AST file, along with an enumeration naming those predefined
declarations. No functionality change, but this will make it easier to
introduce new predefined declarations, when/if we need them.
llvm-svn: 136781
reader, to allow AST files to be loaded with their declarations
remapped to different ID numbers. Fix a number of places where we were
either failing to map local declaration IDs into global declaration
IDs or where interpreting the local declaration IDs within the wrong
module.
I've tested this via the usual "random gaps" method. It works well
except for the preamble tests, because our handling of the precompiled
preamble requires declaration and preprocessed entity to be stable
when parsing code and then loading that back into memory. This
property will hold in general, but my randomized testing naturally
breaks this property to get more coverage. In the future, I expect
that the precompiled preamble logic won't need this property.
I am very unhappy with the current handling of the translation unit,
which is a rather egregious hack. We're going to have to do something
very different here for loading multiple AST files, because we don't
want to have to cope with merging two translation units. Likely, we'll
just handle translation units entirely via "update" records, and
predefine a single, fixed declaration ID for the translation
unit. That will come later.
llvm-svn: 136779
by eliminating the type ID from constructor, destructor, and
conversion function names. There are several reasons for this change:
- A given type (say, int*) isn't guaranteed to have a single, unique
type ID within a chain of PCH files. Hence, we could end up hashing
based on the wrong type ID, causing name lookup to fail.
- The mapping from types back to type IDs required one DenseMap
entry for every type that was ever deserialized, which was an
unacceptable cost to support just the name lookup of constructors,
destructors, and conversion functions. Plus, this mapping could
never actually work with chained or multiple PCH, based on the first
bullet.
Once we have eliminated the type from the hash function, these
problems go away, as does my horrible "reverse type remap" hack, which
was doomed from the start (see bullet #1 above) and far too
complicated.
However, note that removing the type from the hash function means that
all constructors, destructors, and conversion functions have the same
hash key, so I've updated the caller to double-check that the
declarations found have the appropriate name.
llvm-svn: 136708
reader. This scheme permits an AST file to be loaded with its type IDs
shifted anywhere in the type ID space.
At present, the type indices are still allocated in the same boring
way they always have been, just by adding up the number of types in
each PCH file within the chain. However, I've done testing with this
patch by randomly sliding the base indices at load time, to ensure
that remapping is occurring as expected. I may eventually formalize
this in some testing flag, but loading multiple (non-chained) AST
files at once will eventually exercise the same code.
There is one known problem with this patch, which involves name lookup
of operator names (e.g., "x.operator int*()") in cases where multiple
PCH files in the chain. The hash function itself depends on having a
stable type ID, which doesn't happen with chained PCH and *certainly*
doesn't happen when sliding type IDs around. We'll need another
approach. I'll tackle that next.
llvm-svn: 136693
reader statistics), to show the local-to-global mappings. The only
such mapping we have (at least, for now) is for source location
offsets.
llvm-svn: 136687
were (Module*, Offset) with equivalent maps whose value type is just a
Module*. The offsets have moved into corresponding "Base" fields
within the Module itself, where they will also be helpful for
local->global translation (eventually).
llvm-svn: 136441
point, ASTReader::InitializeSema() has very little interesting work,
*except* issues stemming from preloaded declarations. That's something
we'll still need to cope with.
llvm-svn: 136378
completely broken deserialization mapping code we had for VTableUses,
which would have broken horribly as soon as our local-to-global ID
mapping became interesting.
llvm-svn: 136371
we could turn this into an on-disk hash table so we don't load the
whole thing the first time we need it. However, it tends to be very,
very small (i.e., empty) for most precompiled headers, so it isn't all
that interesting.
llvm-svn: 136352
- Added LazyVector::erase() to support this use case.
- Factored out the LazyDecl-of-Decls to RecordData translation in
the ASTWriter. There is still a pile of code duplication here to
eliminate.
llvm-svn: 136270
contents are lazily loaded on demand from an external source (e.g., an
ExternalASTSource or ExternalSemaSource). The "loaded" entities are
kept separate from the "local" entities, so that the two can grow
independently.
Switch Sema::TentativeDefinitions from a normal vector that is eagerly
populated by the ASTReader into one of these LazyVectors, making the
ASTReader a bit more like me (i.e., lazy).
llvm-svn: 136262
etc. With this I think essentially all of the SourceManager APIs are
converted. Comments and random other bits of cleanup should be all thats
left.
llvm-svn: 136057
and various other 'expansion' based terms. I've tried to reformat where
appropriate and catch as many references in comments but I'm going to do
several more passes. Also I've tried to expand parameter names to be
more clear where appropriate.
llvm-svn: 136056
so that we have one, simple way to map from global bit offsets to
local bit offsets. Eliminates a number of loops over the chain, and
generalizes for more interesting bit remappings.
Also, as an amusing oddity, we were computing global bit offsets
*backwards* for preprocessed entities (e.g., the directly included PCH
file in the chain would start at offset zero, rather than the original
PCH that occurs first in translation unit). Even more amusingly, it
made precompiled preambles work, because we were forgetting to adjust
the local bit offset to a global bit offset when storing preprocessed
entity offsets in the ASTUnit. Two wrongs made a right, and now
they're both right.
llvm-svn: 135750
type IDs into a single place, and make sure that all of the callers
use the appropriate functions to do the mapping. Since the mapping is
still the identity function, this is essentially a no-op.
llvm-svn: 135733
such that every declaration ID loaded from an AST file will go through
a central local -> global mapping function. At present, this change
does nothing, since the local -> global mapping function is the
identity function.
This is the mechanical part of the refactoring; a follow-up patch will
address a few remaining areas where it's not obvious whether we're
dealing with local or global IDs.
llvm-svn: 135711
entities generated directly by the preprocessor from those loaded from
the external source (e.g., the ASTReader). By separating these two
sets of entities into different vectors, we allow both to grow
independently, and eliminate the need for preallocating all of the
loaded preprocessing entities. This is similar to the way the recent
SourceManager refactoring treats FileIDs and the source location
address space.
As part of this, switch over to building a continuous range map to
track preprocessing entities.
llvm-svn: 135646
the AST reader down to the AST file + local ID, rather than walking
the PCH chain. More cleanup/generalization, although there is more
work to do for preprocessed entities. In particular, the
"preallocation" scheme for preprocessed entities is not going to work
well with late loading of PCH files, and it's likely we'll have to do
something akin to the SourceManager's negative/positive loading.
llvm-svn: 135556
reader down to the AST file + local ID, rather than walking the PCH
chain. No functionality change; this is generalization and cleanup.
llvm-svn: 135554
AST reader down to the AST file + local ID, rather than walking the
PCH chain. No functionality change; this is generalization and cleanup.
llvm-svn: 135551
AST reader down to the AST file + local ID within that file, rather
than lamely walking the PCH chain. There's no actual functionality
change now, but this is cleaner and more general.
llvm-svn: 135548
source locations from source locations loaded from an AST/PCH file.
Previously, loading an AST/PCH file involved carefully pre-allocating
space at the beginning of the source manager for the source locations
and FileIDs that correspond to the prefix, and then appending the
source locations/FileIDs used for parsing the remaining translation
unit. This design forced us into loading PCH files early, as a prefix,
whic has become a rather significant limitation.
This patch splits the SourceManager space into two parts: for source
location "addresses", the lower values (growing upward) are used to
describe parsed code, while upper values (growing downward) are used
for source locations loaded from AST/PCH files. Similarly, positive
FileIDs are used to describe parsed code while negative FileIDs are
used to file/macro locations loaded from AST/PCH files. As a result,
we can load PCH/AST files even during parsing, making various
improvemnts in the future possible, e.g., teaching #include <foo.h> to
look for and load <foo.h.gch> if it happens to be already available.
This patch was originally written by Sebastian Redl, then brought
forward to the modern age by Jonathan Turner, and finally
polished/finished by me to be committed.
llvm-svn: 135484
to allow clients to specify that they've already (correctly) loaded
declarations, and that no further action is needed.
Also, make sure that we clear the "has external lexical declarations"
bit before calling FindExternalLexicalDecls(), to avoid infinite
recursion.
llvm-svn: 135306
Also add the missing serialization support for SEHTryStmt,
SEHFinallyStmt, and SEHExceptStmt, and fix and finish the
serialization support for AsTypeExpr. In addition, change
the code so that it will no longer link if a Stmt subclass
is missing serialization support.
llvm-svn: 135258
variants to 'expand'. This changed a couple of public APIs, including
one public type "MacroInstantiation" which is now "MacroExpansion". The
rest of the codebase was updated to reflect this, especially the
libclang code. Two of the C++ (and thus easily changed) libclang APIs
were updated as well because they pertained directly to the old
MacroInstantiation class.
No functionality changed.
llvm-svn: 135139
throw-expressions, such that we don't consider the NRVO when the
non-volatile automatic object comes from outside the innermost try
scope (C++0x [class.copymove]p13). In C++98/03, our ASTs were
incorrect but it didn't matter because IR generation doesn't actually
apply the NRVO here. In C++0x, however, we were moving from an object
when in fact we should have copied from it. Fixes PR10142 /
<rdar://problem/9714312>.
llvm-svn: 134548
type/expression/template argument/etc. is instantiation-dependent if
it somehow involves a template parameter, even if it doesn't meet the
requirements for the more common kinds of dependence (dependent type,
type-dependent expression, value-dependent expression).
When we see an instantiation-dependent type, we know we always need to
perform substitution into that instantiation-dependent type. This
keeps us from short-circuiting evaluation in places where we
shouldn't, and lets us properly implement C++0x [temp.type]p2.
In theory, this would also allow us to properly mangle
instantiation-dependent-but-not-dependent decltype types per the
Itanium C++ ABI, but we aren't quite there because we still mangle
based on the canonical type in cases like, e.g.,
template<unsigned> struct A { };
template<typename T>
void f(A<sizeof(sizeof(decltype(T() + T())))>) { }
template void f<int>(A<sizeof(sizeof(int))>);
and therefore get the wrong answer.
llvm-svn: 134225
for a template template parameter.
Uses to follow.
I've also made the uniquing of SubstTemplateTemplateParmPacks
use a ContextualFoldingSet as a minor space efficiency.
llvm-svn: 134137
vector<int>
to
std::vector<int>
Patch by Kaelyn Uhrain, with minor tweaks + PCH support from me. Fixes
PR5776/<rdar://problem/8652971>.
Thanks Kaelyn!
llvm-svn: 134007
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
they should still be officially __strong for the purposes of errors,
block capture, etc. Make a new bit on variables, isARCPseudoStrong(),
and set this for 'self' and these enumeration-loop variables. Change
the code that was looking for the old patterns to look for this bit,
and change IR generation to find this bit and treat the resulting
variable as __unsafe_unretained for the purposes of init/destroy in
the two places it can come up.
llvm-svn: 133243
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
Related result types apply Cocoa conventions to the type of message
sends and property accesses to Objective-C methods that are known to
always return objects whose type is the same as the type of the
receiving class (or a subclass thereof), such as +alloc and
-init. This tightens up static type safety for Objective-C, so that we
now diagnose mistakes like this:
t.m:4:10: warning: incompatible pointer types initializing 'NSSet *'
with an
expression of type 'NSArray *' [-Wincompatible-pointer-types]
NSSet *array = [[NSArray alloc] init];
^ ~~~~~~~~~~~~~~~~~~~~~~
/System/Library/Frameworks/Foundation.framework/Headers/NSObject.h:72:1:
note:
instance method 'init' is assumed to return an instance of its
receiver
type ('NSArray *')
- (id)init;
^
It also means that we get decent type inference when writing code in
Objective-C++0x:
auto array = [[NSMutableArray alloc] initWithObjects:@"one", @"two",nil];
// ^ now infers NSMutableArray* rather than id
llvm-svn: 132868
__builtin_astype(): Used to reinterpreted as another data type of the same size using for both scalar and vector data types.
Added test case.
llvm-svn: 132612
in ASTReader::validateFileEntries().
This avoids going through all source location entries and fixes the performance regression.
Many thanks to Doug for the hint!
(rdar://9530587)
llvm-svn: 132481
a file was modified since the time the PCH was created.
The parser is not fit to deal with stale PCHs, too many invariants do not hold up. rdar://9530587.
llvm-svn: 132389
type that turns one type into another. This is used as the basis to
implement __underlying_type properly - with TypeSourceInfo and proper
behavior in the face of templates.
llvm-svn: 132017
hasTrivialDefaultConstructor() really really means it now.
Also implement a fun standards bug regarding aggregates. Doug, if you'd
like, I can un-implement that bug if you think it is truly a defect.
The bug is that non-special-member constructors are never considered
user-provided, so the following is an aggregate:
struct foo {
foo(int);
};
It's kind of bad, but the solution isn't obvious - should
struct foo {
foo (int) = delete;
};
be an aggregate or not?
Lastly, add a missing initialization to FunctionDecl.
llvm-svn: 131101
build a precompiled header. Use this information to eliminate the call
to SourceManager::getLocation() while loading a precompiled preamble,
since SourceManager::getLocation() itself causes unwanted
deserialization.
Fixed <rdar://problem/9399352>.
llvm-svn: 131021
- New isDefined() function checks for deletedness
- isThisDeclarationADefinition checks for deletedness
- New doesThisDeclarationHaveABody() does what
isThisDeclarationADefinition() used to do
- The IsDeleted bit is not propagated across redeclarations
- isDeleted() now checks the canoncial declaration
- New isDeletedAsWritten() does what it says on the tin.
- isUserProvided() now correct (thanks Richard!)
This fixes the bug that we weren't catching
void foo() = delete;
void foo() {}
as being a redefinition.
llvm-svn: 131013
CXTranslationUnit_NestedMacroInstantiations, which indicates whether
we want to see "nested" macro instantiations (e.g., those that occur
inside other macro instantiations) within the detailed preprocessing
record. Many clients (e.g., those that only care about visible tokens)
don't care about this information, and in code that uses preprocessor
metaprogramming, this information can have a very high cost.
Addresses <rdar://problem/9389320>.
llvm-svn: 130990
Increase robustness of the delegating constructor cycle detection
mechanism. No more infinite loops on invalid or logic errors leading to
false results. Ensure that this is maintained correctly accross
serialization.
llvm-svn: 130887
which determines whether a particular file is actually a header that
is intended to be guarded from multiple inclusions within the same
translation unit.
llvm-svn: 130808
Decl actually found via name lookup & overload resolution when that Decl
is different from the ValueDecl which is actually referenced by the
expression.
This can be used by AST consumers to correctly attribute references to
the spelling location of a using declaration, and otherwise gain insight
into the name resolution performed by Clang.
The public interface to DRE is kept as narrow as possible: we provide
a getFoundDecl() which always returns a NamedDecl, either the ValueDecl
referenced or the new, more precise NamedDecl if present. This way AST
clients can code against getFoundDecl without know when exactly the AST
has a split representation.
For an example of the data this provides consider:
% cat x.cc
namespace N1 {
struct S {};
void f(const S&);
}
void test(N1::S s) {
f(s);
using N1::f;
f(s);
}
% ./bin/clang -fsyntax-only -Xclang -ast-dump x.cc
[...]
void test(N1::S s) (CompoundStmt 0x5b02010 <x.cc:5:20, line:9:1>
(CallExpr 0x5b01df0 <line:6:3, col:6> 'void'
(ImplicitCastExpr 0x5b01dd8 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay>
(DeclRefExpr 0x5b01d80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)'))
(ImplicitCastExpr 0x5b01e20 <col:5> 'const struct N1::S' lvalue <NoOp>
(DeclRefExpr 0x5b01d58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S')))
(DeclStmt 0x5b01ee0 <line:7:3, col:14>
0x5b01e40 "UsingN1::;")
(CallExpr 0x5b01fc8 <line:8:3, col:6> 'void'
(ImplicitCastExpr 0x5b01fb0 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay>
(DeclRefExpr 0x5b01f80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)' (UsingShadow 0x5b01ea0 'f')))
(ImplicitCastExpr 0x5b01ff8 <col:5> 'const struct N1::S' lvalue <NoOp>
(DeclRefExpr 0x5b01f58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S'))))
Now we can tell that the second call is 'using' (no pun intended) the using
declaration, and *which* using declaration it sees. Without this, we can
mistake calls that go through using declarations for ADL calls, and have no way
to attribute names looked up with using declarations to the appropriate
UsingDecl.
llvm-svn: 130670
parameter node and use this to correctly mangle parameter
references in function template signatures.
A follow-up patch will improve the storage usage of these
fields; here I've just done the lazy thing.
llvm-svn: 130669
NestedNameSpecifierLoc. It predates when we had such an object.
Reference the NNSLoc directly in DREs, and embed it directly into the
MemberNameQualifier struct.
llvm-svn: 130668
Mostly trailing whitespace so that me editor nuking it doesn't muddy the
waters of subsequent commits that do change functionality.
Also nukes a stray statement that was harmless but redundant that
I introduced in r130666.
llvm-svn: 130667
a bitfield in the base class. DREs weren't using any bits here past the
normal Expr bits, so we have plenty of room. This makes the common case
of getting a Decl out of a DRE no longer need to do any masking etc.
Also, while here, clean up code to use the accessor methods rather than
directly poking these bits, and provide a nice comment for DREs that
includes the information previously attached to the bits going into the
pointer union.
No functionality changed here, but DREs should be a tad faster now.
llvm-svn: 130666
accompanying fixes to make it work today.
The core of this patch is to provide a link from a TemplateTypeParmType
back to the TemplateTypeParmDecl node which declared it. This in turn
provides much more precise information about the type, where it came
from, and how it functions for AST consumers.
To make the patch work almost a year after its first attempt, it needed
serialization support, and it now retains the old getName() interface.
Finally, it requires us to not attempt to instantiate the type in an
unsupported friend decl -- specifically those coming from template
friend decls but which refer to a specific type through a dependent
name.
A cleaner representation of the last item would be to build
FriendTemplateDecl nodes for these, storing their template parameters
etc, and to perform proper instantation of them like any other template
declaration. They can still be flagged as unsupported for the purpose of
access checking, etc.
This passed an asserts-enabled bootstrap for me, and the reduced test
case mentioned in the original review thread no longer causes issues,
likely fixed at somewhere amidst the 24k revisions that have elapsed.
llvm-svn: 130628
type trait. The previous implementation suffered from several problems:
1) It implemented all of the logic in RecordType by walking over every
base and field in a CXXRecordDecl and validating the constraints of
the standard. This made for very straightforward code, but is
extremely inefficient. It also is conceptually wrong, the logic tied
to the C++ definition of standard-layout classes should be in
CXXRecordDecl, not RecordType.
2) To address the performance problems with #1, a cache bit was added to
CXXRecordDecl, and at the completion of every C++ class, the
RecordType was queried to determine if it was a standard layout
class, and that state was cached. Two things went very very wrong
with this. First, the caching version of the query *was never
called*. Even within the recursive steps of the walk over all fields
and bases the caching variant was not called, making each query
a full *recursive* walk. Second, despite the cache not being used, it
was computed for every class declared, even when the trait was never
used in the program. This probably significantly regressed compile
time performance for edge-case files.
3) An ASTContext was required merely to query the type trait because
querying it performed the actual computations.
4) The caching bit wasn't managed correctly (uninitialized).
The new implementation follows the system for all the other traits on
C++ classes by encoding all the state needed in the definition data and
building up the trait incrementally as each base and member are added to
the definition of the class.
The idiosyncracies of the specification of standard-layout classes
requires more state than I would like; currently 5 bits. I could
eliminate one of the bits easily at the expense of both clarity and
resilience of the code. I might be able to eliminate one of the other
bits by computing its state in terms of other state bits in the
definition. I've already done that in one place where there was a fairly
simple way to achieve it.
It's possible some of the bits could be moved out of the definition data
and into some other structure which isn't serialized if the serialized
bloat is a problem. That would preclude serialization of a partial class
declaration, but that's likely already precluded.
Comments on any of these issues welcome.
llvm-svn: 130601
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
member function, i.e. something of the form 'x.f' where 'f' is a non-static
member function. Diagnose this in the general case. Some of the new diagnostics
are probably worse than the old ones, but we now get this right much more
universally, and there's certainly room for improvement in the diagnostics.
llvm-svn: 130239
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
operators in C++ record declarations.
This patch starts off by updating a bunch of the standard citations to
refer to the draft 0x standard so that the semantics intended for move
varianst is clear. Where necessary these are duplicated so they'll be
available in doxygen.
It adds bit fields to keep track of the state for the move constructs,
and updates all the code necessary to track this state (I think) as
members are declared for a class. It also wires the state into the
various trait-like accessors in the AST's API, and tests that the type
trait expressions now behave correctly in the presence of move
constructors and move assignment operators.
This isn't complete yet due to these glaring FIXMEs:
1) No synthesis of implicit move constructors or assignment operators.
2) I don't think we correctly enforce the new logic for both copy and
move trivial checks: that the *selected* copy/move
constructor/operator is trivial. Currently this requires *all* of them
to be trivial.
3) Some of the trait logic needs to be folded into the fine-grained
trivial bits to more closely match the wording of the standard. For
example, many of the places we currently set a bit to track POD-ness
could be removed by querying other more fine grained traits on
demand.
llvm-svn: 130076
language options, and warn when reading an AST with a different value
for the bit.
There doesn't appear to be a good way to test this (commenting out
similar other language options doesn't break anything) but if folks have
suggestions on tests I'm happy to add them.
llvm-svn: 130071
double data[20000000] = {0};
we would blow out the memory by creating 20M Exprs to fill out the initializer.
To fix this, if the initializer list initializes an array with more elements than
there are initializers in the list, have InitListExpr store a single 'ArrayFiller' expression
that specifies an expression to be used for value initialization of the rest of the elements.
Fixes rdar://9275920.
llvm-svn: 129896
during deserialization from a precompiled header, and update all of
its callers to note when this problem occurs and recover (more)
gracefully. Fixes <rdar://problem/9119249>.
llvm-svn: 129839
gcc's unused warnings which don't get emitted if the function is referenced even in an unevaluated context
(e.g. in templates, sizeof, etc.). Also, saying that a function is 'unused' because it won't get codegen'ed
is somewhat misleading.
- Don't emit 'unused' warnings for functions that are referenced in any part of the user's code.
- A warning that an internal function/variable won't get emitted is useful though, so introduce
-Wunneeded-internal-declaration which will warn if a function/variable with internal linkage is not
"needed" ('used' from the codegen perspective), e.g:
static void foo() { }
template <int>
void bar() {
foo();
}
test.cpp:1:13: warning: function 'foo' is not needed and will not be emitted
static void foo() { }
^
Addresses rdar://8733476.
llvm-svn: 129794
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
arguments at the same offset, since it's needed when creating the empty
DeclRefExpr when deserializing. Fixes a memory corruption issue that would lead
to random bugs and crashes.
llvm-svn: 127125
use the translation unit as its declaration context, then deserialize
the actual lexical and semantic DeclContexts after the template
parameter is complete. This avoids problems when the DeclContext
itself (e.g., a class template) is dependent on the template parameter
(e.g., for the injected-class-name).
llvm-svn: 127056
Allow remapping a file by specifying another filename whose contents should be loaded if the original
file gets loaded. This allows to override files without having to create & load buffers in advance.
llvm-svn: 127052
DeclContext once we've created it. This mirrors what we do for
function parameters, where the parameters start out with
translation-unit context and then are adopted by the appropriate
DeclContext when it is created. Also give template parameters public
access and make sure that they don't show up for the purposes of name
lookup.
Fixes PR9400, a regression introduced by r126920, which implemented
substitution of default template arguments provided in template
template parameters (C++ core issue 150).
How on earth could the DeclContext of a template parameter affect the
handling of default template arguments?
I'm so glad you asked! The link is
Sema::getTemplateInstantiationArgs(), which determines the outer
template argument lists that correspond to a given declaration. When
we're instantiating a default template argument for a template
template parameter within the body of a template definition (not it's
instantiation, per core issue 150), we weren't getting any outer
template arguments because the context of the template template
parameter was the translation unit. Now that the context of the
template template parameter is its owning template, we get the
template arguments from the injected-class-name of the owning
template, so substitution works as it should.
llvm-svn: 127004
template arguments. I believe that this is the last place in the AST
where we were storing a source range for a nested-name-specifier
rather than a proper nested-name-specifier location structure. (Yay!)
There is still a lot of cleanup to do in the TreeTransform, which
doesn't take advantage of nested-name-specifiers with source-location
information everywhere it could.
llvm-svn: 126844
template specialization types. There are still a few rough edges to
clean up with some of the parser actions dropping
nested-name-specifiers too early.
llvm-svn: 126776
nested-name-speciciers within elaborated type names, e.g.,
enum clang::NestedNameSpecifier::SpecifierKind
Fixes in this iteration include:
(1) Compute the type-source range properly for a dependent template
specialization type that starts with "template template-id ::", as
in a member access expression
dep->template f<T>::f()
This is a latent bug I triggered with this change (because now we're
checking the computed source ranges for dependent template
specialization types). But the real problem was...
(2) Make sure to set the qualifier range on a dependent template
specialization type appropriately. This will go away once we push
nested-name-specifier locations into dependent template
specialization types, but it was the source of the
valgrind errors on the buildbots.
llvm-svn: 126765
information for qualifier type names throughout the parser to address
several problems.
The commit message from r126737:
Push nested-name-specifier source location information into elaborated
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126748
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126737
DependentNameTypeLoc. Teach the recursive AST visitor and libclang how to
walk DependentNameTypeLoc nodes.
Also, teach libclang about TypedefDecl source ranges, so that we get
those. The massive churn in test/Index/recursive-cxx-member-calls.cpp
is a good thing: we're annotating a lot more of this test correctly
now.
llvm-svn: 126729
source-location information into a NestedNameSpecifierLocBuilder
class, which lives within the AST library and centralize all knowledge
of the format of nested-name-specifier location information here.
No functionality change.
llvm-svn: 126716
UnresolvedLookupExpr and UnresolvedMemberExpr.
Also, improve the computation that checks whether the base of a member
expression (either unresolved or dependent-scoped) is implicit. The
previous check didn't cover all of the cases we use in our
representation, which threw off source-location information for these
expressions (which, in turn, caused some breakage in libclang's token
annotation).
llvm-svn: 126681
CXXDependentScopeMemberExpr, and clean up instantiation of
nested-name-specifiers with dependent template specialization types in
the process.
llvm-svn: 126663
UnresolvedUsingValueDecl to use NestedNameSpecifierLoc rather than the
extremely-lossy NestedNameSpecifier/SourceRange pair it used to use,
improving source-location information.
Various infrastructure updates to support NestedNameSpecifierLoc:
- AST/PCH (de-)serialization
- Recursive AST visitor
- libclang traversal (including the first tests of this
functionality)
llvm-svn: 126459
way it keeps track of namespaces. Previously, we would map from the
namespace alias to its underlying namespace when building a
nested-name-specifier, losing source information in the process.
llvm-svn: 126358
making them be template instantiated in a more normal way and
make them handle attributes like other decls.
This fixes the used/unused label handling stuff, making it use
the same infrastructure as other decls.
llvm-svn: 125771
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744