Commit Graph

139 Commits

Author SHA1 Message Date
Pete Cooper 5562c333b8 Set load alignment on aggregate loads.
When optimizing a extractvalue(load), we generate a load from the
aggregate type.  This load didn't have alignment set and so would
get the alignment of the type.  This breaks when the type is packed
and so the alignment should be lower.

For example, loading { int, int } would give us alignment of 4, but
the original load from this type may have an alignment of 1 if packed.

Reviewed by David Majnemer

Differential revision: http://reviews.llvm.org/D17158

llvm-svn: 260587
2016-02-11 21:10:40 +00:00
Quentin Colombet 7ec03dc7f8 [InstCombine] Revert r238452: Fold IntToPtr and PtrToInt into preceding loads.
According to git bisect, this is the root cause of a miscompile for Regex in
libLLVMSupport. I am still working on reducing a test case.
The actual bug may be elsewhere and this commit just exposed it.

Anyway, at the moment, to reproduce, follow these steps:
1. Build clang and libLTO in release mode.
2. Create a new build directory <stage2> and cd into it.
3. Use clang and libLTO from #1 to build llvm-extract in Release mode + asserts
   using -O2 -flto
4. Run llvm-extract  -ralias '.*bar' -S test/Other/extract-alias.ll

Result:
program doesn't contain global named '.*bar'!

Expected result:
@a0a0bar = alias void ()* @bar
@a0bar = alias void ()* @bar

declare void @bar()

Note: In step #3, if you don't use lto or asserts, the miscompile disappears.
llvm-svn: 259674
2016-02-03 18:04:13 +00:00
Sanjay Patel 4b198802b3 function names start with a lowercase letter; NFC
llvm-svn: 259425
2016-02-01 22:23:39 +00:00
Eduard Burtescu e2a6917849 [opaque pointer types] [NFC] FindAvailableLoadedValue: take LoadInst instead of just the pointer.
Reviewers: mjacob, dblaikie

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D16422

llvm-svn: 258477
2016-01-22 01:51:51 +00:00
Eduard Burtescu 19eb03106d [opaque pointer types] [NFC] GEP: replace get(Pointer)ElementType uses with get{Source,Result}ElementType.
Summary:
GEPOperator: provide getResultElementType alongside getSourceElementType.
This is made possible by adding a result element type field to GetElementPtrConstantExpr, which GetElementPtrInst already has.

GEP: replace get(Pointer)ElementType uses with get{Source,Result}ElementType.

Reviewers: mjacob, dblaikie

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D16275

llvm-svn: 258145
2016-01-19 17:28:00 +00:00
Manuel Jacob 5f6eaac611 GlobalValue: use getValueType() instead of getType()->getPointerElementType().
Reviewers: mjacob

Subscribers: jholewinski, arsenm, dsanders, dblaikie

Patch by Eduard Burtescu.

Differential Revision: http://reviews.llvm.org/D16260

llvm-svn: 257999
2016-01-16 20:30:46 +00:00
Artur Pilipenko 6dd6969cee Change isSafeToLoadUnconditionally arguments order. Separated from http://reviews.llvm.org/D10920.
llvm-svn: 257894
2016-01-15 15:27:46 +00:00
David Majnemer 02f4787e45 [OperandBundles] Have InstCombine play nice with operand bundles
Don't assume a call's use corresponds to an argument operand, it might
correspond to a bundle operand.

llvm-svn: 256327
2015-12-23 09:58:41 +00:00
Philip Reames d7a6cc859a [InstCombine] Extend peephole DSE to handle unordered atomics
This extends the same line of reasoning used in EarlyCSE w/http://reviews.llvm.org/D15352 to the DSE implementation in InstCombine.

Key points:
 * We only remove unordered or simple stores.
 * The loads producing values consumed by dead stores don't influence whether the store is dead.

Differential Revision: http://reviews.llvm.org/D15354

llvm-svn: 255932
2015-12-17 22:19:27 +00:00
NAKAMURA Takumi ec6b1fcf63 InstCombineLoadStoreAlloca.cpp: Avoid instantiating Twine.
llvm-svn: 255637
2015-12-15 09:37:31 +00:00
Mehdi Amini 1c131b37ed Instcombine: destructor loads of structs that do not contains padding
For non padded structs, we can just proceed and deaggregate them.
We don't want ot do this when there is padding in the struct as to not
lose information about this padding (the subsequents passes would then
try hard to preserve the padding, which is undesirable).

Also update extractvalue.ll and cast.ll so that they use structs with padding.

Remove the FIXME in the extractvalue of laod case as the non padded case is
handled when processing the load, and we don't want to do it on the padded
case.

Patch by: Amaury SECHET <deadalnix@gmail.com>

Differential Revision: http://reviews.llvm.org/D14483

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 255600
2015-12-15 01:44:07 +00:00
Artur Pilipenko 5c5011d503 Preserve load alignment and dereferenceable metadata during some transformations
Reviewed By: hfinkel

Differential Revision: http://reviews.llvm.org/D13953

llvm-svn: 251809
2015-11-02 17:53:51 +00:00
Duncan P. N. Exon Smith 9f8aaf21ba InstCombine: Remove ilist iterator implicit conversions, NFC
Stop relying on implicit conversions of ilist iterators in
LLVMInstCombine.  No functionality change intended.

llvm-svn: 250183
2015-10-13 16:59:33 +00:00
Piotr Padlewski dc9b2cfc50 inariant.group handling in GVN
The most important part required to make clang
devirtualization works ( ͡°͜ʖ ͡°).
The code is able to find non local dependencies, but unfortunatelly
because the caller can only handle local dependencies, I had to add
some restrictions to look for dependencies only in the same BB.

http://reviews.llvm.org/D12992

llvm-svn: 249196
2015-10-02 22:12:22 +00:00
Larisse Voufo 532bf7153c Clean up: Refactoring the hardcoded value of 6 for FindAvailableLoadedValue()'s parameter MaxInstsToScan. (Complete version of r247497. See D12886)
llvm-svn: 248022
2015-09-18 19:14:35 +00:00
Larisse Voufo 6b867c7254 Revert "Clean up: Refactoring the hardcoded value of 6 for FindAvailableLoadedValue()'s parameter MaxInstsToScan." for preliminary community discussion (See. D12886)
llvm-svn: 247716
2015-09-15 19:14:05 +00:00
Larisse Voufo f57162b6e7 Clean up: Refactoring the hardcoded value of 6 for FindAvailableLoadedValue()'s parameter MaxInstsToScan.
llvm-svn: 247497
2015-09-12 01:41:55 +00:00
Bruce Mitchener e9ffb45b60 Fix typos.
Summary: This fixes a variety of typos in docs, code and headers.

Subscribers: jholewinski, sanjoy, arsenm, llvm-commits

Differential Revision: http://reviews.llvm.org/D12626

llvm-svn: 247495
2015-09-12 01:17:08 +00:00
Adrian Prantl cbdfdb74d3 Rename Instruction::dropUnknownMetadata() to dropUnknownNonDebugMetadata()
and make it always preserve debug locations, since all callers wanted this
behavior anyway.

This is addressing a post-commit review feedback for r245589.

NFC (inside the LLVM tree).

llvm-svn: 245622
2015-08-20 22:00:30 +00:00
Adrian Prantl baf90fc265 Fix a bug that caused SimplifyCFG to drop DebugLocs.
Instruction::dropUnknownMetadata(KnownSet) is supposed to preserve all
metadata in KnownSet, but the condition for DebugLocs was inverted.

Most users of dropUnknownMetadata() actually worked around this by not
adding LLVMContext::MD_dbg to their list of KnowIDs.
This is now made explicit.

llvm-svn: 245589
2015-08-20 18:24:02 +00:00
Bjorn Steinbrink a6b929dfe2 [InstCombine] Actually combine AA metadata when replacing one load with another
Fixes PR24083

llvm-svn: 241955
2015-07-10 22:30:17 +00:00
Bjorn Steinbrink 8350534772 [InstCombine] Employ AliasAnalysis in FindAvailableLoadedValue
llvm-svn: 241887
2015-07-10 06:55:49 +00:00
Bjorn Steinbrink a91fd0998f [InstCombine] Properly combine metadata when replacing a load with another
Not doing this can lead to misoptimizations down the line, e.g. because
of range metadata on the replacing load excluding values that are valid
for the load that is being replaced.

llvm-svn: 241886
2015-07-10 06:55:44 +00:00
David Majnemer dd04352558 [InstCombine] Fold IntToPtr and PtrToInt into preceding loads.
Currently we only fold a BitCast into a Load when the BitCast is its
only user.

Do the same for any no-op cast.

Differential Revision: http://reviews.llvm.org/D9152

llvm-svn: 238452
2015-05-28 18:39:17 +00:00
Pete Cooper 833f34d837 Convert PHI getIncomingValue() to foreach over incoming_values(). NFC.
We already had a method to iterate over all the incoming values of a PHI.  This just changes all eligible code to use it.

Ineligible code included anything which cared about the index, or was also trying to get the i'th incoming BB.

llvm-svn: 237169
2015-05-12 20:05:31 +00:00
David Majnemer 7536460c0f [InstCombine] Canonicalize single element array store
Use the element type instead of the aggregate type.

Differential Revision: http://reviews.llvm.org/D9591

llvm-svn: 236969
2015-05-11 05:04:27 +00:00
David Majnemer 58fb038b1b [InstCombine] Canonicalize single element array load
Use the element type instead of the aggregate type.

Differential Revision: http://reviews.llvm.org/D9596

llvm-svn: 236968
2015-05-11 05:04:22 +00:00
Mehdi Amini 2668a487a7 Update InstCombine to transform aggregate loads into scalar loads.
Summary:
One step further getting aggregate loads and store being optimized
properly. This will only handle struct with one element at this point.

Test Plan: Added unit tests for the new supported cases.

Reviewers: chandlerc, joker-eph, joker.eph, majnemer

Reviewed By: majnemer

Subscribers: pete, llvm-commits

Differential Revision: http://reviews.llvm.org/D8339

Patch by Amaury Sechet.

From: Amaury Sechet <amaury@fb.com>
llvm-svn: 236695
2015-05-07 05:52:40 +00:00
Benjamin Kramer 3a09ef64ee [CallSite] Make construction from Value* (or Instruction*) explicit.
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.

Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this: 
  if (auto CS = CallSite(V)) // think dyn_cast
instead of:
  if (CallSite CS = V)

This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.

llvm-svn: 234601
2015-04-10 14:50:08 +00:00
David Blaikie d288fb8681 [opaque pointer type] Change GetElementPtrInst::getIndexedType to take the pointee type
This pushes the use of PointerType::getElementType up into several
callers - I'll essentially just have to keep pushing that up the stack
until I can eliminate every call to it...

llvm-svn: 233604
2015-03-30 21:41:43 +00:00
Mehdi Amini b344ac9afe Update InstCombine to transform aggregate stores into scalar stores.
Summary: This is a first step toward getting proper support for aggregate loads and stores.

Test Plan: Added unittests

Reviewers: reames, chandlerc

Reviewed By: chandlerc

Subscribers: majnemer, joker.eph, chandlerc, llvm-commits

Differential Revision: http://reviews.llvm.org/D7780

Patch by Amaury Sechet

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 232284
2015-03-14 22:19:33 +00:00
Duncan P. N. Exon Smith be95b4afc6 instcombine: alloca: Canonicalize scalar allocation array size
As a follow-up to r232200, add an `-instcombine` to canonicalize scalar
allocations to `i32 1`.  Since r232200, `iX 1` (for X != 32) are only
created by RAUWs, so this shouldn't fire too often.  Nevertheless, it's
a cheap check and a nice cleanup.

llvm-svn: 232202
2015-03-13 19:42:09 +00:00
Duncan P. N. Exon Smith 07ff9b03f6 instcombine: alloca: Limit array size type promotion
Move type promotion of the size of the array allocation to the end of
`simplifyAllocaArraySize()`.  This avoids promoting the type of the
array size if it's a `ConstantInt`, since the next -instcombine
iteration will drop it to a scalar allocation anyway.  Similarly, this
avoids promoting the type if it's an `UndefValue`, in which case the
alloca gets RAUW'ed.

This is NFC when considered over the lifetime of -instcombine, since
it's just reducing the number of iterations needed to reach fixed point.

llvm-svn: 232201
2015-03-13 19:34:55 +00:00
Duncan P. N. Exon Smith 720762e2c0 AsmWriter: Write alloca array size explicitly (and -instcombine fixup)
Write the `alloca` array size explicitly when it's non-canonical.
Previously, if the array size was `iX 1` (where X is not 32), the type
would mutate to `i32` when round-tripping through assembly.

The testcase I added fails in `verify-uselistorder` (as well as
`FileCheck`), since the use-lists for `i32 1` and `i64 1` change.
(Manman Ren came across this when running `verify-uselistorder` on some
non-trivial, optimized code as part of PR5680.)

The type mutation started with r104911, which allowed array sizes to be
something other than an `i32`.  Starting with r204945, we
"canonicalized" to `i64` on 64-bit platforms -- and then on every
round-trip through assembly, mutated back to `i32`.

I bundled a fixup for `-instcombine` to avoid r204945 on scalar
allocations.  (There wasn't a clean way to sequence this into two
commits, since the assembly change on its own caused testcase churn, and
the `-instcombine` change can't be tested without the assembly changes.)

An obvious alternative fix -- change `AllocaInst::AllocaInst()`,
`AsmWriter` and `LLParser` to treat `intptr_t` as the canonical type for
scalar allocations -- was rejected out of hand, since this required
teaching them each about the data layout.

A follow-up commit will add an `-instcombine` to canonicalize the scalar
allocation array size to `i32 1` rather than leaving `iX 1` alone.

rdar://problem/20075773

llvm-svn: 232200
2015-03-13 19:30:44 +00:00
Duncan P. N. Exon Smith bb730135c9 instcombine: alloca: Remove nesting in simplifyAllocaArraySize(), NFC
llvm-svn: 232199
2015-03-13 19:26:33 +00:00
Duncan P. N. Exon Smith c6820ec1c2 instcombine: alloca: Split out simplifyAllocaArraySize(), NFC
Follow-up commits will change some of the logic here.  Splitting into a
separate function simplifies the logic by allowing early returns instead
of deeper nesting.

llvm-svn: 232197
2015-03-13 19:22:03 +00:00
Mehdi Amini a28d91d81b DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.

This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.

I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.

I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.

Test Plan:

Reviewers: echristo

Subscribers: llvm-commits

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
2015-03-10 02:37:25 +00:00
Charles Davis 33d1dc0008 [IC] Turn non-null MD on pointer loads to range MD on integer loads.
Summary:
This change fixes the FIXME that you recently added when you committed
(a modified version of) my patch.  When `InstCombine` combines a load and
store of an pointer to those of an equivalently-sized integer, it currently
drops any `!nonnull` metadata that might be present.  This change replaces
`!nonnull` metadata with `!range !{ 1, -1 }` metadata instead.

Reviewers: chandlerc

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7621

llvm-svn: 230462
2015-02-25 05:10:25 +00:00
Hal Finkel 847e05f569 [InstCombine] Remove unnecessary variable indexing into single-element arrays
This change addresses a deficiency pointed out in PR22629. To copy from the bug
report:

[from the bug report]

Consider this code:

int f(int x) {
  int a[] = {12};
  return a[x];
}

GCC knows to optimize this to

movl     $12, %eax
ret

The code generated by recent Clang at -O3 is:

movslq   %edi, %rax
movl     .L_ZZ1fiE1a(,%rax,4), %eax
retq

.L_ZZ1fiE1a:
  .long    12                      # 0xc

[end from the bug report]

This definitely seems worth fixing. I've also seen this kind of code before (as
the base case of generic vector wrapper templates with one element).

The general idea is to look at the GEP feeding a load or a store, which has
some variable as its first non-zero index, and determine if that index must be
zero (or else an out-of-bounds access would occur). We can do this for allocas
and globals with constant initializers where we know the maximum size of the
underlying object. When we find such a GEP, we create a new one for the memory
access with that first variable index replaced with a constant zero.

Even if we can't eliminate the memory access (and sometimes we can't), it is
still useful because it removes unnecessary indexing calculations.

llvm-svn: 229959
2015-02-20 03:05:53 +00:00
Chandler Carruth 87fdafc7b2 [IC] Fix a bug with the instcombine canonicalizing of loads and
propagating of metadata.

We were propagating !nonnull metadata even when the newly formed load is
no longer of a pointer type. This is clearly broken and results in LLVM
failing the verifier and aborting. This patch just restricts the
propagation of !nonnull metadata to when we actually have a pointer
type.

This bug report and the initial version of this patch was provided by
Charles Davis! Many thanks for finding this!

We still need to add logic to round-trip the metadata correctly if we
combine from pointer types to integer types and then back by using range
metadata for the integer type loads. But this is the minimal and safe
version of the patch, which is important so we can backport it into 3.6.

llvm-svn: 229029
2015-02-13 02:30:01 +00:00
Chandler Carruth a917458203 [PM] Rename InstCombine.h to InstCombineInternal.h in preparation for
creating a non-internal header file for the InstCombine pass.

I thought about calling this InstCombiner.h or in some way more clearly
associating it with the InstCombiner clas that it is primarily defining,
but there are several other utility interfaces defined within this for
InstCombine. If, in the course of refactoring, those end up moving
elsewhere or going away, it might make more sense to make this the
combiner's header alone.

Naturally, this is a bikeshed to a certain degree, so feel free to lobby
for a different shade of paint if this name just doesn't suit you.

llvm-svn: 226783
2015-01-22 05:25:13 +00:00
Chandler Carruth cd8522ef44 [canonicalize] Teach InstCombine to canonicalize loads which are only
ever stored to always use a legal integer type if one is available.

Regardless of whether this particular type is good or bad, it ensures we
don't get weird differences in generated code (and resulting
performance) from "equivalent" patterns that happen to end up using
a slightly different type.

After some discussion on llvmdev it seems everyone generally likes this
canonicalization. However, there may be some parts of LLVM that handle
it poorly and need to be fixed. I have at least verified that this
doesn't impede GVN and instcombine's store-to-load forwarding powers in
any obvious cases. Subtle cases are exactly what we need te flush out if
they remain.

Also note that this IR pattern should already be hitting LLVM from Clang
at least because it is exactly the IR which would be produced if you
used memcpy to copy a pointer or floating point between memory instead
of a variable.

llvm-svn: 226781
2015-01-22 05:08:12 +00:00
Chandler Carruth fa11d837a0 [canonicalize] Move a helper function further up the file so it can be
used earlier. NFC.

llvm-svn: 226777
2015-01-22 03:34:54 +00:00
Chandler Carruth 2135b97d8f [canonicalization] Refactor how we create new stores into a helper
function. This is a bit tidier anyways and will make a subsquent patch
simpler as I want to add another case to this combine.

llvm-svn: 226746
2015-01-21 23:45:01 +00:00
Chandler Carruth 66b3130cda [PM] Split the AssumptionTracker immutable pass into two separate APIs:
a cache of assumptions for a single function, and an immutable pass that
manages those caches.

The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.

Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.

For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.

llvm-svn: 225131
2015-01-04 12:03:27 +00:00
Philip Reames 5ad26c353c Loading from null is valid outside of addrspace 0
This patches fixes a miscompile where we were assuming that loading from null is undefined and thus we could assume it doesn't happen.  This transform is perfectly legal in address space 0, but is not neccessarily legal in other address spaces.

We really should introduce a hook to control this property on a per target per address space basis.  We may be loosing valuable optimizations in some address spaces by being too conservative.

Original patch by Thomas P Raoux (submitted to llvm-commits), tests and formatting fixes by me.

llvm-svn: 224961
2014-12-29 22:46:21 +00:00
Chandler Carruth a7f247ea56 Revert r223764 which taught instcombine about integer-based elment extraction
patterns.

This is causing Clang to miscompile itself for 32-bit x86 somehow, and likely
also on ARM and PPC. I really don't know how, but reverting now that I've
confirmed this is actually the culprit. I have a reproduction as well and so
should be able to restore this shortly.

This reverts commit r223764.

Original commit log follows:
Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.

Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.

All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.

With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.

For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
  integer loads and stores. SSA values are tremendously more powerful
  than "copy" intrinsics. Not doing this regresses massive amounts of
  LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
  SROA or every memcpy of a trivially copyable struct will prevent SSA
  formation of the members of that struct. It essentially turns off
  SROA.
- The closest alternative is to actually split the loads and stores when
  partitioning with SROA, but this has all of the downsides historically
  discussed of splitting up loads and stores -- the wide-store
  information is fundamentally lost. We would also see performance
  regressions for bitfield-heavy code and other places where the
  integers aren't really intended to be split without seemingly
  arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
  a choice to make IMO.

llvm-svn: 223813
2014-12-09 19:21:16 +00:00
Chandler Carruth 7415205113 Teach instcombine to canonicalize "element extraction" from a load of an
integer and "element insertion" into a store of an integer into actual
element extraction, element insertion, and vector loads and stores.

Previously various parts of LLVM (including instcombine itself) would
introduce integer loads and stores into the code as a way of opaquely
loading and storing "bits". In some cases (such as a memcpy of
std::complex<float> object) we will eventually end up using those bits
in non-integer types. In order for SROA to effectively promote the
allocas involved, it splits these "store a bag of bits" integer loads
and stores up into the constituent parts. However, for non-alloca loads
and tsores which remain, it uses integer math to recombine the values
into a large integer to load or store.

All of this would be "fine", except that it forces LLVM to go through
integer math to combine and split up values. While this makes perfect
sense for integers (and in fact is critical for bitfields to end up
lowering efficiently) it is *terrible* for non-integer types, especially
floating point types. We have a much more canonical way of representing
the act of concatenating the bits of two SSA values in LLVM: a vector
and insertelement. This patch teaching InstCombine to use this
representation.

With this patch applied, LLVM will no longer introduce integer math into
the critical path of every loop over std::complex<float> operations such
as those that make up the hot path of ... oh, most HPC code, Eigen, and
any other heavy linear algebra library.

For the record, I looked *extensively* at fixing this in other parts of
the compiler, but it just doesn't work:
- We really do want to canonicalize memcpy and other bit-motion to
  integer loads and stores. SSA values are tremendously more powerful
  than "copy" intrinsics. Not doing this regresses massive amounts of
  LLVM's scalar optimizer.
- We really do need to split up integer loads and stores of this form in
  SROA or every memcpy of a trivially copyable struct will prevent SSA
  formation of the members of that struct. It essentially turns off
  SROA.
- The closest alternative is to actually split the loads and stores when
  partitioning with SROA, but this has all of the downsides historically
  discussed of splitting up loads and stores -- the wide-store
  information is fundamentally lost. We would also see performance
  regressions for bitfield-heavy code and other places where the
  integers aren't really intended to be split without seemingly
  arbitrary logic to treat integers totally differently.
- We *can* effectively fix this in instcombine, so it isn't that hard of
  a choice to make IMO.

Differential Revision: http://reviews.llvm.org/D6548

llvm-svn: 223764
2014-12-09 08:55:32 +00:00
Chandler Carruth 816d26fe5e [InstCombine] Change LLVM To canonicalize toward the value type being
stored rather than the pointer type.

This change is analogous to r220138 which changed the canonicalization
for loads. The rationale is the same: memory does not have a type,
operations (and thus the values they produce) have a type. We should
match that type as closely as possible rather than reading some form of
semantics into the pointer type.

With this change, loads and stores should no longer be made with
nonsensical types for the values that tehy load and store. This is
particularly important when trying to match specific loaded and stored
types in the process of doing other instcombines, which is what led me
down this twisty maze of miscanonicalization.

I've put quite some effort into looking through IR to find places where
LLVM's optimizer was being unreasonably conservative in the face of
mismatched load and store types, however it is possible (let's say,
likely!) I have missed some. If you see regressions here, or from
r220138, the likely cause is some part of LLVM failing to cope with load
and store types differing. Test cases appreciated, it is important that
we root all of these out of LLVM.

llvm-svn: 222748
2014-11-25 10:09:51 +00:00
Chandler Carruth 1a3c2c414c Revert r220349 to re-instate r220277 with a fix for PR21330 -- quite
clearly only exactly equal width ptrtoint and inttoptr casts are no-op
casts, it says so right there in the langref. Make the code agree.

Original log from r220277:
Teach the load analysis to allow finding available values which require
inttoptr or ptrtoint cast provided there is datalayout available.
Eventually, the datalayout can just be required but in practice it will
always be there today.

To go with the ability to expose available values requiring a ptrtoint
or inttoptr cast, helpers are added to perform one of these three casts.

These smarts are necessary to finish canonicalizing loads and stores to
the operational type requirements without regressing fundamental
combines.

I've added some test cases. These should actually improve as the load
combining and store combining improves, but they may fundamentally be
highlighting some missing combines for select in addition to exercising
the specific added logic to load analysis.

llvm-svn: 222739
2014-11-25 08:20:27 +00:00