Parsing and sema analysis (without support for array sections in arguments) for 'depend' clause (used in 'task' directive, OpenMP 4.0).
llvm-svn: 240409
Currently if the variable is captured in captured region, capture record for this region stores reference to this variable for future use. But we don't need to provide the reference to the original variable if it was explicitly marked as private in the 'private' clause of the OpenMP construct, this variable is replaced by private copy.
Differential Revision: http://reviews.llvm.org/D9550
llvm-svn: 240377
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
Added parsing, sema analysis and codegen for '#pragma omp taskgroup' directive (OpenMP 4.0).
The code for directive is generated the following way:
#pragma omp taskgroup
<body>
void __kmpc_taskgroup(<loc>, thread_id);
<body>
void __kmpc_end_taskgroup(<loc>, thread_id);
llvm-svn: 240011
Added codegen for combined 'omp for simd' directives, that is a combination of 'omp for' directive followed by 'omp simd' directive. Includes support for all clauses.
llvm-svn: 239990
Previously the last iteration for simd loop-based OpenMP constructs were generated as a separate code. This feature is not required and codegen is simplified.
llvm-svn: 239810
Patch fixes codegen for aggregate copying of VLAs. Currently method CodeGenFunction::EmitAggregateCopy() does not support copying of VLAs. Patch checks if the size of the type is 0, then checks if the type is actually a variable-length array. Then it calculates total length for this array and calculates total size of the array in bytes:
<total number of elements in array> * aligned_sizeof(ElementType) (if copy assignment is requested).
If simple copying is requested, size is calculated like:
<total number of elements in array> * aligned_sizeof(ElementType) - aligned_sizeof(ElementType) + sizeof(ElementType).
memcpy() is used with this calculated size of the VLA.
Differential Revision: http://reviews.llvm.org/D9851
llvm-svn: 237768
'schedule' clause for combined directives requires additional processing. Special helper variable is generated, that is captured in the outlined parallel region for 'parallel for' region. This captured variable is used to store chunk expression from the 'schedule' clause in this 'parallel for' region.
llvm-svn: 237100
Fixed codegen for reduction operations min, max, && and ||. Codegen for them is quite similar and I was confused by this similarity.
Also added a call to kmpc_end_reduce() in atomic part of reduction codegen (call to kmpc_end_reduce_nowait() is not required).
Differential Revision: http://reviews.llvm.org/D9513
llvm-svn: 236689
For proper codegen we need to capture variable in the OpenMP region. In loop-based directives loop control variables are private by default and they must be captured in this region. There was a problem with capturing of globals, used as lcv, as they was not marked as private by default.
Differential Revision: http://reviews.llvm.org/D9336
llvm-svn: 236201
Adds codegen for 'atomic capture' constructs with the following forms of expressions/statements:
v = x binop= expr;
v = x++;
v = ++x;
v = x--;
v = --x;
v = x = x binop expr;
v = x = expr binop x;
{v = x; x = binop= expr;}
{v = x; x++;}
{v = x; ++x;}
{v = x; x--;}
{v = x; --x;}
{x = x binop expr; v = x;}
{x binop= expr; v = x;}
{x++; v = x;}
{++x; v = x;}
{x--; v = x;}
{--x; v = x;}
{x = x binop expr; v = x;}
{x = expr binop x; v = x;}
{v = x; x = expr;}
If x and expr are integer and binop is associative or x is a LHS in a RHS of the assignment expression, and atomics are allowed for type of x on the target platform atomicrmw instruction is emitted.
Otherwise compare-and-swap sequence is emitted.
Update of 'v' is not required to be be atomic with respect to the read or write of the 'x'.
bb:
...
atomic load <x>
cont:
<expected> = phi [ <x>, label %bb ], [ <new_failed>, %cont ]
<desired> = <expected> binop <expr>
<res> = cmpxchg atomic &<x>, desired, expected
<new_failed> = <res>.field1;
br <res>field2, label %exit, label %cont
exit:
atomic store <old/new x>, <v>
...
Differential Revision: http://reviews.llvm.org/D9049
llvm-svn: 235573
This patch generates helper variables which used as a private copies of the corresponding original variables inside an OpenMP 'for' directive. These generated variables are initialized by default (with the default constructor, if any). In OpenMP region references to original variables are replaced by the references to these private helper variables.
Differential Revision: http://reviews.llvm.org/D9106
llvm-svn: 235503
Patch fixes bugs in codegen for loops with unsigned counters and zero trip count. Previously preconditions for all loops were built using logic (Upper - Lower) > 0. But if the loop is a loop with zero trip count, then Upper - Lower is < 0 only for signed integer, for unsigned we're running into an underflow situation.
In this patch we're using original Lower<Upper condition to check that loop body can be executed at least once. Also this allows to skip code generation for loops, if it is known that preconditions for the loop are always false.
Differential Revision: http://reviews.llvm.org/D9103
llvm-svn: 235500
Currently checks for active data-sharing attributes for variables are performed for found var decls. Instead these checks must be performed for canonical decls of these variables to avoid possible troubles with with the differently qualified re-declarations of the same variable, for example:
namespace A { int x; }
namespace B { using A::x; }
Both A::x and B::x actually reference the same object A::x and this fact must be taken into account during data-sharing attributes analysis.
llvm-svn: 235096
Emits the following code for the clause at the beginning of the outlined function for implicit threads:
if (<not a master thread>) {
...
<thread local copy of var> = <master thread local copy of var>;
...
}
<sync point>;
Checking for a non-master thread is performed by comparing of the address of the thread local variable with the address of the master's variable. Master thread always uses original variables, so you always know the address of the variable in the master thread.
Differential Revision: http://reviews.llvm.org/D9026
llvm-svn: 235075
#pragma omp for lastprivate(<var>)
for (i = a; i < b; ++b)
<BODY>;
This construct is translated into something like:
<last_iter> = alloca i32
<lastprivate_var> = alloca <type>
<last_iter> = 0
; No initializer for simple variables or a default constructor is called for objects.
; For arrays perform element by element initialization by the call of the default constructor.
...
OMP_FOR_START(...,<last_iter>, ..); sets <last_iter> to 1 if this is the last iteration.
<BODY>
...
OMP_FOR_END
if (<last_iter> != 0) {
<var> = <lastprivate_var> ; Update original variable with the lastprivate value.
}
call __kmpc_cancel_barrier() ; an implicit barrier to avoid possible data race.
Differential Revision: http://reviews.llvm.org/D8658
llvm-svn: 235074
Adds proper codegen for 'firstprivate' clause in for directive. Initially codegen for 'firstprivate' clause was implemented for 'parallel' directive only.
Also this patch emits sync point only after initialization of firstprivate variables, not all private variables. This sync point is not required for privates, lastprivates etc., only for initialization of firstprivate variables.
Differential Revision: http://reviews.llvm.org/D8660
llvm-svn: 234978
Fixed a bug with codegen of variables with array types specified in 'copyprivate' clause of 'single' directive.
Differential Revision: http://reviews.llvm.org/D8914
llvm-svn: 234856
Added sema checks for forms of expressions/statements allowed under control of 'atomic capture' directive + generation of helper objects for future codegen.
llvm-svn: 233785
Adds atomic update codegen for the following forms of expressions:
x binop= expr;
x++;
++x;
x--;
--x;
x = x binop expr;
x = expr binop x;
If x and expr are integer and binop is associative or x is a LHS in a RHS of the assignment expression, and atomics are allowed for type of x on the target platform atomicrmw instruction is emitted.
Otherwise compare-and-swap sequence is emitted:
bb:
...
atomic load <x>
cont:
<expected> = phi [ <x>, label %bb ], [ <new_failed>, %cont ]
<desired> = <expected> binop <expr>
<res> = cmpxchg atomic &<x>, desired, expected
<new_failed> = <res>.field1;
br <res>field2, label %exit, label %cont
exit:
...
Differential Revision: http://reviews.llvm.org/D8536
llvm-svn: 233513
If there is at least one 'copyprivate' clause is associated with the single directive, the following code is generated:
```
i32 did_it = 0; \\ for 'copyprivate' clause
if(__kmpc_single(ident_t *, gtid)) {
SingleOpGen();
__kmpc_end_single(ident_t *, gtid);
did_it = 1; \\ for 'copyprivate' clause
}
<copyprivate_list>[0] = &var0;
...
<copyprivate_list>[n] = &varn;
call __kmpc_copyprivate(ident_t *, gtid, <copyprivate_list_size>,
<copyprivate_list>, <copy_func>, did_it);
...
void<copy_func>(void *LHSArg, void *RHSArg) {
Dst = (void * [n])(LHSArg);
Src = (void * [n])(RHSArg);
Dst[0] = Src[0];
... Dst[n] = Src[n];
}
```
All list items from all 'copyprivate' clauses are gathered into single <copyprivate list> (<copyprivate_list_size> is a size in bytes of this list) and <copy_func> is used to propagate values of private or threadprivate variables from the 'single' region to other implicit threads from outer 'parallel' region.
Differential Revision: http://reviews.llvm.org/D8410
llvm-svn: 232932
The linear variable is privatized (similar to 'private') and its
value on current iteration is calculated, similar to the loop
counter variables.
Differential revision: http://reviews.llvm.org/D8375
llvm-svn: 232890
This patch allows using of ExprWithCleanups expressions and other complex expressions in 'omp atomic' construct
Differential Revision: http://reviews.llvm.org/D8200
llvm-svn: 231905
The task region is emmitted in several steps:
Emit a call to kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, kmp_routine_entry_t *task_entry).
Here task_entry is a pointer to the function:
kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
TaskFunction(gtid, tt->part_id, tt->shareds);
return 0;
}
Copy a list of shared variables to field shareds of the resulting structure kmp_task_t returned by the previous call (if any).
Copy a pointer to destructions function to field destructions of the resulting structure kmp_task_t.
Emit a call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *new_task), where new_task is a resulting structure from previous items.
Differential Revision: http://reviews.llvm.org/D7560
llvm-svn: 231762
For global reg lvalue - use regular store through global register.
For simple lvalue - use simple atomic store.
For bitfields, vector element, extended vector elements - the original value of the whole storage (for vector elements) or of some aligned value (for bitfields) is atomically read, the part of this value for the given lvalue is modified and then use atomic compare-and-exchange operation to try to atomically write modified value (if it was not modified).
Also, changes in this patch fix the bug for '#pragma omp atomic read' applied to extended vector elements.
Differential Revision: http://reviews.llvm.org/D7369
llvm-svn: 230736