skip the relevant disassemble action which resulted in a crash.
Minor modification (print out format) to the existing TestDisassembleRawBytes.py test file.
llvm-svn: 152822
This has been done for those summaries where the difference is only cosmetic (e.g. naming things as items instead of values, ...)
The LLDB output style has been preserved when it provides more information (e.g. telling the type as well as the value of an NSNumber)
Test cases have been updated to reflect the updated output style where necessary
llvm-svn: 152592
std::string has a summary provider
std::vector std::list and std::map have both a summary and a synthetic children provider
Given the usage of a custom namespace (std::__1::classname) for the implementation of libc++, we keep both libstdcpp and libc++ formatters enabled at the same time since that raises no conflicts and enabled for seamless transition between the two
The formatters for libc++ reside in a libcxx category, and are loaded from libcxx.py (to be found in examples/synthetic)
The formatters-stl test cases have been divided to be separate for libcxx and libstdcpp. This separation is necessary because
(a) we need different compiler flags for libc++ than for libstdcpp
(b) libc++ inlines a lot more than libstdcpp and some code changes were required to accommodate this difference
llvm-svn: 152570
to be debugged while running the test suite. By default, compilers is set to ['clang'] and can be overridden
using the "-C compilerA^compilerB" option.
llvm-svn: 152367
when building the inferior programs.
Example:
/Volumes/data/lldb/svn/ToT/test $ ./dotest.py -v functionalities/watchpoint
LLDB build dir: /Volumes/data/lldb/svn/ToT/build/Debug
LLDB-123
Path: /Volumes/data/lldb/svn/ToT
URL: https://johnny@llvm.org/svn/llvm-project/lldb/trunk
Repository Root: https://johnny@llvm.org/svn/llvm-project
Repository UUID: 91177308-0d34-0410-b5e6-96231b3b80d8
Revision: 152244
Node Kind: directory
Schedule: normal
Last Changed Author: gclayton
Last Changed Rev: 152244
Last Changed Date: 2012-03-07 13:03:09 -0800 (Wed, 07 Mar 2012)
Session logs for test failures/errors/unexpected successes will go into directory '2012-03-08-16_43_51'
Command invoked: python ./dotest.py -v functionalities/watchpoint
Configuration: arch=x86_64
----------------------------------------------------------------------
Collected 21 tests
1: test_hello_watchlocation_with_dsym (TestWatchLocation.HelloWatchLocationTestCase)
Test watching a location with '-x size' option. ... ok
2: test_hello_watchlocation_with_dwarf (TestWatchLocation.HelloWatchLocationTestCase)
Test watching a location with '-x size' option. ... ok
3: test_hello_watchpoint_with_dsym_using_watchpoint_set (TestMyFirstWatchpoint.HelloWatchpointTestCase)
Test a simple sequence of watchpoint creation and watchpoint hit. ... ok
4: test_hello_watchpoint_with_dwarf_using_watchpoint_set (TestMyFirstWatchpoint.HelloWatchpointTestCase)
Test a simple sequence of watchpoint creation and watchpoint hit. ... ok
5: test_watchpoint_multiple_threads_with_dsym (TestWatchpointMultipleThreads.WatchpointForMultipleThreadsTestCase)
Test that lldb watchpoint works for multiple threads. ... ok
6: test_watchpoint_multiple_threads_with_dwarf (TestWatchpointMultipleThreads.WatchpointForMultipleThreadsTestCase)
Test that lldb watchpoint works for multiple threads. ... ok
7: test_rw_disable_after_first_stop__with_dwarf (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint but disable it after the first stop. ... ok
8: test_rw_disable_after_first_stop_with_dsym (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint but disable it after the first stop. ... ok
9: test_rw_disable_then_enable_with_dsym (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint, disable initially, then enable it. ... ok
10: test_rw_disable_then_enable_with_dwarf (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint, disable initially, then enable it. ... ok
11: test_rw_watchpoint_delete_with_dsym (TestWatchpointCommands.WatchpointCommandsTestCase)
Test delete watchpoint and expect not to stop for watchpoint. ... ok
12: test_rw_watchpoint_delete_with_dwarf (TestWatchpointCommands.WatchpointCommandsTestCase)
Test delete watchpoint and expect not to stop for watchpoint. ... ok
13: test_rw_watchpoint_set_ignore_count_with_dsym (TestWatchpointCommands.WatchpointCommandsTestCase)
Test watchpoint ignore count and expect to not to stop at all. ... ok
14: test_rw_watchpoint_set_ignore_count_with_dwarf (TestWatchpointCommands.WatchpointCommandsTestCase)
Test watchpoint ignore count and expect to not to stop at all. ... ok
15: test_rw_watchpoint_with_dsym (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint and expect to stop two times. ... ok
16: test_rw_watchpoint_with_dwarf (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint and expect to stop two times. ... ok
17: test_watchpoint_cond_with_dsym (TestWatchpointConditionCmd.WatchpointConditionCmdTestCase)
Test watchpoint condition. ... ok
18: test_watchpoint_cond_with_dwarf (TestWatchpointConditionCmd.WatchpointConditionCmdTestCase)
Test watchpoint condition. ... ok
19: test_watchlocation_with_dsym_using_watchpoint_set (TestWatchLocationWithWatchSet.WatchLocationUsingWatchpointSetTestCase)
Test watching a location with 'watchpoint set expression -w write -x size' option. ... ok
20: test_watchlocation_with_dwarf_using_watchpoint_set (TestWatchLocationWithWatchSet.WatchLocationUsingWatchpointSetTestCase)
Test watching a location with 'watchpoint set expression -w write -x size' option. ... ok
21: test_error_cases_with_watchpoint_set (TestWatchpointSetErrorCases.WatchpointSetErrorTestCase)
Test error cases with the 'watchpoint set' command. ... ok
----------------------------------------------------------------------
Ran 21 tests in 74.590s
OK
Configuration: arch=i386
----------------------------------------------------------------------
Collected 21 tests
1: test_hello_watchlocation_with_dsym (TestWatchLocation.HelloWatchLocationTestCase)
Test watching a location with '-x size' option. ... ok
2: test_hello_watchlocation_with_dwarf (TestWatchLocation.HelloWatchLocationTestCase)
Test watching a location with '-x size' option. ... ok
3: test_hello_watchpoint_with_dsym_using_watchpoint_set (TestMyFirstWatchpoint.HelloWatchpointTestCase)
Test a simple sequence of watchpoint creation and watchpoint hit. ... ok
4: test_hello_watchpoint_with_dwarf_using_watchpoint_set (TestMyFirstWatchpoint.HelloWatchpointTestCase)
Test a simple sequence of watchpoint creation and watchpoint hit. ... ok
5: test_watchpoint_multiple_threads_with_dsym (TestWatchpointMultipleThreads.WatchpointForMultipleThreadsTestCase)
Test that lldb watchpoint works for multiple threads. ... ok
6: test_watchpoint_multiple_threads_with_dwarf (TestWatchpointMultipleThreads.WatchpointForMultipleThreadsTestCase)
Test that lldb watchpoint works for multiple threads. ... ok
7: test_rw_disable_after_first_stop__with_dwarf (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint but disable it after the first stop. ... ok
8: test_rw_disable_after_first_stop_with_dsym (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint but disable it after the first stop. ... ok
9: test_rw_disable_then_enable_with_dsym (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint, disable initially, then enable it. ... ok
10: test_rw_disable_then_enable_with_dwarf (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint, disable initially, then enable it. ... ok
11: test_rw_watchpoint_delete_with_dsym (TestWatchpointCommands.WatchpointCommandsTestCase)
Test delete watchpoint and expect not to stop for watchpoint. ... ok
12: test_rw_watchpoint_delete_with_dwarf (TestWatchpointCommands.WatchpointCommandsTestCase)
Test delete watchpoint and expect not to stop for watchpoint. ... ok
13: test_rw_watchpoint_set_ignore_count_with_dsym (TestWatchpointCommands.WatchpointCommandsTestCase)
Test watchpoint ignore count and expect to not to stop at all. ... ok
14: test_rw_watchpoint_set_ignore_count_with_dwarf (TestWatchpointCommands.WatchpointCommandsTestCase)
Test watchpoint ignore count and expect to not to stop at all. ... ok
15: test_rw_watchpoint_with_dsym (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint and expect to stop two times. ... ok
16: test_rw_watchpoint_with_dwarf (TestWatchpointCommands.WatchpointCommandsTestCase)
Test read_write watchpoint and expect to stop two times. ... ok
17: test_watchpoint_cond_with_dsym (TestWatchpointConditionCmd.WatchpointConditionCmdTestCase)
Test watchpoint condition. ... ok
18: test_watchpoint_cond_with_dwarf (TestWatchpointConditionCmd.WatchpointConditionCmdTestCase)
Test watchpoint condition. ... ok
19: test_watchlocation_with_dsym_using_watchpoint_set (TestWatchLocationWithWatchSet.WatchLocationUsingWatchpointSetTestCase)
Test watching a location with 'watchpoint set expression -w write -x size' option. ... ok
20: test_watchlocation_with_dwarf_using_watchpoint_set (TestWatchLocationWithWatchSet.WatchLocationUsingWatchpointSetTestCase)
Test watching a location with 'watchpoint set expression -w write -x size' option. ... ok
21: test_error_cases_with_watchpoint_set (TestWatchpointSetErrorCases.WatchpointSetErrorTestCase)
Test error cases with the 'watchpoint set' command. ... ok
----------------------------------------------------------------------
Ran 21 tests in 67.059s
OK
llvm-svn: 152357
This takes two important changes:
- Calling blocks is now supported. You need to
cast their return values, but that works fine.
- We now can correctly run JIT-compiled
expressions that use floating-point numbers.
Also, we have taken a fix that allows us to
ignore access control in Objective-C as in C++.
llvm-svn: 152286
expression command doesn't handle xmm or stmm registers...
o Update ClangASTContext::GetBuiltinTypeForEncodingAndBitSize() to now handle eEncodingVector.
o Modify RegisterValue::SetFromMemoryData() to fix the subtle error due to unitialized variables.
o Add a test file for "expr $xmm0".
llvm-svn: 152190
Add SBFrame::IsEqual(const SBFrame &that) method and export it to the Python binding.
Alos add a test case test_frame_api_IsEqual() to TestFrames.py file.
llvm-svn: 152050
fixed a few potential NULL-pointer derefs in ValueObject
we have a way to provide docstrings for properties we add to the SWIG layer - a few of these properties have a docstring already, more will come in future commits
added a new bunch of properties to SBData to make it more natural and Python-like to access the data they contain
llvm-svn: 151962
so that the expression parser can look up members
of anonymous structs correctly. This meant creating
all the proper IndirectFieldDecls in each Record
after it has been completely populated with members.
llvm-svn: 151868
(b) fixes and improvements to the formatters for NSDate and NSString
(c) adding an introspection formatter for NSCountedSet
(d) making the Objective-C formatters test cases pass on both 64 and 32 bit
one of the test cases is marked as expected failure on i386 - support needs to be added to the LLDB core for it to pass
llvm-svn: 151826
2) providing an updated list of tagged pointers values for the objc_runtime module - hopefully this one is final
3) changing ValueObject::DumpValueObject to use an Options class instead of providing a bulky list of parameters to pass around
this change had been laid out previously, but some clients of DumpValueObject() were still using the old prototype and some arguments
were treated in a special way and passed in directly instead of through the Options class
4) providing new GetSummaryAsCString() and GetValueAsCString() calls in ValueObject that are passed a formatter object and a destination string
and fill the string by formatting themselves using the formatter argument instead of the default for the current ValueObject
5) removing the option to have formats and summaries stick to a variable for the current stoppoint
after some debate, we are going with non-sticky: if you say frame variable --format hex foo, the hex format will only be applied to the current command execution and not stick when redisplaying foo
the other option would be full stickiness, which means that foo would be formatted as hex for its whole lifetime
we are open to suggestions on what feels "natural" in this regard
llvm-svn: 151801
a) adds a Python summary provider for NSDate
b) changes the initialization for ScriptInterpreter so that we are not passing a bulk of Python-specific function pointers around
c) provides a new ScriptInterpreterObject class that allows for ref-count safe wrapping of scripting objects on the C++ side
d) contains much needed performance improvements:
1) the pointer to the Python function generating a scripted summary is now cached instead of looked up every time
2) redundant memory reads in the Python ObjC runtime wrapper are eliminated
3) summaries now use the m_summary_str in ValueObject to store their data instead of passing around ( == copying) an std::string object
e) contains other minor fixes, such as adding descriptive error messages for some cases of summary generation failure
llvm-svn: 151703
The formatter for NSString is an improved version of the one previously shipped as an example, the others are new in design and implementation.
A more robust and OO-compliant Objective-C runtime wrapper is provided for runtime versions 1 and 2 on 32 and 64 bit.
The formatters are contained in a category named "AppKit", which is not enabled at startup.
llvm-svn: 151301
The formatter for NSString is an improved version of the one previously shipped as an example, the others are new in design and implementation.
A more robust and OO-compliant Objective-C runtime wrapper is provided for runtime versions 1 and 2 on 32 and 64 bit.
The formatters are contained in a category named "AppKit", which is not enabled at startup.
llvm-svn: 151299
Objective-C classes. This allows LLDB to find
ivars declared in class extensions in modules other
than where the debugger is currently stopped (we
already supported this when the debugger was
stopped in the same module as the definition).
This involved the following main changes:
- The ObjCLanguageRuntime now knows how to hunt
for the authoritative version of an Objective-C
type. It looks for the symbol indicating a
definition, and then gets the type from the
module containing that symbol.
- ValueObjects now report their type with a
potential override, and the override is set if
the type of the ValueObject is an Objective-C
class or pointer type that is defined somewhere
other than the original reported type. This
means that "frame variable" will always use the
complete type if one is available.
- The ClangASTSource now looks for the complete
type when looking for ivars. This means that
"expr" will always use the complete type if one
is available.
- I added a testcase that verifies that both
"frame variable" and "expr" work.
llvm-svn: 151214
Adding new API calls to SBValue to be able to retrieve the associated formatters
Some refactoring to FormatNavigator::Get() in order to shrink its size down to more manageable terms (a future, massive, refactoring effort will still be needed)
Test cases added for the above
llvm-svn: 150784
DataExtractor::Dump() needs to supply the correct cursor when delegating to the child DataExtractor::Dump() calls.
Add a regression test file.
rdar://problem/10872908
llvm-svn: 150729
with subcommand 'expression' and 'variable'. The first subcommand is for supplying an expression to
be evaluated into an address to watch for, while the second is for watching a variable.
'watchpoint set expression' is a raw command, which means that you need to use the "--" option terminator
to end the '-w' or '-x' option processing and to start typing your expression.
Also update several test cases to comply and add a couple of test cases into TestCompletion.py,
in particular, test that 'watchpoint set ex' completes to 'watchpoint set expression ' and that
'watchpoint set var' completes to 'watchpoint set variable '.
llvm-svn: 150109
the '-e' option (for watching of an address) to be present.
Update some existing test cases with the required option and add some more test cases.
Since the '-v' option takes <variable-name> and the '-e' option takes <expr> as the command arg,
the existing infrastructure for generating the option usage can produce confusing help message,
like:
watchpoint set -e [-w <watch-type>] [-x <byte-size>] <variable-name | expr>
watchpoint set -v [-w <watch-type>] [-x <byte-size>] <variable-name | expr>
The solution adopted is to provide an extra member field to the struct CommandArgumentData called
(uint32_t)arg_opt_set_association, whose purpose is to link this particular argument data with some
option set(s). Also modify the signature of CommandObject::GetFormattedCommandArguments() to:
GetFormattedCommandArguments (Stream &str, uint32_t opt_set_mask = LLDB_OPT_SET_ALL)
it now takes an additional opt_set_mask which can be used to generate a filtered formatted command
args for help message.
Options::GenerateOptionUsage() impl is modified to call the GetFormattedCommandArguments() appropriately.
So that the help message now looks like:
watchpoint set -e [-w <watch-type>] [-x <byte-size>] <expr>
watchpoint set -v [-w <watch-type>] [-x <byte-size>] <variable-name>
rdar://problem/10703256
llvm-svn: 150032
interface (.i) files for each class.
Changed the FindFunction class from:
uint32_t
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
uint32_t
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
To:
lldb::SBSymbolContextList
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
lldb::SBSymbolContextList
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
This makes the API easier to use from python. Also added the ability to
append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList.
Exposed properties for lldb.SBSymbolContextList in python:
lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list
lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list
lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list
lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list
lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list
lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list
This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...)
and then the result can be used to extract the desired information:
sc_list = lldb.target.FindFunctions("erase")
for function in sc_list.functions:
print function
for symbol in sc_list.symbols:
print symbol
Exposed properties for the lldb.SBSymbolContext objects in python:
lldb.SBSymbolContext.module => lldb.SBModule
lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit
lldb.SBSymbolContext.function => lldb.SBFunction
lldb.SBSymbolContext.block => lldb.SBBlock
lldb.SBSymbolContext.line_entry => lldb.SBLineEntry
lldb.SBSymbolContext.symbol => lldb.SBSymbol
Exposed properties for the lldb.SBBlock objects in python:
lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains
lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block
lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block
lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column
lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents
lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block)
lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned
lldb.SBBlock.ranges => an array or all address ranges for this block
lldb.SBBlock.num_ranges => the number of address ranges for this blcok
SBFunction objects can now get the SBType and the SBBlock that represents the
top scope of the function.
SBBlock objects can now get the variable list from the current block. The value
list returned allows varaibles to be viewed prior with no process if code
wants to check the variables in a function. There are two ways to get a variable
list from a SBBlock:
lldb::SBValueList
SBBlock::GetVariables (lldb::SBFrame& frame,
bool arguments,
bool locals,
bool statics,
lldb::DynamicValueType use_dynamic);
lldb::SBValueList
SBBlock::GetVariables (lldb::SBTarget& target,
bool arguments,
bool locals,
bool statics);
When a SBFrame is used, the values returned will be locked down to the frame
and the values will be evaluated in the context of that frame.
When a SBTarget is used, global an static variables can be viewed without a
running process.
llvm-svn: 149853
LLVM/Clang. This brings in several fixes, including:
- Improvements in the Just-In-Time compiler's
allocation of memory: the JIT now allocates
memory in chunks of sections, improving its
ability to generate relocations. I have
revamped the RecordingMemoryManager to reflect
these changes, as well as to get the memory
allocation and data copying out fo the
ClangExpressionParser code. Jim Grosbach wrote
the updates to the JIT on the LLVM side.
- A new ExternalASTSource interface to allow LLDB to
report accurate structure layout information to
Clang. Previously we could only report the sizes
of fields, not their offsets. This meant that if
data structures included field alignment
directives, we could not communicate the necessary
alignment to Clang and accesses to the data would
fail. Now we can (and I have update the relevant
test case). Thanks to Doug Gregor for implementing
the Clang side of this fix.
- The way Objective-C interfaces are completed by
Clang has been made consistent with RecordDecls;
with help from Doug Gregor and Greg Clayton I have
ensured that this still works.
- I have eliminated all local LLVM and Clang patches,
committing the ones that are still relevant to LLVM
and Clang as needed.
I have tested the changes extensively locally, but
please let me know if they cause any trouble for you.
llvm-svn: 149775
instead of the __repr__. __repr__ is a function that should return an
expression that can be used to recreate an python object and we were using
it to just return a human readable string.
Fixed a crasher when using the new implementation of SBValue::Cast(SBType).
Thread hardened lldb::SBValue and lldb::SBWatchpoint and did other general
improvements to the API.
Fixed a crasher in lldb::SBValue::GetChildMemberWithName() where we didn't
correctly handle not having a target.
llvm-svn: 149743
When used in conjunction with --inline-children, this option will cause the names of the values to be omitted from the output. This can be beneficial in cases such as vFloat, where it will compact the representation from
([0]=1,[1]=2,[2]=3,[3]=4) to (1, 2, 3, 4).
Added a test case to check that the new option works correctly.
Also took some time to revisit SummaryFormat and related classes and tweak them for added readability and maintainability.
Finally, added a new class name to which the std::string summary should be applied.
llvm-svn: 149644
should use Target::ReadMemory() call to read from the file section offset address.
Also remove the @expectedFailure decorator..
'target variable' command fails if the target program has been run
rdar://problem/9763907
llvm-svn: 149629
o Symbols.cpp:
Emit a warning message when dSYM does not match the binary.
o warnings/uuid:
Added regression test case.
o lldbtest.py:
Modified to allow test case writer to demand that the build command does not begin
with a clean first; required to make TestUUIDMismatchWanring.py work.
rdar://problem/10515708
llvm-svn: 149465
We previously weren't catching that SBValue::Cast(...) would crash
if we had an invalid (empty) SBValue object.
Cleaned up the SBType API a bit.
llvm-svn: 149447
environment variable before starting the test runner which executes the test cases and
may spawn child processes. An example:
./dotest.py -u MY_ENV1 -u MY_ENV2 -v -p TestWatchLocationWithWatchSet.py
llvm-svn: 149304
Also add test cases for watching a variable as well as a location expressed as an expression.
o TestMyFirstWatchpoint.py:
Modified to test "watchpoint set -w write global".
o TestWatchLocationWithWatchSet.py:
Added to test "watchpoint set -w write -x 1 g_char_ptr + 7" where a contrived example program
with several threads is supposed to only access the array index within the range [0..6], but
there's some misbehaving thread writing past the range.
rdar://problem/10701761
llvm-svn: 149280
to find the possible session directories with names starting with %Y-%m-%d- (for example,
2012-01-23-) and employs the one with the latest timestamp. For example:
johnny:/Volumes/data/lldb/svn/latest/test $ ./redo.py
Using session dir path: /Volumes/data/lldb/svn/latest/test/2012-01-23-11_28_30
adding filterspec: DisassembleRawDataTestCase.test_disassemble_raw_data
Running ./dotest.py -C clang -v -t -f DisassembleRawDataTestCase.test_disassemble_raw_data
LLDB build dir: /Volumes/data/lldb/svn/latest/build/Debug
LLDB-108
Path: /Volumes/data/lldb/svn/latest
URL: https://johnny@llvm.org/svn/llvm-project/lldb/trunk
Repository Root: https://johnny@llvm.org/svn/llvm-project
Repository UUID: 91177308-0d34-0410-b5e6-96231b3b80d8
Revision: 148710
Node Kind: directory
Schedule: normal
Last Changed Author: gclayton
Last Changed Rev: 148650
Last Changed Date: 2012-01-21 18:55:08 -0800 (Sat, 21 Jan 2012)
Session logs for test failures/errors/unexpected successes will go into directory '2012-01-23-17_04_48'
Command invoked: python ./dotest.py -C clang -v -t -f DisassembleRawDataTestCase.test_disassemble_raw_data
Configuration: compiler=clang
----------------------------------------------------------------------
Collected 1 test
Change dir to: /Volumes/data/lldb/svn/latest/test/python_api/disassemble-raw-data
1: test_disassemble_raw_data (TestDisassembleRawData.DisassembleRawDataTestCase)
Test disassembling raw bytes with the API. ...
Raw bytes: ['0x48', '0x89', '0xe5']
Disassembled: movq %rsp, %rbp
ok
Restore dir to: /Volumes/data/lldb/svn/latest/test
----------------------------------------------------------------------
Ran 1 test in 0.233s
OK
llvm-svn: 148766
where we changed the CommandObjectSettingsSet object impl to require raw command string.
Do the same for CommandObjectSettingsAppend/InsertBefore/InsertAfter classes and
add test cases for basic functionalities as well as for variable name completion.
llvm-svn: 148719
where we changed the CommandObjectSettingsSet object impl to require raw command string.
Do the same for CommandObjectSettingsReplace class and add two test cases; one for
the "settings replace" command and the other to ensure that completion for variable
name still works.
llvm-svn: 148615
Fix a bug where "settings set -r th" wouldn't complete.
o UserSettingsController.cpp:
Fix a bug where "settings set target.process." wouldn't complete.
o test/functionalities/completion:
Add various completion test cases related to 'settings set' command.
llvm-svn: 148596
Fixed an issue where backtick char is not properly honored when setting the frame-format variable, like the following:
(lldb) settings set frame-format frame #${frame.index}: ${frame.pc}{ ${module.file.basename}{`${function.name-with-args}${function.pc-offset}}}{ at ${line.file.basename}:${line.number}}\n
(lldb) settings show frame-format
frame-format (string) = "frame #${frame.index}: ${frame.pc}{ `${module.file.basename}{${function.name-with-args}${function.pc-offset}}}{` at ${line.file.basename}:${line.number}}\n"
(lldb)
o CommandObjectSettings.h/.cpp:
Modify the command object impl to require raw command string instead of parsed command string,
which also fixes an outstanding issue that customizing the prompt with trailing spaces doesn't
work.
o Args.cpp:
During CommandInterpreter::HandleCommand(), there is a PreprocessCommand phase which already
strips/processes pairs of backticks as an expression eval step. There's no need to treat
a backtick as starting a quote.
o TestAbbreviations.py and change_prompt.lldb:
Fixed incorrect test case/logic.
o TestSettings.py:
Remove expectedFailure decorator.
llvm-svn: 148491
I've see cases where there are lingering processes ("hello_world") staying around and the
test_with_dsym_and_attach_to_process_with_name_api() test case just hangs.
llvm-svn: 148417
Need a test case that tests DWARF with .o in .a files
test/functionalities/archives:
Produces libfoo.a from a.o and b.o. Test breaking inside functions defined
inside the libfoo.a BSD Archive.
test/make/makefile.rules:
Some additional rules to sepcify archive building. For example:
ARCHIVE_NAME := libfoo.a
ARCHIVE_C_SOURCES := a.c b.c
llvm-svn: 148066
SBProcess.GetSTDERR() not getting stderr of the launched process
Since we are launch the inferior with:
process = target.LaunchSimple(None, None, os.getcwd())
i.e., without specifying stdin/out/err. A pseudo terminal is used for
handling the process I/O, and we are satisfied once the expected output
appears in process.GetSTDOUT().
llvm-svn: 147983
performing Objective-C instance variable lookup.
Previously, it only completed the derived class
that was the beginning of the search. Now, as
it walks up the superclass chain looking for the
ivar, it completes each superclass in turn.
Also added a testcase covering this issue.
llvm-svn: 147621
LLDB (python bindings) Crashing in lldb::SBDebugger::DeleteTarget(lldb::SBTarget&)
Need to check the validity of (SBTarget&)target passed to SBDebugger::DeleteTarget()
before calling target->Destroy().
llvm-svn: 147213
Switch from GetReturnValue, which was hardly ever used, to GetReturnValueObject
which is much more convenient.
Return the "return value object" as a persistent variable if requested.
llvm-svn: 147157
parser has hitherto been an implementation waiting
for a use. I have now tied the '-o' option for
the expression command -- which indicates that the
result is an Objective-C object and needs to be
printed -- to the ExpressionParser, which
communicates the desired type to Clang.
Now, if the result of an expression is determined
by an Objective-C method call for which there is
no type information, that result is implicitly
cast to id if and only if the -o option is passed
to the expression command. (Otherwise if there
is no explicit cast Clang will issue an error.
This behavior is identical to what happened before
r146756.)
Also added a testcase for -o enabled and disabled.
llvm-svn: 147099
rdar://problem/10577182
Audit lldb API impl for places where we need to perform a NULL check
Add a NULL check for SBValue.CreateValueFromExpression().
llvm-svn: 146954
rdar://problem/10577182
Audit lldb API impl for places where we need to perform a NULL check
Add a NULL check for SBTarget.AttachToProcessWithName() so it will not hang.
llvm-svn: 146948
rdar://problem/10577182
Audit lldb API impl for places where we need to perform a NULL check
Add NULL checks for SBCommandReturnObject.AppendMessage().
llvm-svn: 146911
rdar://problem/10577182
Audit lldb API impl for places where we need to perform a NULL check
Add NULL checks for SBCommandInterpreter APIs.
llvm-svn: 146909
rdar://problem/10577182
Audit lldb API impl for places where we need to perform a NULL check
Add NULL checks for SBModule and SBSection APIs.
llvm-svn: 146899
"id" from being found by the parser as an
externally-defined type. Before, "id" would
sometimes make it through if it was defined in
a namespace, but this sometimes caused
confusion, for example when it conflicted with
std::locale::id.
llvm-svn: 146891
valobj.AddressOf() returns None when an address is expected in a SyntheticChildrenProvider
Patch from Enrico Granata:
The problem was that the frozen object created by the expression parser was a copy of the contents of the StgClosure, rather than a pointer to it. Thus, the expression parser was correctly computing the result of the arithmetic&cast operation along with its address, but only saving it in the live object. This meant that the frozen copy acted as an address-less variable, hence the problem.
The fix attached to this email lets the expression parser store the "live address" in the frozen copy of the address when the object is built without a valid address of its own.
Doing so, along with delegating ValueObjectConstResult to calculate its own address when necessary, solves the issue. I have also added a new test case to check for regressions in this area, and checked that existing test cases pass correctly.
llvm-svn: 146768
we handle Objective-C method calls. Currently,
LLDB treats the result of an Objective-C method
as unknown if the type information doesn't have
the method's signature. Now Clang can cast the
result to id if it isn't explicitly cast.
I also added a test case for this, as well as a
fix for a type import problem that this feature
exposed.
llvm-svn: 146756
Instead of getting the location of the variable and converting the hex string to an int, just use
val.AddressOf().GetValueAsUnsigned() to compute the address of the memory region to read from.
llvm-svn: 146719
lldb::SBValue::CreateValueFromAddress does not verify SBType::GetPointerType succeeds
SBValue::CreateValueFromAddress() should check the validity of type and its derived pointer type
before using it. Add a test case.
llvm-svn: 146629
clients to disassemble a series of raw bytes as
demonstrated by a new testcase.
In the future, this API will also allow clients
to provide a callback that adds comments for
addresses in the disassembly.
I also modified the SWIG harness to ensure that
Python ByteArrays work as well as strings as
sources of raw data.
llvm-svn: 146611
LLDBSwigPythonCallCommand crashes when a command script returns an object
Add more robustness to LLDBSwigPythonCallCommand. It should check whether the returned Python object
is a string, and only assign it as the error msg when the check holds.
Also add a regression test.
llvm-svn: 146584
There were two problems associated with this radar:
1. "settings show target.source-map" failed to show the source-map after, for example,
"settings set target.source-map /Volumes/data/lldb/svn/trunk/test/source-manager /Volumes/data/lldb/svn/trunk/test/source-manager/hidden"
has been executed to set the source-map.
2. "list -n main" failed to display the source of the main() function after we properly set the source-map.
The first was fixed by adding the missing functionality to TargetInstanceSettings::GetInstanceSettingsValue (Target.cpp)
and updating the support files PathMappingList.h/.cpp; the second by modifying SourceManager.cpp to fix several places
with incorrect logic.
Also added a test case test_move_and_then_display_source() to TestSourceManager.py, which moves main.c to hidden/main.c,
sets target.source-map to perform the directory mapping, and then verifies that "list -n main" can still show the main()
function.
llvm-svn: 146422
An assertion was firing when parsing types due to trying to complete parent
class decl contenxt types too often.
Also, relax where "dsymutil" binary can come from in the Makefile.rules.
llvm-svn: 146310
translation unit has a interface for a class "Bar" that contains hidden ivars
in the implementation and we make sure we can see these hidden ivars. We also
test the case where we stop in translation unit that contains the
implementation first. So the test runs two tests:
1 - run and stop where we have an interface, run to main and print and make
sure we find the hidden ivar
2 - run and stop where we have an implementation, run to main and print and make
sure we find the hidden ivar
llvm-svn: 146216
in the context in which it was originally found, the
expression parser now goes hunting for it in all modules
(in the appropriate namespace, if applicable). This means
that forward-declared types that exist in another shared
library will now be resolved correctly.
Added a test case to cover this. The test case also tests
"frame variable," which does not have this functionality
yet.
llvm-svn: 146204
pointer to make the result of an expression. LLDB now
dumps the ivars of the Objective-C object and all of
its parents. This just required fixing a bug where we
didn't distinguish between Objective-C object pointers
and regular C-style pointers.
Also added a testcase to verify that this continues to
work.
llvm-svn: 146164
for use in the benchmark against lldb's disassembly speed. Note that the lldb
executable path can already be specified using the LLDB_EXEC env variable.
rdar://problem/7511194
llvm-svn: 146050
ClangASTSource::~ClangASTSource() was calling
ClangASTContext *scratch_clang_ast_context = m_target->GetScratchClangASTContext();
which had the side effect of deleting this very ClangASTSource instance. Not good.
Change it to
// We are in the process of destruction, don't create clang ast context on demand
// by passing false to Target::GetScratchClangASTContext(create_on_demand).
ClangASTContext *scratch_clang_ast_context = m_target->GetScratchClangASTContext(false);
The Target::GetScratchClangASTContext(bool create_on_demand=true) has a new signature.
llvm-svn: 145537
to find Objective-C class types by looking in the
symbol tables for the individual object files.
I did this as follows:
- I added code to SymbolFileSymtab that vends
Clang types for symbols matching the pattern
"_OBJC_CLASS_$_NSMyClassName," making them
appear as Objective-C classes. This only occurs
in modules that do not have debug information,
since otherwise SymbolFileDWARF would be in
charge of looking up types.
- I made a new SymbolVendor subclass for the
Apple Objective-C runtime that is in charge of
making global lookups of Objective-C types. It
currently just sends out type lookup requests to
the appropriate SymbolFiles, but in the future we
will probably extend it to query the runtime more
completely.
I also modified a testcase whose behavior is changed
by the fact that we now actually return an Objective-C
type for __NSCFString.
llvm-svn: 145526
Fix wrong test logic in test_modules_search_paths(). Add additional exercising of 'target modules search-paths list/query".
There is a reproducible crash if 'target modules search-paths clear' is exercised during test teardown.
So we currently comment out the stmt as follows:
# Add teardown hook to clear image-search-paths after the test.
# rdar://problem/10501020
# Uncomment the following to reproduce 10501020.
#self.addTearDownHook(lambda: self.runCmd("target modules search-paths clear"))
llvm-svn: 145466
so that we can do Python scripting like this:
target = self.dbg.CreateTarget(self.exe)
self.dbg.SetAsync(True)
process = target.LaunchSimple(None, None, os.getcwd())
process.PutSTDIN("Line 1 Entered.\n")
process.PutSTDIN("Line 2 Entered.\n")
process.PutSTDIN("Line 3 Entered.\n")
Add TestProcessIO.py to exercise the process IO API: PutSTDIN()/GetSTDOUT()/GetSTDERR().
llvm-svn: 145282
Use this option with care as you would need to build the inferior(s) by hand
and build the executable(s) with the correct name(s). This option can be used
with '-# n' to stress test certain test cases for n number of times.
An example:
[11:55:11] johnny:/Volumes/data/lldb/svn/trunk/test/python_api/value $ ls
Makefile TestValueAPI.pyc linked_list
TestValueAPI.py change_values main.c
[11:55:14] johnny:/Volumes/data/lldb/svn/trunk/test/python_api/value $ make EXE=test_with_dsym
clang -gdwarf-2 -O0 -arch x86_64 -c -o main.o main.c
clang -gdwarf-2 -O0 -arch x86_64 main.o -o "test_with_dsym"
/usr/bin/dsymutil -o "test_with_dsym.dSYM" "test_with_dsym"
[11:55:20] johnny:/Volumes/data/lldb/svn/trunk/test/python_api/value $ cd ../..
[11:55:24] johnny:/Volumes/data/lldb/svn/trunk/test $ ./dotest.py -v -# 10 -S -f ValueAPITestCase.test_with_dsym
LLDB build dir: /Volumes/data/lldb/svn/trunk/build/Debug
LLDB-89
Path: /Volumes/data/lldb/svn/trunk
URL: https://johnny@llvm.org/svn/llvm-project/lldb/trunk
Repository Root: https://johnny@llvm.org/svn/llvm-project
Repository UUID: 91177308-0d34-0410-b5e6-96231b3b80d8
Revision: 144914
Node Kind: directory
Schedule: normal
Last Changed Author: gclayton
Last Changed Rev: 144911
Last Changed Date: 2011-11-17 09:22:31 -0800 (Thu, 17 Nov 2011)
Session logs for test failures/errors/unexpected successes will go into directory '2011-11-17-11_55_29'
Command invoked: python ./dotest.py -v -# 10 -S -f ValueAPITestCase.test_with_dsym
----------------------------------------------------------------------
Collected 1 test
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 1.163s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.200s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.198s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.199s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.239s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 1.215s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.105s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.098s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 0.195s
OK
1: test_with_dsym (TestValueAPI.ValueAPITestCase)
Exercise some SBValue APIs. ... ok
----------------------------------------------------------------------
Ran 1 test in 1.197s
OK
[11:55:34] johnny:/Volumes/data/lldb/svn/trunk/test $
llvm-svn: 144919
of problems with Objective-C object completion. To go
along with the LLVM/Clang-side fixes, we have a variety
of Objective-C improvements.
Fixes include:
- It is now possible to run expressions when stopped in
an Objective-C class method and have "self" act just
like "self" would act in the class method itself (i.e.,
[self classMethod] works without casting the return
type if debug info is present). To accomplish this,
the expression masquerades as a class method added by
a category.
- Objective-C objects can now provide methods and
properties and methods to Clang on demand (i.e., the
ASTImporter sets hasExternalVisibleDecls on Objective-C
interface objects).
- Objective-C built-in types, which had long been a bone
of contention (should we be using "id"? "id*"?), are
now fetched correctly using accessor functions on
ClangASTContext. We inhibit searches for them in the
debug information.
There are also a variety of logging fixes, and I made two
changes to the test suite:
- Enabled a test case for Objective-C properties in the
current translation unit.
- Added a test case for calling Objective-C class methods
when stopped in a class method.
llvm-svn: 144607
This is the actual fix for the above radar where global variables that weren't
initialized were not being shown correctly when leaving the DWARF in the .o
files. Global variables that aren't intialized have symbols in the .o files
that specify they are undefined and external to the .o file, yet document the
size of the variable. This allows the compiler to emit a single copy, but makes
it harder for our DWARF in .o files with the executable having a debug map
because the symbol for the global in the .o file doesn't exist in a section
that we can assign a fixed up linked address to, and also the DWARF contains
an invalid address in the "DW_OP_addr" location (always zero). This means that
the DWARF is incorrect and actually maps all such global varaibles to the
first file address in the .o file which is usually the first function. So we
can fix this in either of two ways: make a new fake section in the .o file
so that we have a file address in the .o file that we can relink, or fix the
the variable as it is created in the .o file DWARF parser and actually give it
the file address from the executable. Each variable contains a
SymbolContextScope, or a single pointer that helps us to recreate where the
variables came from (which module, file, function, etc). This context helps
us to resolve any file addresses that might be in the location description of
the variable by pointing us to which file the file address comes from, so we
can just replace the SymbolContextScope and also fix up the location, which we
would have had to do for the other case as well, and update the file address.
Now globals display correctly.
The above changes made it possible to determine if a variable is a global
or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag
for each variable (local, global, or static), yet DWARF provides no way for
us to classify these variables into these categories. We can now detect when
a variable has a simple address expressions as its location and this will help
us classify these correctly.
While making the above changes I also noticed that we had two symbol types:
eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same
thing: the symbol is not defined in the current object file. Symbol objects
also have a bit that specifies if a symbol is externally visible, so I got
rid of the eSymbolTypeExtern symbol type and moved all code locations that
used it to use the eSymbolTypeUndefined type.
llvm-svn: 144489
be in the target. All of the environment, args, stdin/out/err files, etc have
all been moved. Also re-enabled the ability to launch a process in a separate
terminal on MacOSX.
llvm-svn: 144061
dated 2010-21-15. The test started failure recently probably due to work done on the command parsing.
Anyway, the specific test sequence is invalid and is fixed now.
llvm-svn: 144039
a) adds a new --synchronicity (-s) setting for "command script add" that allows the user to decide if scripted commands should run synchronously or asynchronously (which can make a difference in how events are handled)
b) clears up several error messages
c) adds a new --allow-reload (-r) setting for "command script import" that allows the user to reload a module even if it has already been imported before
d) allows filename completion for "command script import" (much like what happens for "target create")
e) prevents "command script add" from replacing built-in commands with scripted commands
f) changes AddUserCommand() to take an std::string instead of a const char* (for performance reasons)
plus, it fixes an issue in "type summary add" command handling which caused several test suite errors
llvm-svn: 144035
correctly, and added a testcase to check that it works.
The main problem here is that Objective-C class method
selectors are external references stored in a special
data structure in the LLVM IR module for an expression.
I just had to extract them and ensure that the real
class object locations were properly resolved.
llvm-svn: 143520
"object borked"... Also made the error when the checker fails reflect this fact rather than
report a crash at 0x0.
Also a little cleanup:
- StopInfoMachException had a redundant copy of the description string.
- ThreadPlanCallFunction had a redundant copy of the thread, and had a
copy of the process that it didn't really need.
llvm-svn: 143419
Example:
[11:33:09] johnny:/Volumes/data/lldb/svn/trunk/test $ ./dosep.ty -o "-v -n"
dotest.py options: -v -n
Running /Volumes/data/lldb/svn/trunk/test/dotest.py -v -n -p TestPublicAPIHeaders.py /Volumes/data/lldb/svn/trunk/test/api/check_public_api_headers
1: test_sb_api_directory (TestPublicAPIHeaders.SBDirCheckerCase)
Test the SB API directory and make sure there's no unwanted stuff. ... ok
----------------------------------------------------------------------
Ran 1 test in 4.404s
OK
Running /Volumes/data/lldb/svn/trunk/test/dotest.py -v -n -p TestEmulations.py /Volumes/data/lldb/svn/trunk/test/arm_emulation
1: test_arm_emulations (TestEmulations.ARMEmulationTestCase) ... ok
2: test_thumb_emulations (TestEmulations.ARMEmulationTestCase) ... ok
----------------------------------------------------------------------
Ran 2 tests in 1.399s
OK
...
llvm-svn: 143355
in the same hashed format as the ".apple_names", but they map objective C
class names to all of the methods and class functions. We need to do this
because in the DWARF the methods for Objective C are never contained in the
class definition, they are scattered about at the translation unit level and
they don't even have attributes that say the are contained within the class
itself.
Added 3 new formats which can be used to display data:
eFormatAddressInfo
eFormatHexFloat
eFormatInstruction
eFormatAddressInfo describes an address such as function+offset and file+line,
or symbol + offset, or constant data (c string, 2, 4, 8, or 16 byte constants).
The format character for this is "A", the long format is "address".
eFormatHexFloat will print out the hex float format that compilers tend to use.
The format character for this is "X", the long format is "hex float".
eFormatInstruction will print out disassembly with bytes and it will use the
current target's architecture. The format character for this is "i" (which
used to be being used for the integer format, but the integer format also has
"d", so we gave the "i" format to disassembly), the long format is
"instruction".
Mate the lldb::FormatterChoiceCriterion enumeration private as it should have
been from the start. It is very specialized and doesn't belong in the public
API.
llvm-svn: 143114
inferior program for the lldb debugger to operate on. The fixed lldb executable
corresponds to r142902.
Plus some minor modifications to the test benchmark to conform to way bench.py
is meant to be invoked.
llvm-svn: 143075
An example (with /Developer/usr/bin/lldb vs. /usr/bin/gdb):
[13:05:04] johnny:/Volumes/data/lldb/svn/trunk/test $ ./dotest.py -v +b -n -p TestCompileRunToBreakpointTurnaround.py
1: test_run_lldb_then_gdb (TestCompileRunToBreakpointTurnaround.CompileRunToBreakpointBench)
Benchmark turnaround time with lldb vs. gdb. ...
lldb turnaround benchmark: Avg: 4.574600 (Laps: 3, Total Elapsed Time: 13.723799)
gdb turnaround benchmark: Avg: 7.966713 (Laps: 3, Total Elapsed Time: 23.900139)
lldb_avg/gdb_avg: 0.574214
ok
----------------------------------------------------------------------
Ran 1 test in 55.462s
OK
llvm-svn: 142949
command in the '- Hook id' header. This should improve readbility of the 'display'
command if, for example, we have issued 'display a' and 'display b' which turn into
"target stop-hook add -o 'expr -- a'" and "target stop-hook add -o 'expr -- b'".
Plus some minor change in TestAbbreviations.py to conditionalize the platform-specific
checkings of the "image list" output.
llvm-svn: 142868
Example (start the lldb inferior, break at the Driver::MainLoop() function, and
issue 'frame variable'):
$ ./dotest.py -v +b -x '-F Driver::MainLoop()' -n -p TestFrameVariableResponse.py
----------------------------------------------------------------------
Collected 1 test
1: test_startup_delay (TestFrameVariableResponse.FrameVariableResponseBench)
Test response time for the 'frame variable' command. ...
lldb frame variable benchmark: Avg: 1.636897 (Laps: 20, Total Elapsed Time: 32.737944)
ok
----------------------------------------------------------------------
Ran 1 test in 65.105s
OK
llvm-svn: 142678
o create a fresh target; and
o set the first breakpoint
Example (using lldb to set a breakpoint on lldb's Driver::MainLoop function):
./dotest.py -v +b -x '-F Driver::MainLoop()' -p TestStartupDelays.py
...
1: test_startup_delay (TestStartupDelays.StartupDelaysBench)
Test start up delays creating a target and setting a breakpoint. ...
lldb startup delays benchmark:
create fresh target: Avg: 0.106732 (Laps: 15, Total Elapsed Time: 1.600985)
set first breakpoint: Avg: 0.102589 (Laps: 15, Total Elapsed Time: 1.538832)
ok
llvm-svn: 142628
Add a '-y count' option to the test driver for this purpose. An example:
$ ./dotest.py -v -y 25 +b -p TestDisassembly.py
...
----------------------------------------------------------------------
Collected 2 tests
1: test_run_gdb_then_lldb (TestDisassembly.DisassembleDriverMainLoop)
Test disassembly on a large function with lldb vs. gdb. ...
gdb benchmark: Avg: 0.226305 (Laps: 25, Total Elapsed Time: 5.657614)
lldb benchmark: Avg: 0.113864 (Laps: 25, Total Elapsed Time: 2.846606)
lldb_avg/gdb_avg: 0.503146
ok
2: test_run_lldb_then_gdb (TestDisassembly.DisassembleDriverMainLoop)
Test disassembly on a large function with lldb vs. gdb. ...
lldb benchmark: Avg: 0.113008 (Laps: 25, Total Elapsed Time: 2.825201)
gdb benchmark: Avg: 0.225240 (Laps: 25, Total Elapsed Time: 5.631001)
lldb_avg/gdb_avg: 0.501723
ok
----------------------------------------------------------------------
Ran 2 tests in 41.346s
OK
llvm-svn: 142598
bring the debugger to the desired state.
This patch makes BenchBase inherit from TestBase, instead of Base (which is a parent class of
TestBase). This is so that we can also enjoy the Pythonic way of bringing the lldb debugger
to a desired state before running the benchmark and collect statistics.
llvm-svn: 142562
child=None, child_prompt=None, use_cmd_api=False
By default, expect a pexpect spawned child and child prompt to be
supplied (use_cmd_api=False). If use_cmd_api is true, ignore the child
and child prompt and use self.runCmd() to run the hooks one by one.
Modify existing client to reflect the change.
llvm-svn: 142532
watchpoint modify -c 'global==5'
modifies the last created watchpoint so that the condition expression
is evaluated at the stop point to decide whether we should proceed with
the stopping.
Also add SBWatchpont::SetCondition(const char *condition) to set condition
programmatically.
Test cases to come later.
llvm-svn: 142227
a watchpoint for either the variable encapsulated by SBValue (Watch) or the pointee
encapsulated by SBValue (WatchPointee).
Removed SBFrame::WatchValue() and SBFrame::WatchLocation() API as a result of that.
Modified the watchpoint related test suite to reflect the change.
Plus replacing WatchpointLocation with Watchpoint throughout the code base.
There are still cleanups to be dome. This patch passes the whole test suite.
Check it in so that we aggressively catch regressions.
llvm-svn: 141925
to be able to specify the runhook(s) to bring the debug session to a certain state
before running the benchmarking logic. An example,
./dotest.py -v -t +b -k 'process attach -n Mail' -k 'thread backtrace all' -p TestRunHooksThenSteppings.py
spawns lldb, attaches to the 'Mail' application, does a backtrace for all threads, and then
runs the benchmark to step the inferior multiple times.
llvm-svn: 141740
for the debugger to execute for certain kind of tests (for example, a benchmark).
A list of runhooks can be used to steer the debugger into the desired state before more
actions can be performed.
llvm-svn: 141626
and the breakpoint specification for the benchmark purpose. This is used by TestSteppingSpeed.py
to benchmark the lldb stepping speed. Without '-e' and 'x' specified, the test defaults to
run the built lldb against itself and stopped on Driver::MainLoop, then stepping for 50 times.
rdar://problem/7511193
llvm-svn: 141584
SymbolFIle (it was done mostly in the BreakpointResolverName resolver before.) Then
tailor our searches to the way the indexed maps are laid out. This removes a bunch
of test case failures using indexed dSYM's.
llvm-svn: 141428
Set up self.lldbOption to be "--no-lldbibit" unless env variable NO_LLDBIBIT is defined and equals "NO".
Also add "-nx" to gdb spawned.
llvm-svn: 141384
when newly created threads were subsequently stopped due to breakpoint hit.
The stop-hook mechanism delegates to CommandInterpreter::HandleCommands() to
execuet the commands. Make sure the execution context is switched only once
at the beginning of HandleCommands() only and don't update the context while looping
on each individual command to be executed.
rdar://problem/10228156
llvm-svn: 141144
Add a keyword argument 'endstr' to TestBase.expect() method to assert that the output
will end with 'endstr'.
Add TestBase.switch_to_thread_with_stop_reason(stop_reason) to select the thread with
the stop reason = 'stop_reason' as the current thread.
o TestWatchLocation.py:
Modified to switch to the stopped thread with stop reason = watchpoint and to evaluate
an expression with expected output for stronger assertion.
llvm-svn: 140890
from lldbutil.py to the lldb.py proper. The in_range() function becomes a function in
the lldb module. And the symbol_iter() function becomes a method within the SBModule
called symbol_in_section_iter(). Example:
# Iterates the text section and prints each symbols within each sub-section.
for subsec in text_sec:
print INDENT + repr(subsec)
for sym in exe_module.symbol_in_section_iter(subsec):
print INDENT2 + repr(sym)
print INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType())
might produce this following output:
[0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text
id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870)
symbol type: code
id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0)
symbol type: code
id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c)
symbol type: code
id = {0x00000023}, name = 'start', address = 0x0000000100001780
symbol type: code
[0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs
id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62)
symbol type: trampoline
id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68)
symbol type: trampoline
id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e)
symbol type: trampoline
id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74)
symbol type: trampoline
id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a)
symbol type: trampoline
id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80)
symbol type: trampoline
id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86)
symbol type: trampoline
id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c)
symbol type: trampoline
id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92)
symbol type: trampoline
id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98)
symbol type: trampoline
id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e)
symbol type: trampoline
id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4)
symbol type: trampoline
[0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper
[0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring
[0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info
[0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame
llvm-svn: 140830
the watchpoint state is changed, not only does the change propagate to all the thread instances,
it also updates a global debug state, if chosen by the DNBArchProtocol derivative.
Once implemented, the DNBArchProtocol derivative, also makes sure that when new thread comes along,
it tries to inherit from the global debug state, if it is valid.
Modify TestWatchpointMultipleThreads.py to test this functionality.
llvm-svn: 140811
it enables the hardware watchpoint for all existing threads. Add a test file for that.
Also fix MachThreadList::DisableHardwareWatchpoint().
llvm-svn: 140757
In particular, it iterates through the executable module's SBSections, looking for the
'__TEXT' section and further iterates on its subsections (of SBSection type, too).
llvm-svn: 140654
Also add rich comparison methods (__eq__ and __ne__) for SBWatchpointLocation.
Modify TestWatchpointLocationIter.py to exercise the new APIs.
Add fuzz testings for the recently added SBTarget APIs related to watchpoint manipulations.
llvm-svn: 140633
to the Python interface.
Implement yet another (threre're 3 now) iterator protocol for SBTarget: watchpoint_location_iter(),
to iterate on the available watchpoint locations. And add a print representation for
SBWatchpointLocation.
Exercise some of these Python API with TestWatchpointLocationIter.py.
llvm-svn: 140595
- New SBSection objects that are object file sections which can be accessed
through the SBModule classes. You can get the number of sections, get a
section at index, and find a section by name.
- SBSections can contain subsections (first find "__TEXT" on darwin, then
us the resulting SBSection to find "__text" sub section).
- Set load addresses for a SBSection in the SBTarget interface
- Set the load addresses of all SBSection in a SBModule in the SBTarget interface
- Add a new module the an existing target in the SBTarget interface
- Get a SBSection from a SBAddress object
This should get us a lot closer to being able to symbolicate using LLDB through
the public API.
llvm-svn: 140437
set a watchpoint Pythonically. If the find-and-watch-a-variable operation
fails, an invalid SBValue is returned, instead.
Example Python usage:
value = frame0.WatchValue('global',
lldb.eValueTypeVariableGlobal,
lldb.LLDB_WATCH_TYPE_READ|lldb.LLDB_WATCH_TYPE_WRITE)
Add TestSetWatchpoint.py to exercise this API.
We have 400 test cases now.
llvm-svn: 140436
too long, so that the jump from the line above the bad line to the line after
ends up in the middle of the bad line instead. Added a workaround to lldb to just
continue to the end if we find ourselves stopped in the middle of some other line.
llvm-svn: 140419
etc to specific source files.
Added SB API's to specify these source files & also more than one module.
Added an "exact" option to CompileUnit's FindLineEntry API.
llvm-svn: 140362
it to generate result variables that were not bound
to their underlying data. This allowed the SBValue
class to use the interpreter (if possible).
Also made sure that any result variables that point
to stack allocations in the stack frame of the
interpreted expressions do not get live data.
llvm-svn: 140285
Fix the RegularExpression class so it has a real copy constructor.
Fix the breakpoint setting with multiple shared libraries so it makes
one breakpoint not one per shared library.
Add SBFileSpecList, to be used to expose the above to the SB interface (not done yet.)
llvm-svn: 140225
Modify CommandObjectFrame.cpp to populate this field when creating a watchpoint location.
Update the test case to verify that the declaration info matches the file and line number.
llvm-svn: 139946
--show-aliases (-a) shows aliases for commands, as well as built-in commands
--hide-user-defined (-u) hides user defined commands
by default 'help' without arguments does not show aliases anymore. to see them, add --show-aliases
to have only built-in commands appear, use 'help --hide-user-defined' ; there is currently no way to hide
built-in commands from the help output
'help command' is not changed by this commit, and help is shown even if command is an alias and -a is not specified
llvm-svn: 139377
Set the default Source File & line to main (if it can be found.) at startup. Selecting the current thread & or frame resets
the current source file & line, and "source list" as well as the breakpoint command "break set -l <NUM>" will use the
current source file.
llvm-svn: 139323
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
built locally from the source tree. This is distinguished from self.lldbExec, which
can be used by test/benchmarks to measure the performances against other debuggers.
You can use environment variable LLDB_EXEC to specify self.lldbExec to the dotest.py
test driver, otherwise it is going to be populated with self.lldbHere.
Modify the regular tests under test dir, i.e., not test/benchmarks, to use self.lldbHere.
Also modify the benchmarks tests to use self.lldbHere when it needs an 'lldb' executable
with debug info to do the performance measurements.
llvm-svn: 138608
Renamed format "signed decimal" to be "decimal". "unsigned decimal" remains unchanged:
- the name "signed decimal" was interfering with symbol %S (use summary) in summary strings.
because of the way summary strings are implemented, this did not really lead to a bug, but
simply to performing more steps than necessary to display a summary. this is fixed.
Documentation improvements (more on synthetic children, some information on filters). This is still a WIP.
llvm-svn: 138384
expression parser. You can use a persistent
type like this:
(lldb) expr struct $foo { int a; int b; };
(lldb) struct $foo i; i.a = 2; i.b = 3; i
($foo) $0 = {
(int) a = 2
(int) b = 3
}
typedefs work similarly.
This patch affects the following files:
test/expression_command/persistent_types/*
A test case for persistent types,
in particular structs and typedefs.
ClangForward.h
Added TypeDecl, needed to declare some
functions in ASTResultSynthesizer.h
ClangPersistentVariables.[h,cpp]
Added a list of persistent types to the
persistent variable store.
ASTResultSynthesizer.[h,cpp]
Made the AST result synthesizer iterate
across TypeDecls in the expression, and
record any persistent types found. Also
made a minor documentation fix.
ClangUserExpression.[h,cpp]
Extended the user expression class to
keep the state needed to report the
persistent variable store for the target
to the AST result synthesizers.
Also introduced a new error code for
expressions that executed normally but
did not return a result.
CommandObjectExpression.cpp
Improved output for expressions (like
declarations of new persistent types) that
don't return a result. This is no longer
treated as an error.
llvm-svn: 138383
rolled back, and the testcase that the rollback
broke.
The new LLVM has a new ARM disassembler, which
may cause instability. Keeping the old one would
force us into a contorted position vis-a-vis the
LLVM sources we bring in, so we will address
issues on the new one rather than keeping the old
one around.
llvm-svn: 138284
If you have a Python module foo, in order to use its contained objects in LLDB you do not need to use
'from foo import *'. You can use 'import foo', and then refer to items in foo as 'foo.bar', and LLDB
will know how to resolve bar as a member of foo.
Accordingly, GNU libstdc++ formatters have been moved from the global namespace to gnu_libstdcpp and a few
test cases are also updated to reflect the new convention. Python docs suggest using a plain 'import' en lieu of
'from-import'.
llvm-svn: 138244
e.g. you may get "foo_class @ 0x123456" when typing "type summary add -f ${var} foo_class"
- Added a new special formatting token %T for summaries. This shows the type of the object.
Using it, the new "type @ location" summary could be manually generated by writing ${var%T} @ ${var%L}
- Bits and pieces required to support "frame variable array[n-m]"
The feature is not enabled yet because some additional design and support code is required, but the basics
are getting there
- Fixed a potential issue where a ValueObjectSyntheticFilter was not holding on to its SyntheticChildrenSP
Because of the way VOSF are being built now, this has never been an actual issue, but it is still sensible for
a VOSF to hold on to the SyntheticChildrenSP as well as to its FrontEnd
llvm-svn: 138080
revision and adding a patch that fixes an AsmParser
crash on ARM.
One feature that we unfortunately lost (for the
moment!) is the ability to cast unknown code symbols
to arbitrary function types and put the resulting
function pointer in a result variable. This feature
will be back, though.
llvm-svn: 138036
- reorganizing the PTS (Partial Template Specializations) in FormatManager.h
- applied a patch by Filipe Cabecinhas to make LLDB compile with GCC
Functional changes:
- fixed an issue where command type summary add for type "struct Foo" would not match any types.
currently, "struct" will be stripped off and type "Foo" will be matched.
similar behavior occurs for class, enum and union specifiers.
llvm-svn: 138020
test cases in TestThreadAPI.py by decorating it with @expectedFailureClang.
Example:
@expectedFailureClang
@python_api_test
def test_step_over_3_times_with_dwarf(self):
"""Test Python SBThread.StepOver() API."""
# We build a different executable than the default buildDwarf() does.
d = {'CXX_SOURCES': 'main2.cpp', 'EXE': self.exe_name}
self.buildDwarf(dictionary=d)
self.setTearDownCleanup(dictionary=d)
self.step_over_3_times(self.exe_name)
llvm-svn: 138019
- reorganizing classes layout to have public part first
Typedefs that we want to keep private, but must be defined for some public code to work correctly are an exception
- avoiding methods in the form T foo() { code; } all on one-line
- moving method implementations from .h to .cpp whenever feasible
Templatized code is an exception and so are very small methods
- generally, adhering to coding conventions followed project-wide
Functional changes:
- fixed an issue where using ${var} in a summary for an aggregate, and then displaying a pointer-to-aggregate would lead to no summary being displayed
The issue was not a major one because all ${var} was meant to do in that context was display an error for invalid use of pointer
Accordingly fixed test cases and added a new test case
llvm-svn: 137944
- all instances of "vobj" have been renamed to "valobj"
- class Debugger::Formatting has been renamed to DataVisualization (defined in FormatManager.h/cpp)
The interface to this class has not changed
- FormatCategory now uses ConstString's as keys to the navigators instead of repeatedly casting
from ConstString to const char* and back all the time
Next step is making the same happen for categories themselves
- category gnu-libstdc++ is defined in the constructor for a FormatManager
The source code for it is defined in gnu_libstdcpp.py, drawn from examples/synthetic at compile time
All references to previous 'osxcpp' name have been removed from both code and file names
Functional changes:
- the name of the option to use a summary string for 'type summary add' has changed from the previous --format-string
to the new --summary-string. It is expected that the short option will change from -f to -s, and -s for --python-script
will become -o
llvm-svn: 137886
The category is enabled by default. If you run into issues with it, disable it and the previous behavior of LLDB is restored
** This is a temporary solution. The general solution to having formatters pulled in at startup should involve going through the Platform.
Fixed an issue in type synthetic list where a category with synthetic providers in it was not shown if all the providers were regex-based
llvm-svn: 137850
If no docstring is provided, a default help text is created
LLDB will refuse to create scripted commands if the scripting language is anything but Python
Some additional comments in AppleObjCRuntimeV2.cpp to describe the memory layout expected by the dynamic type lookup code
llvm-svn: 137801
- They now have an SBCommandReturnObject instead of an SBStream as third argument
- The class CommandObjectPythonFunction has been merged into CommandObjectCommands.cpp
- The command to manage them is now:
command script with subcommands add, list, delete, clear
command alias is returned to its previous functionality
- Python commands are now part of an user dictionary, instead of being seen as aliases
llvm-svn: 137785
...
File "/Volumes/data/lldb/svn/trunk/test/lldbtest.py", line 243, in __init__
self.session = test.session if test else None
AttributeError: 'StdCXXDisassembleTestCase' object has no attribute 'session'
llvm-svn: 137724
It is now possible to use 'command alias --python' to define a command name that actually triggers execution of a Python function
(e.g. command alias --python foo foo_impl makes a command named 'foo' that runs Python function 'foo_impl')
The Python function foo_impl should have as signature: def foo_impl(debugger, args, stream, dict): where
debugger is an object wrapping an LLDB SBDebugger
args is the command line arguments, as an unparsed Python string
stream is an SBStream that represents the standard output
dict is an internal utility parameter and should be left untouched
The function should return None on no error, or an error string to describe any problems
llvm-svn: 137722
First, main.c causes a crash, the inferior then gets re-built with main2.c which is not crashing.
Add Base.cleanup(self, dictionary=None) for platform specfic way to do cleanup after build.
This plugin method is used by the above test case to cleanup the main.c build before rebuild for main2.c.
llvm-svn: 137500
The converse is also true: an error is shown when the user tries to add a synthetic provider to a category that already has a filter for the same type
llvm-svn: 137493
*New setting target.max-children-count gives an upper-bound to the number of child objects that will be displayed at each depth-level
This might be a breaking change in some scenarios. To override the new limit you can use the --show-all-children (-A) option
to frame variable or increase the limit in your lldbinit file
*Command "type synthetic" has been split in two:
- "type synthetic" now only handles Python synthetic children providers
- the new command "type filter" handles filters
Because filters and synthetic providers are both ways to replace the children of a ValueObject, only one can be effective at any given time.
llvm-svn: 137416
problem in which the following cast:
–
expr (int (*)(const char*, ...))printf
-
caused a crash. This had several causes:
- First, Clang did not support implicit
casts of a function of unknown type to
a function pointer.
- Second, after this was fixed, the
Clang AST importer did not support
importing function pointer types
produced by resolving these casts.
These two problems are now resolved, and
I have added a test case to verify that
they work. I also did a little bit of
build-system cleanup because we now use
libEnhancedDisassembly.a instead of the
.dylib.
llvm-svn: 137338
Access to synthetic children by name:
if your object has a synthetic child named foo you can now type
frame variable object.foo (or ->foo if you have a pointer)
and that will print the value of the synthetic child
(if your object has an actual child named foo, the actual child prevails!)
this behavior should also work in summaries, and you should be able to use
${var.foo} and ${svar.foo} interchangeably
(but using svar.foo will mask an actual child named foo)
llvm-svn: 137314
Add code to test case to create an evil linked list with:
task_evil -> task_2 -> task_3 -> task_evil ...
and to check that the linked list iterator only iterates 3 times.
llvm-svn: 137291
where an empty linked list is represented as a value object with a NULL value, instead of a special value
object which 'points' to NULL.
Also modifies the test case to comply.
rdar://problem/9933692
llvm-svn: 137289
of string literals ("hello"[2]). Also fixed a
problem in which empty string literals were not
being compiled correctly ((int)printf("") would
print garbage).
Added a testcase that covers both.
llvm-svn: 137247
new --raw-output (-R) option to frame variable prevents using summaries and synthetic children
other future formatting enhancements will be excluded by using the -R option
test case enhanced to check that -R works correctly
llvm-svn: 137185
For Makefile.rules, the modification of CFLAGS (addition of -arch $(ARCH) for Darwin) needs to come before
the consuming of CFLAGS, not after.
llvm-svn: 137140
event is removed. Also use the return value of asynchronous breakpoint callbacks, they get checked before, and override the
breakpoint conditions.
Added ProcessModInfo class, to unify "stop_id generation" and "memory modification generation", and use where needed.
llvm-svn: 137102
if your datatype provides synthetic children, "frame variable object[index]" should now do the right thing
in cases where the above syntax would have been rejected before, i.e.
object is not a pointer nor an array (frame variable ignores potential overload of [])
object is a pointer to an Objective-C class (which cannot be dereferenced)
expression will still run operator[] if available and complain if it cannot do so
synthetic children by name do not work yet
llvm-svn: 137097
on lldb's Driver::MainLoop function which is ~1190 lines of x86 assembly code. This file is not
exercised during the normal test suite run, i.e., no +b option specified. So it should be ok.
The following is the benchmark result on my MBP running OSX Lion:
[17:38:46] johnny:/Volumes/data/lldb/svn/trunk/test $ ./dotest.py -v +b -p TestFlintVsSlate
/Volumes/data/lldb/svn/trunk/build/Debug
LLDB-71
Path: /Volumes/data/lldb/svn/trunk
URL: https://johnny@llvm.org/svn/llvm-project/lldb/trunk
Repository Root: https://johnny@llvm.org/svn/llvm-project
Repository UUID: 91177308-0d34-0410-b5e6-96231b3b80d8
Revision: 137008
Node Kind: directory
Schedule: normal
Last Changed Author: gclayton
Last Changed Rev: 137008
Last Changed Date: 2011-08-05 17:50:36 -0700 (Fri, 05 Aug 2011)
Session logs for test failures/errors/unexpected successes will go into directory '2011-08-08-17_38_52'
Command invoked: python ./dotest.py -v +b -p TestFlintVsSlate
----------------------------------------------------------------------
Collected 2 tests
1: test_run_41_then_42 (TestFlintVsSlateGDBDisassembly.FlintVsSlateGDBDisassembly)
Test disassembly on a large function with 4.1 vs. 4.2's gdb. ...
4.1 gdb benchmark: Avg: 0.205623 (Laps: 5, Total Elapsed Time: 1.028113)
4.2 gdb benchmark: Avg: 0.201970 (Laps: 5, Total Elapsed Time: 1.009849)
gdb_42_avg/gdb_41_avg: 0.982236
ok
2: test_run_42_then_41 (TestFlintVsSlateGDBDisassembly.FlintVsSlateGDBDisassembly)
Test disassembly on a large function with 4.1 vs. 4.2's gdb. ...
4.2 gdb benchmark: Avg: 0.202602 (Laps: 5, Total Elapsed Time: 1.013012)
4.1 gdb benchmark: Avg: 0.204418 (Laps: 5, Total Elapsed Time: 1.022089)
gdb_42_avg/gdb_41_avg: 0.991119
ok
----------------------------------------------------------------------
Ran 2 tests in 15.688s
OK
llvm-svn: 137092
that detects what context the current expression is
meant to execute in. LLDB now properly consults
the method declaration in the debug information
rather than trying to hunt down the "this" or "self"
pointer by name, which can be misleading.
Other fixes include:
- LLDB now properly detects that it is inside
an inlined C++ member function.
- LLDB now allows access to non-const members when
in const code.
- The functions in SymbolFile that locate the
DeclContext containing a DIE have been renamed
to reflect what they actually do. I have added
new functions that find the DeclContext for the
DIE itself.
I have also introduced testcases for C++ and
Objective-C.
llvm-svn: 136999
SBTypeList does not have IsValid() method defined. It's always valid in a sense.
So the Python's truth value testing in turn delegates to __len__() method, which
is defined for SBTypeList, and returns 0.
llvm-svn: 136985
Add the rich comparison methods (__eq__, __ne__) to SBType, too.
o lldbtest.py:
Add debug utility method TestBase.DebugSBType().
o test/python_api/type:
Add tests for exercising SBType/SBTypeList API, including the SBTarget.FindTypes(type_name)
API which returns a SBTypeList matching the type_name.
llvm-svn: 136975
And remove expectedFailure decorator for test_SBTypeMember, which no longer exists after the recent changes, replace
it with test_SBTypeList.
llvm-svn: 136947
Sample run on my OSX Lion (MacBook Pro):
1: test_run_gdb_then_lldb (TestDisassembly.DisassembleDriverMainLoop)
Test disassembly on a large function with lldb vs. gdb. ...
gdb benchmark: Avg: 0.201802 (Laps: 5, Total Elapsed Time: 1.009008)
lldb benchmark: Avg: 0.109569 (Laps: 5, Total Elapsed Time: 0.547843)
lldb_avg/gdb_avg: 0.542952
ok
2: test_run_lldb_then_gdb (TestDisassembly.DisassembleDriverMainLoop)
Test disassembly on a large function with lldb vs. gdb. ...
lldb benchmark: Avg: 0.109580 (Laps: 5, Total Elapsed Time: 0.547902)
gdb benchmark: Avg: 0.201587 (Laps: 5, Total Elapsed Time: 1.007936)
lldb_avg/gdb_avg: 0.543588
ok
llvm-svn: 136931
There should be nothing unwanted there and a simpe main.cpp (generated from main.cpp.template)
which includes SB*.h should compile and link with the LLDB framework.
llvm-svn: 136894
- accordingly, the test cases for the synthetic providers for the std:: containers have been edited to use
${svar%#} instead of ${svar.len} to print out the count of elements ; the .len synthetic child has been
removed from the synthetic providers
The synthetic children providers for the std:: containers now return None when asked for children indexes >= num_children()
Basic code to support filter names based on regular expressions (WIP)
llvm-svn: 136862
The synthetic children providers now use the new (safer) APIs to get the values of objects
As a side effect, fixed an issue in ValueObject where ResolveValue() was not always updating the value before reading it
llvm-svn: 136861
the SBType implementation classes.
Fixed LLDB core and the test suite to not use deprecated SBValue APIs.
Added a few new APIs to SBValue:
int64_t
SBValue::GetValueAsSigned(int64_t fail_value=0);
uint64_t
SBValue::GetValueAsUnsigned(uint64_t fail_value=0)
llvm-svn: 136829
to make & delete directories in the test case. Make a real copy of libd.dylib
in that directory so the two libraries are actually different. Use (and remove)
the DYLD_LIBRARY_PATH to point to the new library.
llvm-svn: 136801
current context. Previously, if there was a variable
called "self" available, the expression parser
assumed it was inside a method. But class methods
in Objective-C also take a "self" parameter, of DWARF
type "id". We now detect this properly, and only
assume we're in an instance method if "self" is a
pointer to an Objective-C object.
llvm-svn: 136784
- see the test case in lang/objc/objc-dynamic-value for an example
Objective-C dynamic type lookup now works for every Objective-C type
- previously, true dynamic lookup was only performed for type id
llvm-svn: 136763
Modify lldbbench.py so that lldbtest.line_number() utility function is available to
BenchBase client as just line_number(), and modify lldbtest.py so that self.lldbExec
(the full path for the 'lldb' executable) is available to BenchBase client as well.
An example run of the test case on my MacBook Pro running Lion:
1: test_compare_lldb_to_gdb (TestRepeatedExprs.RepeatedExprsCase)
Test repeated expressions with lldb vs. gdb. ...
lldb_avg: 0.204339
gdb_avg: 0.205721
lldb_avg/gdb_avg: 0.993284
ok
llvm-svn: 136740
appropriately between C++ static methods and non-static
methods. This bug made it impossible to call most static
methods, either because Clang did not recognize that a
method could be called without providing a "this"
parameter, or because Clang did not properly mangle the
name of the method when searching for it in the target.
Also added a testcase.
llvm-svn: 136733
Fixed a bug where Objective-C variables coming out of the expression parser could crash the Python synthetic providers:
- expression parser output has a "frozen data" component, which is a byte-exact copy of the value (in host memory),
if trying to read into memory based on the host address, LLDB would crash. we are now passing the correct (target)
pointer to the Python code
Objective-C "id" variables are now formatted according to their dynamic type, if the -d option to frame variable is used:
- Code based on the Objective-C 2.0 runtime is used to obtain this information without running code on the target
llvm-svn: 136695
Stopwatch (self.swatch) within the BenchBase's setUp() instance method to be available
to all the child classes.
Use self.swatch to measure elapsed time in TestRepeatedExprs.py, which needs to be
modified later on to actually measure repeated expression evaluations within the
context of lldb as well as gdb.
llvm-svn: 136664
while its API clients remain unchanged. The new lldbtest.Base class is to capture common behaviors
when working with the test driver to accomplish things. The clients of lldbtest.Base can be
lldb command line and api tests as well as other generic tests like a benchmark test.
llvm-svn: 136636
The test driver now takes an option "+b" which enables to run just the benchmarks tests.
By default, tests decorated with the @benchmarks_test decorator do not get run.
Add an example benchmarks test directory which contains nothing for the time being,
just to demonstrate the @benchmarks_test concept.
For example,
$ ./dotest.py -v benchmarks
...
----------------------------------------------------------------------
Collected 2 tests
1: test_with_gdb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with gdb. ... skipped 'benchmarks tests'
2: test_with_lldb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with lldb. ... skipped 'benchmarks tests'
----------------------------------------------------------------------
Ran 2 tests in 0.047s
OK (skipped=2)
$ ./dotest.py -v +b benchmarks
...
----------------------------------------------------------------------
Collected 2 tests
1: test_with_gdb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with gdb. ... running test_with_gdb
benchmarks result for test_with_gdb
ok
2: test_with_lldb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with lldb. ... running test_with_lldb
benchmarks result for test_with_lldb
ok
----------------------------------------------------------------------
Ran 2 tests in 0.270s
OK
Also mark some Python API tests which are missing the @python_api_test decorator.
llvm-svn: 136553
to find out the tests which failed/errored and need re-running. The dotest.py test driver
script is modified to allow specifying multiple -f testclass.testmethod in the command line
to accommodate the redo functionality.
An example,
$ ./redo.py -n 2011-07-29-11_50_14
adding filterspec: TargetAPITestCase.test_find_global_variables_with_dwarf
adding filterspec: DisasmAPITestCase.test_with_dsym
Running ./dotest.py -v -f TargetAPITestCase.test_find_global_variables_with_dwarf -f DisasmAPITestCase.test_with_dsym
...
----------------------------------------------------------------------
Collected 2 tests
1: test_with_dsym (TestDisasmAPI.DisasmAPITestCase)
Exercise getting SBAddress objects, disassembly, and SBAddress APIs. ... ok
2: test_find_global_variables_with_dwarf (TestTargetAPI.TargetAPITestCase)
Exercise SBTarget.FindGlobalVariables() API. ... ok
----------------------------------------------------------------------
Ran 2 tests in 15.328s
OK
llvm-svn: 136533
- Completely new implementation of SBType
- Various enhancements in several other classes
Python synthetic children providers for std::vector<T>, std::list<T> and std::map<K,V>:
- these return the actual elements into the container as the children of the container
- basic template name parsing that works (hopefully) on both Clang and GCC
- find them in examples/synthetic and in the test suite in functionalities/data-formatter/data-formatter-python-synth
New summary string token ${svar :
- the syntax is just the same as in ${var but this new token lets you read the values
coming from the synthetic children provider instead of the actual children
- Python providers above provide a synthetic child len that returns the number of elements
into the container
Full bug fix for the issue in which getting byte size for a non-complete type would crash LLDB
Several other fixes, including:
- inverted the order of arguments in the ClangASTType constructor
- EvaluationPoint now only returns SharedPointer's to Target and Process
- the help text for several type subcommands now correctly indicates argument-less options as such
llvm-svn: 136504
self.expect("expression -- '(anonymous namespace)::i'", VARIABLES_DISPLAYED_CORRECTLY,
substrs = [" = 3"])
to get rid of the '(anonymous namespace)', which is not c++ syntax, thingy fed to the expression parser.
According to rdar://problem/8668674. It is still marked expectedFailure since the bug has not been fixed.
llvm-svn: 136290
end of list test function as __eol_test__.
The simple example can be reduced to:
for t in task_head.linked_list_iter('next'):
print t
Modify the test program to exercise the API for both cases: supplying or not
supplying an end of list test function.
llvm-svn: 136144
too complex in the test case. We can just simply test that the SBValue object
is a valid object and it does not correspond to a null pointer in order to say
that EOL has not been reached.
Modify the test case and the lldb.py docstring to have a more compact test
function.
llvm-svn: 136123
to iterate through an SBValue instance by treating it as the head of a linked
list. API program must provide two args to the linked_list_iter() method:
the first being the child member name which points to the next item on the list
and the second being a Python function which an SBValue (for the next item) and
returns True if end of list is reached, otherwise it returns False.
For example, suppose we have the following sample program.
#include <stdio.h>
class Task {
public:
int id;
Task *next;
Task(int i, Task *n):
id(i),
next(n)
{}
};
int main (int argc, char const *argv[])
{
Task *task_head = new Task(-1, NULL);
Task *task1 = new Task(1, NULL);
Task *task2 = new Task(2, NULL);
Task *task3 = new Task(3, NULL); // Orphaned.
Task *task4 = new Task(4, NULL);
Task *task5 = new Task(5, NULL);
task_head->next = task1;
task1->next = task2;
task2->next = task4;
task4->next = task5;
int total = 0; // Break at this line
Task *t = task_head;
while (t != NULL) {
if (t->id >= 0)
++total;
t = t->next;
}
printf("We have a total number of %d tasks\n", total);
return 0;
}
The test program produces the following output while exercising the linked_list_iter() SBVAlue API:
task_head:
TypeName -> Task *
ByteSize -> 8
NumChildren -> 2
Value -> 0x0000000106400380
ValueType -> local_variable
Summary -> None
IsPointerType -> True
Location -> 0x00007fff65f06e60
(Task *) next = 0x0000000106400390
(int) id = 1
(Task *) next = 0x00000001064003a0
(Task *) next = 0x00000001064003a0
(int) id = 2
(Task *) next = 0x00000001064003c0
(Task *) next = 0x00000001064003c0
(int) id = 4
(Task *) next = 0x00000001064003d0
(Task *) next = 0x00000001064003d0
(int) id = 5
(Task *) next = 0x0000000000000000
llvm-svn: 135938
added a final newline to fooSynthProvider.py
new option to automatically save user input in InputReaderEZ
checking for NULL pointers in several new places
llvm-svn: 135916
- you can now define a Python class as a synthetic children producer for a type
the class must adhere to this "interface":
def __init__(self, valobj, dict):
def get_child_at_index(self, index):
def get_child_index(self, name):
then using type synth add -l className typeName
(e.g. type synth add -l fooSynthProvider foo)
(This is still WIP with lots to be added)
A small test case is available also as reference
llvm-svn: 135865
API.
SBTarget changes include changing:
bool
SBTarget::ResolveLoadAddress (lldb::addr_t vm_addr,
lldb::SBAddress& addr);
to be:
lldb::SBAddress
SBTarget::ResolveLoadAddress (lldb::addr_t vm_addr);
SBAddress can how contruct itself using a load address and a target
which can be used to resolve the address:
SBAddress (lldb::addr_t load_addr, lldb::SBTarget &target);
This will actually just call the new SetLoadAddress accessor:
void
SetLoadAddress (lldb::addr_t load_addr,
lldb::SBTarget &target);
This function will always succeed in making a SBAddress object
that can be used in API calls (even if "target" isn't valid).
If "target" is valid and there are sections currently loaded,
then it will resolve the address to a section offset address if
it can. Else an address with a NULL section and an offset that is
the "load_addr" that was passed in. We do this because a load address
might be from the heap or stack.
llvm-svn: 135770
(e.g. ${var%S}). this might already be the default if your variable is of an aggregate type
new feature: synthetic filters. you can restrict the number of children for your variables to only a meaningful subset
- the restricted list of children obeys the typical rules (e.g. summaries prevail over children)
- one-line summaries show only the filtered (synthetic) children, if you type an expanded summary string, or you use Python scripts, all the real children are accessible
- to provide a synthetic children list use the "type synth add" command, as in:
type synth add foo_type --child varA --child varB[0] --child varC->packet->flags[1-4]
(you can use ., ->, single-item array operator [N] and bitfield operator [N-M]; array slice access is not supported, giving simplified names to expression paths is not supported)
- a new -S option to frame variable and target variable lets you override synthetic children and instead show real ones
llvm-svn: 135731
Code cleanup:
- The Format Manager implementation is now split between two files: FormatClasses.{h|cpp} where the
actual formatter classes (ValueFormat, SummaryFormat, ...) are implemented and
FormatManager.{h|cpp} where the infrastructure classes (FormatNavigator, FormatManager, ...)
are contained. The wrapper code always remains in Debugger.{h|cpp}
- Several leftover fields, methods and comments from previous design choices have been removed
type category subcommands (enable, disable, delete) now can take a list of category names as input
- for type category enable, saying "enable A B C" is the same as saying
enable C
enable B
enable A
(the ordering is relevant in enabling categories, and it is expected that a user typing
enable A B C wants to look into category A, then into B, then into C and not the other
way round)
- for the other two commands, the order is not really relevant (however, the same inverted ordering
is used for consistency)
llvm-svn: 135494
The "systemwide summaries" feature has been removed and replaced with a more general and
powerful mechanism.
Categories:
- summaries can now be grouped into buckets, called "categories" (it is expected that categories
correspond to libraries and/or runtime environments)
- to add a summary to a category, you can use the -w option to type summary add and give
a category name (e.g. type summary add -f "foo" foo_t -w foo_category)
- categories are by default disabled, which means LLDB will not look into them for summaries,
to enable a category use "type category enable". once a category is enabled, LLDB will
look into that category for summaries. the rules are quite trivial: every enabled category
is searched for an exact match. if an exact match is nowhere to be found, any match is
searched for in every enabled category (whether it involves cascading, going to base classes,
...). categories are searched into the order in which they were enabled (the most recently
enabled category first, then the second most and so on..)
- by default, most commands that deal with summaries, use a category named "default" if no
explicit -w parameter is given (the observable behavior of LLDB should not change when
categories are not explicitly used)
- the systemwide summaries are now part of a "system" category
llvm-svn: 135463
- help type summary add now gives some hints on how to use it
frame variable and target variable now have a --no-summary-depth (-Y) option:
- simply using -Y without an argument will skip one level of summaries, i.e.
your aggregate types will expand their children and display no summary, even
if they have one. children will behave normally
- using -Y<int>, as in -Y4, -Y7, ..., will skip as many levels of summaries as
given by the <int> parameter (obviously, -Y and -Y1 are the same thing). children
beneath the given depth level will behave normally
-Y0 is the same as omitting the --no-summary-depth parameter entirely
This option replaces the defined-but-unimplemented --no-summary
llvm-svn: 135336
- Summaries for char*, const char* and char[] are loaded at startup as
system-wide summaries. This means you cannot delete them unless you use
the -a option to type summary delete/clear
- You can add your own system-wide summaries by using the -w option to type
summary add
Several code improvements for the Python summaries feature
llvm-svn: 135326
represent pointers and arrays by adding an extra parameter to the
SBValue
SBValue::GetChildAtIndex (uint32_t idx,
DynamicValueType use_dynamic,
bool can_create_synthetic);
The new "can_create_synthetic" will allow you to create child values that
aren't actually a part of the original type. So if you code like:
int *foo_ptr = ...
And you have a SBValue that contains the value for "foo_ptr":
SBValue foo_value = ...
You can now get the "foo_ptr[12]" item by doing this:
v = foo_value.GetChiltAtIndex (12, lldb.eNoDynamicValues, True);
Normall the "foo_value" would only have one child value (an integer), but
we can create "synthetic" child values by treating the pointer as an array.
Likewise if you have code like:
int array[2];
array_value = ....
v = array_value.GetChiltAtIndex (0); // Success, v will be valid
v = array_value.GetChiltAtIndex (1); // Success, v will be valid
v = array_value.GetChiltAtIndex (2); // Fail, v won't be valid, "2" is not a valid zero based index in "array"
But if you use the ability to create synthetic children:
v = array_value.GetChiltAtIndex (0, lldb.eNoDynamicValues, True); // Success, v will be valid
v = array_value.GetChiltAtIndex (1, lldb.eNoDynamicValues, True); // Success, v will be valid
v = array_value.GetChiltAtIndex (2, lldb.eNoDynamicValues, True); // Success, v will be valid
llvm-svn: 135292
- you can use a Python script to write a summary string for data-types, in one of
three ways:
-P option and typing the script a line at a time
-s option and passing a one-line Python script
-F option and passing the name of a Python function
these options all work for the "type summary add" command
your Python code (if provided through -P or -s) is wrapped in a function
that accepts two parameters: valobj (a ValueObject) and dict (an LLDB
internal dictionary object). if you use -F and give a function name,
you're expected to define the function on your own and with the right
prototype. your function, however defined, must return a Python string
- test case for the Python summary feature
- a few quirks:
Python summaries cannot have names, and cannot use regex as type names
both issues will be fixed ASAP
major redesign of type summary code:
- type summary working with strings and type summary working with Python code
are two classes, with a common base class SummaryFormat
- SummaryFormat classes now are able to actively format objects rather than
just aggregating data
- cleaner code to print descriptions for summaries
the public API now exports a method to easily navigate a ValueObject hierarchy
New InputReaderEZ and PriorityPointerPair classes
Several minor fixes and improvements
llvm-svn: 135238